
  
Abstract—Fuzzy implications are used in inference 

system applications involving fuzzy control, approximate 
reasoning, and artificial intelligence, among others. In 
applications where propositional logic is employed for 
reasoning, fuzzy implications play a fundamental role as 
logical connectives. In applications where multiple fuzzy 
implications are to be engaged, it is necessary that the most 
appropriate of these implications be selected, on the 
grounds that it best represents the notion of induction of an 
application, pertaining to it. This study introduces a method 
for the selection of the most appropriate fuzzy implication 
among others under consideration. The method’s resulting 
most appropriate fuzzy implication is the one, whose 
corresponding fuzzy propositions best represent the 
inference making from the data of an application, regarding 
the expert’s opinion on the data application.   
 

Keywords—Fuzzy implications, Similarity measures, 
Fuzzy propositions, Fuzzy sets.  

I. INTRODUCTION 
ROPOSITIONAL logic is one of the basic concepts 
of reasoning systems and its logical techniques 

play an important role in the implementation of 
artificial intelligence and knowledge-based systems. 
It involves logic variables and logic functions 
(usually called logical connectives) between logic 
variables, which assess the truth value of logic 
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propositions. Logic variables take place in 
propositions of the form ‘p: s is P’ where s is a 
subject and P is a predicate that describes a property. 
Then, proposition p takes a truth value to gauge its 
validity. The most common logical connectives used 
in propositional logic are the negation (not), 
conjunction (and), disjunction (or), which form other 
logical functions like the implications (if-then). An 
implication is an If-Then rule of the form ‘If A, Then 
B’ and it assigns a value to the two logic variables 
derived from the If-part A, and the Then-part B. The 
If-part of the implication is a logic variable called 
antecedent and the Then-part is a logic variable 
called consequent.  

In classical logic the truth value of a logic variable 
or a proposition belongs to the set of two elements 
{0, 1} (i.e. true or false). However, in fuzzy logic the 
truth value of a proposition or a logical variable is a 
matter of degree, and it is a number of the interval [0, 
1]. This result makes fuzzy propositions suitable for 
applications where the predicates are variables which 
cannot be expressed by a unique number, unlike 
those in classical logic. For example, the variable 
‘high altitude’ is not binary for all the values of 
distance, but takes values in an interval instead. What 
is more, when these variables are combined with 
linguistic hedges, the result is the formation of other 
variables, called linguistic variables, which reflect 
levels of the initial variables [29]. For example, from 
the variable ‘altitude’ and the hedges ‘high’, 
‘medium’, and ‘low’ the linguistic variables ‘high 
altitude’, ‘medium altitude’, and ‘low altitude’ are 
obtained. When logic variables of the form ‘p: s is F’ 
are considered as fuzzy sets, the subject s is an object 
of a universal crisp set X and the degree of truth of 
the logic variable is the value of the membership 
function F(x) of the fuzzy set F for each one of the 
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objects in the crisp set X. Furthermore, in fuzzy 
propositions the logical connectives are not unique, 
since they are fuzzy operations. That said, combining 
different fuzzy negations, fuzzy conjunctions and 
fuzzy disjunctions, a variety of fuzzy implications is 
created. A fuzzy implication maps the values of two 
logic variables, as they are fuzzy sets, to a number in 
the close interval [0, 1]. That means that a fuzzy 
implication involved in a proposition, expresses the 
relationship between the premise and the consequent. 

A general categorization of fuzzy propositions is 
based on whether they are unconditional or 
conditional propositions. In this study the conditional 
fuzzy propositions are used. The If-Then fuzzy rules, 
involving fuzzy implications, are conditional fuzzy 
propositions. The canonical form of such fuzzy 
propositions is ‘p: If x is A, Then y is B’, where x, y 
are values in the crisp sets X and Y and A, B  are 
fuzzy sets on X Y× . Fuzzy inference rules play a 
crucial role in fuzzy control and approximate 
reasoning. Many inference system applications in 
engineering and industry implement fuzzy 
propositional logic and a ruled-base system where 
fuzzy implications are involved [23-26]. The fact that 
fuzzy implications affect the degree of truth of 
conditional fuzzy propositions that are involved in 
makes the selection of suitable fuzzy implications a 
part of major importance of the system design 
procedure.  

