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Abstract: In this paper our investigation on aimed
information, started in 2011, will be completed on
fuzzy setting. Here will be given a form of informa-
tion for fuzzy sets, when it is conditioned and aimed.
This information is called general,because it is de-
fined without using probability or fuzzy measure.
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I. INTRODUCTION

By using the concept of general information (i.e.
information without probability or fuzzy measure [1,
2, 3]), the definition of conditional information [4, 5]
and aimed information [6] have been introduced for
crisp sets.

It is possible to move to fuzzy setting. In fact the
goal of this paper is to introduce a form of general
information J conditioned and aimed by two differ-
ent sets, independent of each other with respect to J
(J−independence).

This measure can be useful when we want to mea-
sure information of a set of people with different lev-
els of the same illness, treated with different dose of a
medicament.

The paper is organized in the following way.
Sect.2 contains some preliminaries. In Sect.3 in fuzzy
setting will be introduced the definition of general
conditional information with a given aim, by means
of axioms. The properties of this information are
traslated in a system of functional equations [7, 8]. In
Sect.4 the problem is solved, finding a class of solu-
tions and a particular solution in J−independent case.
Sect.5 is devoted to the conclusion.
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II. PRELIMINAIRES

Let X be an abstact space and F the σ−algebra
of all fuzzy sets ofX, such that (X,F) is measurable.
Basic notions, notations and operation on fuzzy sets
can be found in [9, 10]. Now, the definition of measure
of general information for fuzzy sets is recalled [11].

Definition n.1
Measure of general information J(·) is a mapping

J(·) : F → [0,+∞] such that ∀F, F ′ ∈ F :
(i)F ⊃ F ′ → J(F ) ≤ J(F ′),
(ii)J(∅) = +∞, J(X) = 0.

Given a measure of general information J and
K,K ′ ∈ F with K 6= K ′,K ∩K ′ 6= ∅, K and K ′ are
said J− independent (i.e. independent of each other
with respect to J) if

(iii) J(K ∩K ′) = J(K) + J(K ′).

III. STATEMENT OF THE PROBLEM

In this paragraph will be introduced measure of
general information when it is conditioned by a given
event H and it is aimed by a different event S.

A. Definition
From now on, the following assumption is con-

sidered:

let H,S ∈ F ,H 6= S, (1)

J(H) 6= +∞, J(S) 6= +∞,

H and S are calling conditioning and aiming events,
respectively. Now, given a conditioning and aiming
sets as in (1), it is introduced the definition of gen-
eral information of the set F ∈ F conditioned by H
with the aim S: this information will be denoted by
JH(F → S).

Definition n.2
Given H and S as in (1), measure of general in-

formation conditioned by H with the aim S is a map-
ping

JH(· → S) : F → [0,+∞]

such that ∀F, F ′ ∈ F :
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(l) F ⊃ F ′ → JH(F → S) ≤ JH(F ′ → S),
(ll) JH(∅ → S) = +∞, JH(X → S) = 0.

Given a measure JH(· → S) as in Def.2,K,K ′ ∈
F with K 6= K ′,K ∩K ′ 6= ∅, K and K ′ are said J−
conditional independent with the aim S (i.e. indepen-
dent of each other with respect to J conditioned by H
with the aim S) if

(lll) JH((K ∩K ′)→ S) =

JH(K → S) + JH(K ′ → S).

B. The function Φ

With the assumption (1), our study considers
that measure JH(· → S) of F ∈ F depends on
J(F ), J(H), J(S), J(F ∩H), J(F ∩S). So, one will
find a function Φ such that:

JH(F → S) = (2)

Φ
J(F ), J(H), J(S), J(F ∩H), J(F ∩ S)

,
with Φ : T → [0,+∞] and T will be specified later.
Putting: x = J(F ), y = J(H), z = J(S), u = J(F∩
H), v = J(F ∩ S), with x, u, v ∈ [0,+∞], y, z ∈
[0,+∞), x ≤ u, y ≤ u, x ≤ v, z ≤ v, from (2) it is

JH(F → S) = Φ
x, y, z, u, v (3)

and T = {(x, y, z, u, v)/x, u, v ∈ [0,+∞], y, z ∈
[0,+∞), x ≤ u, y ≤ u, x ≤ v, z ≤ v}.

Moreover, setting x′ = J(F ′), u′ = J(F ′ ∩
H), v′ = J(F ′ ∩ S), with x′, u′, v′ ∈ [0,+∞], x′ ≤
u′, x′ ≤ v′, the properties [(l)−(ll)] of JH(· → S) are
traslated in the following system of functional equa-
tions:

(e1) Φ(x, y, z, u, v) ≤ Φ(x′, y, z, u′, v′)
if x ≤ x′, u ≤ u′, v ≤ v′ ,
(e2) Φ(+∞, y, z,+∞,+∞) = +∞ ,
(e3) Φ(0, y, z, y, z) = 0 .

IV. SOLUTION OF THE PROBLEM

C. General case

For the system [(e1)− (e3)] it is
Proposition n.1
A class of solution of the system [(e1)− (e3)] is

Φh(x, y, z, u, v) = (4)

h−1
h(x)− h(y)− h(z) + h(u) + h(v)



where h is any continuous, strictly increasing function
h : [0,+∞] → [0,+∞] with h(0) = 0, h(+∞) =
+∞.
Proof: The prof follows easily from the properties of
the function h.