The theoretical suitability of fuzzy implications is 
based on tautologies called generalized inference 
rules, which are derived from inference rules of 
classical logic and implications. Those are the 
generalized modus ponens, generalized modus 
tollens and the generalized hypothetical syllogism. 
Given a fuzzy proposition, an implication is suitable, 
theoretically, when the generalized tautologies 
coincide with their classical counterparts [7], [27], 
[28]. Furthermore, a method for the selection of the 
most suitable fuzzy implication, which is close to the 
theoretical viewpoint, is described in [13], and it is 
based on the distance between fuzzy implications and 
the modus ponens.   

Contrary to the theoretical concept, the method 
introduced in this study for choosing the most 
appropriate fuzzy implication among other fuzzy 
implications is beyond the notion of theoretical 
suitability of implications. More specifically, it 
introduces an implication selection method, which is 
based on the application approach, and so in a way 
that is closer to the dataset an the expert’s opinion, 
rather than the theoretical scope. 

The rest of the paper is structured as follows. In 
Section II some useful definitions and notations are 
presented, in Section III the methodology and 
procedure is described, and in Section IV an 
application of the method is demonstrated. Finally, 
Section V is devoted to the conclusions. 

 

II. PRELIMINARIES  
All the definitions regarding fuzzy implications and 
fuzzy sets used in this paper can be found in [6, 7, 11, 
14-16]. 

A. Implications 
Definition 1 An implication in classical logic is a 
function: 

{ } { } { }: 0,1 0,1 0,1l × → ,which satisfies the boundary 
conditions: 

i) ( )0,0 1l =  

ii) ( )0,1 1l =  (Falsity implies anything) 

iii) ( )1,0 0l =  

iv) ( )1,1 1l =  

Definition 2 A fuzzy implication is a relation: 
[ ] [ ] [ ]: 0,1 0,1 0,1I × → , which satisfies at least some 

of the following axioms, which are listed from the 
weakest to the strongest , , [0,1]a b c∀ ∈ : 

1) a b≤  implies ( ) ( ), ,I a x I b x≥  

2) a b≤  implies ( ) ( ), ,I x a I x b≤  

3) ( )0, 1I a =  (Falsity implies anything) 

4) ( )1, 1I b =  

5) ( ), 1I a a =  

6) ( )( ) ( )( ), , , ,I a I b x I b I a x=  

7) ( ), 1 iff I a b a b= ≤  

8) ( ) ( ), ( ), ( )I a b I c b c a= , where c is a fuzzy 
complement. 
9)  I   is a continuous function. 

Letting { }, , 0,1a b c ∈ , fuzzy implications satisfy the 
boundary conditions i) - iv) of those in classical 
logic. An important property is that, since fuzzy 
implications are formed by a combination of fuzzy 
complements (i.e. negation), t-norms (i.e. 
conjunction) and t-conorms (i.e. disjunction), this 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 3, 2016

ISSN: 2313-0512 33



triplet of fuzzy operations must satisfy the De 
Morgan laws. 
Some common fuzzy implications are listed below. 
Furthermore, these implications are employed in 
Section 4: 

1. The Larsen rule 
( )1 ,R a b ab=  

2. The Mamdani rule 
( ) { }2 , min ,R a b a b=  

3. The Kleene-Dienes implication     
( ) { }3 , max 1 ,R a b a b= −  

4. The Lukasiewicz implication 
( ) { }4 , min 1,1R a b a b= − +  

5. The Early Zadeh implication 
( ) { }{ }5 , max 1 ,min ,R a b a a b= −  

6. The Reichenbach implication 
( )6 , 1R a b a ab= − +  

7. The Willmott implication 
( )7 ,R a b =  

    { } { } { }{ }min max 1 , ,max 1 , ,max 1 ,a b a a b b= − − −  

8. The Klir and Yuan 1 implication 
( ) 2

8 , 1R a b a a b= − +  
 
The first two operators, the Mamdani rule and the 
Larsen rule, are the fuzzy products, as discussed in 
[2], [8], and [10]. When considered as implications 
they are called engineering implications as 
mentioned in [12], and since they satisfy the 
boundary condition ( )0, 0I a =  (i.e. falsity implies 
nothing), in opposition to the above-mentioned 
axiom ii) of implications in classical logic and axiom 
3) of those in fuzzy logic (i.e. falsity implies 
anything), they make no distinction between premise 
and conclusion. That being the case, they are suitable 
for applications where cause and effect are confused, 
as in [17]. Moreover, when these fuzzy relations are 
used as membership functions they construct fuzzy 
sets, as explained in [7, pp. 120-121]. That means 
that given the crisp sets  X  and  Y, and  