From (3) and (4), given H and S as in (1), mea-
sure of general information of any fuzzy set F condi-
tioned by H with the aim S is

JH(F → S) = h−1
h(J(F ))− h(J(H))− (5)

h(J(S)) + h(J(F ∩H) + h(J(F ∩ S)


where h is any continuous, strictly increasing function
h : [0,+∞] → [0,+∞] with h(0) = 0, h(+∞) =
+∞.

D. J−independence

In the case of J−independence the system [(e1)−
(e3)] must be completed with an extra equation de-
duced by the property (lll) :

(e4) Φ
t+ t′, y, z, t+ t′ + y, t+ t′ + z

 =

Φ
t, y, z, t+ y, t+ z

 + Φ
t′, y, z, t′+ y, t′+ z

,
where t = J(K), t′ = J(K ′), t, t′ ∈ [0,+∞].

Among all h of the Prop. n.1, only differentiable
functions are considered. Here it is used the same pro-
cedure of [12].

The equation [(e4)] is

h−1(h(t+t′)−h(y)−h(z)+h(t+t′+y)+h(t+t′+z))

= h−1(h(t)− h(y)− h(z) + h(t+ y) + h(t+ z))+

h−1(h(t′)− h(y)− h(z) + h(t′ + y) + h(t′ + z)).

Now, the function h will be characterized.
Putting y = z,

h(h(t+t′)−h(y)−h(y)+h(t+t′+y)+h(t+t′+y))

= h−1(h(t)− h(y)− h(y) + h(t+ y) + h(t+ y))+

h−1(h(t′)− h(y)− h(y) + h(t′ + y) + h(t′ + y)),

i.e. it is

h−1
2 h(t+ t′ + y) + h(t+ t)− 2 h(y)

 = (6)

h−1
2 h(t+ y) + h(t)− 2 h(y)

+

h−1
2 h(t′ + y) + h(t′)− 2 h(y)

.
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Setting

ϕ(t, y) = h−1
2 h(t+ y) + h(t)− 2 h(y)

 (7)

the equation (6) becomes

ϕ(t+ t′, y) = ϕ(t, y) + ϕ(t′, y). (8)

Fixed y = y∗, the (8) is the classical Cauchy equation
[7], whose solution is the continuous function ϕ :

ϕ(t, y∗) = λ(y∗)t. (9)

So, from (7),

λ(y∗)t = h−1
2 h(t+ y∗) + h(t)− 2 h(y∗)

 i .e.

h
λ(y∗)t

 = 2 h(t+ y∗) + h(t)− 2 h(y∗). (10)

If y∗ = 0, as h(0) = 0, from (10), one has

h
λ(0)t

 = 2 h(t) + h(t), i .e.

h
λ(0)t

 = 3 h(t). (11)

Taking inspiration by [7, 8, 13, 14] one will prove that

h
λ(0)t

 = 3 h(t) =⇒ λ(0) = 3. (12)

Set λ(0) = c, from (11), one will solve the equation

h(c t) = 3 h(t); (13)

by differentiating ch′(c t) = 3 h′(t) from which

c h′(c t)

h(c t)
=
h′(t)

h(t)
. (14)

Setting

v(t) =
h′(t)

h(t)
, (15)

the (14) is

v(c t) =
v(t)

c
, ∀ t. (16)

The function v(t) = 1
t is the unique solution admit-

ting a Laurent expansion about 0. By substituing in
(15), one obtain the equation

h′(t)

h(t)
=

1

t
(17)

whose solution is

h(t) = k t, t ∈ [0,+∞], k > 0. (18)

By substituing (18) in (13), it is c = λ(0) = 3. So, the
function h satisfies the following condition:

h(3 t) = 3 h(t). (19)

From (10),

ϕ(x, t) = 3 t = h−1
2 h(t+ y) + h(t)− 2 h(y)


i .e. h(3 t) = 2 h(t+ y) + h(t)− 2 h(y),

taking into account (19), it is

3 h(t) = 2 h(t+ y)− 2 h(y) + h(t)

i .e. h(t) + h(y) = h(t+ y),

which is the classical Cauchy equation [7], whose so-
lution is

h(x) = c x, c > 0. (20)

Now, it is possible to give the following
Proposition n.2
The solution of the system [(e1)− (e4)] is

Φ(x, y, z, u, v) = x− y − z + u+ v. (21)

Proof: It is easy to check that (21) holds, by ap-
plying (20) in the (4).

In the independent case, given H and S as in (1),
from (21), information of any set A ∈ A conditioned
by H with the aim S is

JH(A→ S) = J(A)− J(H)− J(S)+ (22)

J(A ∩H) + J(A ∩ S).

V. CONCLUSION

First, by axiomatic way, it has been defined gen-
eral conditional information with an aim, on fuzy set-
ting. By using its properties, it has been possible to
find a class of this measure (5).

Then, taking into account the J−independence
property, it has been obtained a particular measure
(22).
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