{( , ( )) | }A x A x x X= ∈ ,  {( , ( )) | }B y B y y Y= ∈   two 
fuzzy sets on  X  and Y, with membership functions A 

and B  respectively, a fuzzy implication  I  can be 
treated as a fuzzy set on the set X Y× , as the fuzzy 
set  {(( , ), ( , )) | ( , ) }I x y I x y x y X Y= ∈ ×  x X∀ ∈   

and  y Y∀ ∈ , where ( ), ( ( ), ( ))I x y I A x B y=  is the  
membership function of the fuzzy set I, which is the 
expression of the very fuzzy implication I. 

B. Final Conditional fuzzy propositions 
Propositions of this type are expressed by the 
canonical form: 

:      ,  Then  is p If x is A y B , 
where x, y are, in general, variables whose variables 
are in crisp sets X and Y respectively, A, B are fuzzy 
sets on X, Y. These propositions can be also 
expressed by a similar form:   

:  ,  y   is  p x R , 
where R is a fuzzy binary relation 

( , ) ( ( ), ( ))R x y R A x B y= , thus a fuzzy set (as 
explained in the introduction) on  X Y× , of the 
form {(( , ), ( , )) | ( , ) }R x y R x y x y X Y= ∈ × . In 
inference systems applications, suitable fuzzy 
implications are used as fuzzy relations, involved in 
fuzzy propositions, thus constructing compositional 
rules.  
The degree of truth of a fuzzy proposition is, in 
general, a function ( )T p  of the membership function 
of the predicate, called truth qualifier, and it 
expresses the quality of truth of the proposition (i.e. 
True, Very true, Very-very true, False, Fairly false 
etc.), as discussed in [7, pp. 222 - 225], and [19]. In 
the case of a conditional fuzzy proposition, ( )T p  is a 
function of the fuzzy implication, and it indicates 
how true is that the predicate implies the consequent. 
When the truth qualifier of a conditional fuzzy 
preposition is considered to be the identity function, 
the degree of truth of the proposition is the value of 
the corresponding fuzzy implication of the 
proposition.  

C. Measures of similarity 
In literature, a large variety of measures of similarity 
between fuzzy values has been studied and discussed 
as in [20], [21], and [22]. The measures of similarity 
are categorized as distance-based similarity 
measures, which are based on the distance of fuzzy 
sets, set-theoretic measures of similarity, and fuzzy 
implicators-based similarity measures. Some 
commonly used set-theoretic measures of similarity 
are stated as follows [13]: 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 3, 2016

ISSN: 2313-0512 34



1)  The grade of similarity M  of the fuzzy sets 
A and B, defined by  

                 1,               if  
( , ) min( ( ), ( ))

, otherwise
max( ( ), ( ))

x X

x X

A B
M A B A x B x

A x B x
∈

∈

= = ∅
= Σ
 Σ

 

2)  The grade of similarity L  of the fuzzy sets A 
and B, defined by  

( , ) 1 max ( ) ( )
x X

L A B A x B x
∈

= − −  

3)  The grade of similarity S  of the fuzzy sets A 
and B, defined by  
 

                 1,                if  
( , ) ( ) ( )

1 , otherwise
( ( ) ( ))

x X

x X

A B
S A B A x B x

A x B x
∈

∈

= = ∅
= Σ − − Σ +

 

In this study the M  grade of similarity is employed 
to measure the degree of similarity of two fuzzy sets.     

III. METHOD FOR THE SELECTION OF THE FUZZY 
IMPLICATION 

Given an initial set of implications, in order to 
determine which implication is the most appropriate 
one, a special fuzzy set  L  is defined to represent the 
ideal fuzzy implication. The membership function of 
this fuzzy set takes the value one for each one of the 
values of the data of an application, since they are 
real observations, therefore the inference drawn that 
the premise implies the conclusion has to be the 
absolute truth (i.e. ‘True’).  
Let X, Y be the crisp sets that contain the data, and A, 
B  be fuzzy sets on  X, Y. The fuzzy set L is:  

{(( , ), ( , )) | ( , ) }i i i i i iL x y L x y x y X Y= ∈ × , where 

( ) ( ) ( )( ), , 1i i i iL x y L A x B y= = , ( , )i ix y X Y∀ ∈ × .  
As a consequence, when this fuzzy set is considered 
as implication, the degree of truth of the 
corresponding fuzzy conditional proposition is equal 
to 1, for every increasing truth qualifier T(p). 

  
The mechanism of the method introduced, comprises 
six steps: 

Step 1: Creation of the fuzzy sets which are the 
linguistic variables for each variable of the set of 
paired data.  

Step 2: Creation of a partition of the data, where 
each subset of the partition is randomly populated.  

Step 3: Calculation of the mean value for each of the 
subset of the partition. 

Step 4: Calculation of the values of the fuzzy 
implications for the mean values in Step 3 using the 
membership functions of the linguistic variables 
created in Step 1. 

Step 5: Evaluation of the implications under 
consideration for the membership functions values of 
Step 4. 

Step 6: Evaluation of the degree of similarity 
between each fuzzy implication and the fuzzy set L.  

The implication with the highest or that with the 
lowest degree of similarity with the fuzzy set L for 
each of the linguistic fuzzy sets is considered as the 
most appropriate fuzzy implication according to the 
expert’s opinion about the inference drawn from the 
degree of truth of the corresponding conditional 
fuzzy proposition for the application.    

IV. APPLICATION OF THE METHOD 
The method is applied on a data set, provided for 
Hellenic National Meteorological Service, that 
contains yearly measurements of rainfall and 
overflow, which took place in Vogatsiko village, 
located in Northern Greece in the region of 
Macedonia (see Table I). The truth qualifier of the 
conditional fuzzy propositions, is considered to be 
the identity function, thus the degree of truth of each 
proposition is the value of the corresponding fuzzy 
implication of the proposition.  
 
Step 1: For the creation of the linguistic variables the 
linguistic hedges ‘High’, ‘Medium’, and ‘Low’ for 
the variables Rainfall and Overflow of the paired 
data. For the construction of the membership 
functions of the fuzzy sets ‘Medium Rainfall’ and 
‘Medium Overflow’, the method of least-square 
curve fitting, has been applied, as demonstrated in [7, 
pp. 292-295]. More specifically, the class of skew-
normal distributions, as discussed in [1], [4] has been 
employed to fit the data using a selection of the 
normalized frequencies of Rainfall and Overflow 
regarding their maximum frequency, so that their 
values belong to the close interval [0, 1].  
The skew-normal distribution is defined by: 
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Table I 
The Data Set 

Rainfall (mm) Overflow (mm) 

359 
406,300000000000 
410,200000000000 
410,400000000000 
459,900000000000 
461,800000000000 
501,200000000000 
501,900000000000 
504 
538,100000000000 
542 
542,600000000000 
555,400000000000 
556,800000000000 
578,400000000000 
583,600000000000 
593,600000000000 
599,100000000000 
608,500000000000 
635,700000000000 
640,300000000000 
656,700000000000 
669,100000000000 
681,900000000000 
683,200000000000 
687,100000000000 
691,100000000000 
703,700000000000 
714 
751,200000000000 
779,600000000000 
787,400000000000 
836,700000000000 
851 
854,600000000000 
882,500000000000 

3,58159609600000 
13,8432332100000 
14,8100169300000 
14,8600890800000 
28,7205915500000 
29,3102586100000 
42,4756771500000 
42,7255362900000 
43,4784072200000 
56,3852183600000 
57,9418692300000 
58,1827966000000 
63,4135143800000 
63,9960925800000 
73,2416595700000 
75,5386096400000 
80,0320145100000 
82,5456641700000 
86,8904356000000 
100,015965400000 
102,300745100000 
110,603044500000 
117,039559900000 
123,823898900000 
124,520771300000 
126,619963500000 
128,786266200000 
135,696926300000 
141,442348200000 
162,886273300000 
179,952821600000 
184,740380400000 
215,939070500000 
225,282868200000 
227,653805000000                          

 
246,286734700000 

 
 

2( ; , , , ) x b x bf x a b c d a d
c c c

ϕ −  −    = Φ     
    

, 

where  b  and  c  represent the usual location and 
scale parameters,  d  determines the skewness, a  
controls the height of the function,  and  φ,  Φ  denote 
the pdf and cdf of a standard Gaussian deviate. 
Hence, the linguistic variable ‘Medium Rainfall’ is: 

{( , ( ) | }M i M i iR x R x x X= ∈ , where X is the set of 

Rainfall measurements and MR  is the membership 
function: 

( )MR x =

723.7342 723.73423.5297 2.1556
220.6916 220.6916

x xϕ −  −    = ⋅Φ −    
    

                           (1) 
 The linguistic variable ‘Medium Overflow’ is: 

{( , ( ) | }M i M i iO y O y y Y= ∈ , where Y is the set of 

Overflow measurements and MO  is the membership 
function: 

( )MO y =   

3.7951 3.79513.2316 2.3429
109.3525 109.3525
y yϕ −  −    = ⋅Φ     

    
                           (2) 

For the construction of the membership functions of 
the linguistic variables ‘Low Rainfall’ and ‘Low 
Overflow’, the family of the decreasing sigmoidal 
membership functions is used, as explained in [5], 
under the formula: 

( )

1( ; , )
1 a x cf x a c

e− −=
+

, 

where  a  controls the slope and  c  the center of the 
curve which is the mean value of Rainfall and that of 
Overflow values. These fuzzy sets are: 

 {( , ( ) | }L i L i iR x R x x X= ∈ , with membership 
function 

( 0.039)( 617.1833)

1( )
1L xR x

e− − −=
+

             (3) 

and {( , ( ) | }L i L i iO y O y y Y= ∈ , with membership 
function 

( 0.11)( 99.5990)

1( )
1L yO y

e− − −=
+

             (4) 

Similarly, the membership functions of the fuzzy sets 
‘High Rainfall’ and ‘High Overflow’ are created 
based on the increasing family of sigmoidal 
functions: 

( )

1( ; , )
1 a x cf x a c

e− − +=
+

. 

These fuzzy sets are: 

{( , ( ) | }H i H i iR x R x x X= ∈ , where 

( 0.038)( 617.1833)

1( )
1H xR x

e− − − +=
+

             (5) 

and  {( , ( ) | }H i H i iO y O y y Y= ∈ , where 
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( 0.07)( 99.5990)

1( )
1H yO y

e− − − +=
+

             (6) 

The graphical representation of the membership 
functions (1)-(6) of Rainfall and Overflow for the 
hedge ‘Medium’ are shown in Fig. 1 and Fig. 2 
respectively, for the hedge ‘Low’ in Fig. 3 and Fig. 4, 
while for the hedge ‘High’ in Fig. 5 and  Fig. 6.  
 
Step 2: The paired data of rainfall and overflow 
measurements are divided into six sets of six entries. 
The six subsets of the partition are populated 
randomly. Two subsets of the partition are used as 
control subsets to test the results. The partition is 
given in Table II. 

Step 3: The arithmetic mean of each subset of the 
partition of the variables Rainfall and Overflow is 
calculated. The values are contained in Table III. 

 Step 4: The membership functions of the six 
linguistic variables created in Step 1 are evaluated for 
the mean value of each subset of the partition. The 
values are presented in Table III. 

Step 5: The eight implications described in Section 2 
are evaluated using the membership functions values 
of the previous step of the mechanism. The 
implication values are included in Table IV. 

Step 6: Evaluation of the degree of similarity M 
between each of the eight fuzzy implications and the 
fuzzy set L.  

The membership function of the fuzzy set L for the 
fuzzified mean values of the subsets of the partition 

is: ( ) ( ) ( )( ), , 1i ii iL x y L R x O y= = , 1,..., 4i∀ = , 

where  ,i ix y   are the mean values of the i th−  
subset, ( )R x   represents one of the membership 

functions described by (1), (3), and (5), and ( )O y  
one of the membership functions (2), (4), and (6) 
respectively. The resulting degree of similarity  M  
between each one of the eight fuzzy implications and 
the implication  L, for each of the three hedges 
‘Low’, ‘Medium’ and ‘High’ are contained in Table 
V, showing that the highest and the lowest degrees of 
similarity with the implication  L correspond to the 
Lukasiewicz and the Larsen implication respectively. 

The degree of similarity between the Lukasiewicz 
and the implication  L  is:   
‘Low Rainfall implies Low Overflow’ with 

4( , ) 0,974790009267612S I L = , ‘Medium Rainfall 

implies Medium Overflow’ with 4( , ) 1S I L = ,  and 
‘High Rainfall implies High Overflow’ with 

4( , ) 0,970511917148573S I L = . That means that 
since fuzzy implication  L  which maps the values of 
all the subsets to 1, and the Lukasiewicz implication 
is the most similar implication to the  L  implication 
among the other seven implications, it takes the 
highest values for all the subsets of the partition and 
all the three hedges. This conclusion is confirmed by 
the implication values in Table IV. Moreover, this 
signifies that the premise of the conditional fuzzy 
propositions involving the Lukasiewicz implication 
implies the consequent with the highest degree of 
truth. For example the proposition 
‘595,583333333333 mm is Low Rainfall to the 
degree of  0,698970442851426 implies that 
92,5026916966667 mm is Low Overflow to the 
degree of 0,685808578280278’ is true, with degree 
of truth  1 (i.e. absolutely true).  

The degree of similarity between the Larsen and 
the implication  L  is:   
‘Low Rainfall implies Low Overflow’ with 

1( , ) 0, 405985443893697S I L = , ‘Medium Rainfall 
implies Medium Overflow’ with 

1( , ) 0,872957343116749S I L = ,  and ‘High Rainfall 
implies High Overflow’ with 

1( , ) 0, 229674263532507S I L = . The result that for 
every hedge ‘Low’, ‘Medium’, and ‘High’ the degree 
of similarity between the Larsen and the implication  
L  is the lowest means that the Larsen implication  
takes the lowest values of all the rest seven 
implications and for every subset of the data as 
shown in Table IV. For instance, the proposition 
‘595,583333333333 mm is Low Rainfall  to the 
degree of  0,698970442851426 implies that 
92,5026916966667 mm is Low Overflow to the 
degree of  0,685808578280278’  is true, with degree 
of truth 0,479359925671873. The fact that the Larsen 
implication takes the lowest values means that the 
corresponding conditional fuzzy propositions take the 
lowest degree of truth. Furthermore, the method is 
tested on the control subsets. The Lucasiewicz 
implication gives the highest values for the three 
control subsets of all the rest implications for each of 
the three hedges, whereas the Larsen implication 
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Fig. 1. Membership function of Medium Rainfall 

 

Fig. 2.  Membership function of Medium Overflow 

 

Fig. 3.  Membership function of Low Rainfall 

 

Fig. 4. Membership function of Low Overflow 

 

Fig. 5.  Membership function of High Rainfall 

 

Fig. 6.  Membership function of High Overflow 

 

Table II 

Partition of the nine subsets S1-S6 (last two for control) and six 
entries each 

Subsets Rainfall Overflow 

S1 

640,30000000000 
851 
578,40000000000 
410,20000000000 
410,40000000000 
683,20000000000 

102,30074510000 
225,28286820000 
73,241659570000 
14,810016930000 
14,860089080000 
124,52077130000 

S2 

504 
681,90000000000 
656,70000000000 
703,70000000000 
406,30000000000 
542 

43,478407220000 
123,82389890000 
110,60304450000 
135,69692630000 
13,843233210000 
57,941869230000 

S3 

714 
501,90000000000 
787,40000000000 
461,80000000000 
555,40000000000 
882,50000000000 

141,44234820000 
42,725536290000 
184,74038040000 
29,310258610000 
63,413514380000 
246,28673470000 

S4 

542,60000000000 
608,50000000000 
836,70000000000 
359 
669,10000000000 
599,10000000000 

58,182796600000 
86,890435600000 
215,93907050000 
3,5815960960000 
117,03955990000 
82,545664170000 

 
 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 3, 2016

ISSN: 2313-0512 38



Table II 

(Continued) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table III 

Values of membership functions on the arithmetic mean of Rainfall and Overflow

 
 
 
 
 
 
 
 
 

Control 
Subsets Rainfall Overflow 

S5 

593,600000000 
854,600000000 
687,100000000 
635,700000000 
779,600000000 
751,200000000 

80,03201451 
227,6538050 
126,6199635 
100,0159654 
179,9528216 
162,8862733 

S6 

459,900000000 
583,600000000 
501,200000000 
556,800000000 
691,100000000 
538,100000000 

28,72059155 
75,53860964 
42,47567715 
63,99609258 
128,7862662 
56,38521836 

Subsets x  LR  MR  HR  y
 LO  MO  HO  

S1 595,58333
3333333 

0,698970442
851426 1 0,305593868

489408 
92,502691
6966667 

0,685808578
280278 

0,90113217
5628007 

0,378306383
303007 

S2 582,43333
3333333 

0,794986613
639948 1 0,210735118

535510 
80,897896
5600000 

0,886665441
276491 

0,95592366
4835160 

0,212641060
468765 

S3 650,50000
0000000 

0,214274431
217568 1 0,780062963

866185 
117,98646
2096667 

0,116848491
438761 

0,74197272
7212592 

0,783659479
658116 

S4 602,50000
0000000 

0,639374423
691585 1 0,364018064

225803 
94,029853
8110000 

0,648535558
984595 

0,89280080
4791239 

0,403755423
092722 

Control Subsets 

S5 716,96666
6666667 

0,020005298
5303838 

0,740823007
266648 

0,977941819
898813 

146,19347
3885000 

0,005908778
10232455 

0,55157643
0746269 

0,963088130
726514 

S6 555,11666
6666667 

0,918384728
360827 

0,999319309
699934 

0,086389883
4131590 

65,983742
5800000 

0,975818306
499594 

0,99651009
6756681 

0,086822107
0922182 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 3, 2016

ISSN: 2313-0512 39



Table IV 

Values of the eight implications for the three hedges ‘Low’, ‘Medium’, ‘High’ of the subsets S1-S4 of the partition of the dataset 

Subsets 1I  2I  3I  4I  5I  6I  7I  8I  

S 
1 

Low 
0,479359
92567187
3 

0,685808
5782802
78 

0,6989704428
51426 1 0,6858085

78280278 
0,7935513
47391594 

0,6858085
78280278 

0,6429405708
29289 

Med. 
0,901132
17562800
7 

0,901132
1756280
07 

1 1 0,9011321
75628007 1 0,9011321

75628007 
0,9109070223
24058 

High 
0,115608
11114780
3 

0,305593
8684894
08 

0,6216936166
96993 

0,9272874
85186401 

0,6216936
16696993 

0,7373017
27844796 

0,6216936
16696993 

0,6654289031
05810 

S 
2 

Low 
0,704887
15659196
8 

0,794986
6136399
48 

0,7949866136
39948 

0,9083211
72363458 

0,7949866
13639948 

0,8182217
15315477 

0,7949866
13639948 

0,7383336404
73257 

Med. 
0,955923
66483516
0 

0,955923
6648351
60 

1 1 0,9559236
64835160 1 0,9559236

64835160 
0,9578663881
56723 

High 
0,044810
93908340
17 

0,210735
1185355
10 

0,7873589395
31235 

0,9980940
58066744 

0,7873589
39531235 

0,8321698
78614636 

0,7873589
39531235 

0,7968875851
38530 

S 
3 

Low 
0,025037
64404167
14 

0,116848
4914387
61 

0,8831515085
61239 1 0,8831515

08561239 
0,9081891
52602910 

0,7857255
68782432 

0,8860771194
96689 

Med. 
0,741972
72721259
2 

0,741972
7272125
92 

1 1 0,7419727
27212592 1 0,7419727

27212592 
0,8085508007
14699 

High 
0,611303
73636394
3 

0,780062
9638661
85 

0,7800629638
66185 

0,9964034
84208069 

0,7800629
63866185 

0,8276442
56705826 

0,7800629
63866185 

0,6953944882
93913 

S 
4 

Low 
0,414657
04926927
5 

0,639374
4236915
85 

0,6393744236
91585 

0,9908388
64706991 

0,6393744
23691585 

0,7661214
90284681 

0,6393744
23691585 

0,6203842822
50157 

Med. 
0,892800
80479123
9 

0,892800
8047912
39 

1 1 0,8928008
04791239 1 0,8928008

04791239 
0,9042924722
44645 

High 
0,146974
26753488
3 

0,364018
0642258
03 

0,5962445769
07278 

0,9602626
41133080 

0,5962445
76907278 

0,7432188
44442160 

0,5962445
76907278 

0,6555862344
79567 

 
 
 

Table V 

The degree of similarity between each implication and the fuzzy set  L  for the three hedges ‘Low’, ‘Medium’, ‘High’ 

( , )S I L  Low Medium High 

I1 0,405985443893697 0,872957343116749 0,229674263532507 

I2 0,559254526762643 0,872957343116749 0,415102503779226 

I3 0,754120747186050 1 0,696340024250423 

I4 0,974790009267612 1 0,970511917148573 

I5 0,750830281043263 0,872957343116749 0,696340024250423 

I6 0,821520926398666 1 0,785083676901855 

I7 0,726473796098561 0,872957343116749 0,696340024250423 

I8 0,721933903262348 0,895404170860031 0,703324302754455 
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Table VI 

Values of the eight implications for the control clusters (S5, S6) 

Subsets 1I  2I  3I  4I  5I  6I  7I  8I  

S 
5 

Low 
0,00011
8206869
886797 

0,0059087
78102324
55 

0,99409122189
7675 1 0,99409122

1897675 

0,994209
4287675
62 

0,979994
7014696
16 

0,99409192035
5840 

Medium 
0,40862
0510162
855 

0,5515764
30746269 

0,74082300726
6648 1 0,55157643

0746269 

0,857044
0794165
86 

0,551576
4307462
69 

0,67380901177
9078 

High 
0,94184
4159285
633 

0,9630881
30726514 

0,97794181989
8813 1 0,96308813

0726514 

0,978756
0285591
19 

0,963088
1307265
14 

0,94399080007
5571 

S 
6 

Low 
0,89617
6630344
152 

0,9183847
28360827 

0,91838472836
0827 

0,94256642
1861233 

0,91838472
8360827 

0,920358
3238445
58 

0,918384
7283608
27 

0,89868725524
7349 

Medium 
0,99583
1781999
900 

0,9965100
96756681 

0,99931930969
9934 1 0,99651009

6756681 

0,999321
6852432
19 

0,996510
0967566
81 

0,99584632867
7418 

High 
0,00750
0551709
38154 

0,0863898
83413159
0 

0,91317789290
7782 

0,99956777
6320941 

0,91317789
2907782 

0,920678
4446171
63 

0,913177
8929077
82 

0,91382910661
1544 

 
 
takes the lowest ones. The results can be found in 
Table VI. 

Taking into account the nature of this application 
example and the dataset, since the fuzzy products do 
not efficiently interpret the cause-effect relationship, 
it is more reasonable that the Lukasiewicz 
implication be selected as the most appropriate fuzzy 
implication. 

Lastly, the method was applied to all seven 
different partitions of the thirty six measurements of 
Rainfall and Overflow and the resulting two fuzzy 
implications were the same in every case; the 
Lukasiewicz implication, being the fuzzy set with the 
highest degree of similarity to the implication  L  and 
taking the highest values, and the Larsen implication 
which gives the lowest ones. 

V. CONCLUSIONS 
Selecting an appropriate fuzzy implication for 
reasoning under each particular application is, in 
general, a difficult problem. In the literature, there 
are methods addressing the suitability of fuzzy 
implications under the theoretical guidelines. The 
theoretical results of these methods, which involve 
the generalized inference rules, does not always hold 
for each situation. To overcome this effect, other 
methods, as mentioned in the introduction section of 
this article, assess the suitability of fuzzy 
implications according to their distance from the 

corresponding generalized inference rules, and in 
addition they make the selection of the most suitable 
one, which corresponds to the smallest distance. 
However, these approaches are based on the 
theoretical guidelines of the fuzzy propositions, and 
so they do not take under account the induction form 
the data, but the inference rules instead. Furthermore, 
these methods do not take under consideration the 
expert’s opinion about the ability of the resulting 
suitable implications to interpret the data application.       
This article introduces a method for the selection of 
the most appropriate fuzzy implication among others. 
The method introduced does not incorporate the 
theoretical aspect of suitability of fuzzy implications, 
but it is based on the appropriateness of fuzzy 
implications from the application view point instead. 
This is achieved by introducing a special fuzzy 
implication, which makes the propositions that it is 
involved in suitable for making valuable inference 
from the data of applications, since due to its 
construction it represents the ideal fuzzy implication. 
It employs the measures of similarity between fuzzy 
implications and the special aforementioned 
implication, as a criterion of appropriateness of the 
implications. What is more, the final selection of the 
most appropriate implication from the resulting 
implications relies on the expert’s opinion about the 
essence and characteristics of an application and on 
which degree the resulting implications are consistent 
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with the inference drawn from the evaluation of this 
special implication. Moreover, the method has been 
applied on a dataset of real observations. From the 
two resulting implications the one with the highest 
value of grade of similarity with the ideal implication 
for this application was selected as the most 
appropriate one, thus it best interprets the data. What 
is more, this selection is made considering which of 
the two resulting implications are best agreeable to 
the nature of the application, according to the expert. 
Our aim for the future work is to generalize the 
conception of the special fuzzy implication  L  
introduced, to a more expert  opinion based fuzzy set, 
whose membership function takes positive values in 
a close interval [a ,1],  instead of the value one for 
each value of the variable. In this way, the expert’s 
opinion about the appropriateness of the given 
dataset will be included in the induction process.  
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