
  
Abstract— The fuzzy numbers play an important role in fuzzy 
mathematics analogous to the role played by the ordinary numbers 
in crisp mathematics. In the present paper we utilize a combination 
of the Centre of Gravity defuzzification technique and of 
triangular (TFNs) / trapezoidal (TpFNs) fuzzy numbers as tools 
for evaluating the effectiveness of Case-Based Reasoning (CBR) 
systems. The CBR approach for problem solving and learning  
(usually with the help of computers) has got a lot of attention over 
the last few years, because as an intelligent-systems method 
enables information managers to increase efficiency and reduce 
cost by substantially automating processes like diagnosis, 
scheduling and design. 
 
Keywords— Analogical  Reasoning (AR), Case-Based 
Reasoning (CBR), Triangular (TFNs) and Trapezoidal (TpFNs) 
Fuzzy Numbers (FNs), Center of Gravity (COG) Defuzzification 
Technique, Grade Point Average (GPA) Index. 
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I. INTRODUCTION 
ne of the most popular problem solving strategies is the 
strategy of the analogous problem: When the solver is 
not sure of the appropriate procedure to solve a given 

problem, a good hint would be to look for a similar problem 
solved in the past, and then try to adapt the solution 
procedure of this problem for use with the new problem.      
    The way of thinking by analogy, usually referred as 
Analogical Reasoning (AR) is a special case of the general 
class of the transfer of knowledge, i.e. of the use of already 
existing knowledge to produce new knowledge [1]. The 
importance of AR in human thinking has been recognized 
years ago. In fact, there is a considerable number of studies 
developed and many experiments performed on individuals 
by mathematicians, psychologists and other scientists about 
the AR process ([2], Section 2).  
    However, it is the Case-Based Reasoning (CBR) 
approach for PS and learning  (usually with the help of 
computers) that has got a lot of attention over the last few 
years, because as an intelligent-systems method enables 
information managers to increase efficiency and reduce cost 
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by substantially automating processes such as diagnosis, 
scheduling and design ([3],  Section 3 of [2], etc).  
    Note that the term AR is sometimes used as a 
synonymous of the typical CBR approach [4]. However, is 
often used also to characterize methods, that solve new 
problems based on past cases of different domains [5, 6], 
while typical CBR methods focus on single-domain cases (a 
form of intra-domain analogy). 
    As a general PS methodology intended to cover a wide 
range of real-world applications, CBR must face the 
challenge to deal with uncertain, incomplete and vague 
information. Correspondingly, recent years have witnessed 
an increased interest in formalizing parts of the CBR 
methodology within frameworks of reasoning under 
uncertainty, and in building hybrid approaches by 
combining CBR with methods of uncertain and approximate 
reasoning. In an earlier work [7] we have developed a 
mathematical framework for the CBR process by 
introducing a finite Markov Chain on it main steps, while in 
[8] we have represented those steps as fuzzy subsets of a set 
of linguistic labels characterizing the degree of success of 
the CBR process and we have utilized the corresponding 
CBR system’s total possibilistic uncertainty  for measuring 
its effectiveness. Also, in [9] we have applied the 
Trapezoidal Fuzzy Assessment Model (TpFAM), which is a 
recently developed variation of the Center of Gravity 
(COG) defuzzification technique [10], for assessing a CBR 
system’s performance. 
    In the present paper Fuzzy Numbers (FNs) are utilized as 
an alternative assessment tool for a CBR system’s 
effectiveness. The rest of the paper is formulated as follows: 
In Section II we give a brief account of the CBR process. In 
Section III we present the basic concepts of FNs, which are 
necessary for the development of our new fuzzy assessment 
method, which is presented in Section IV. Further, in this 
section the outcomes of our examples are compared with the 
corresponding outcomes of two traditional assessment 
methods of the bi-valued logic, the calculation of the mean 
values and of the Grade Point Average (GPA) index. Finally, 
Section V is devoted to our conclusion and to some hints for 
future research. 
 

II. CASE-BASED REASONING 
 

Use of TFNs and TpFNs for evaluating the 
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    CBR is often used when experts find it hard to articulate 
their thought processes when solving problems. This is 
because knowledge acquisition for a classical knowledge-
based system would be extremely difficult in such domains, 
and is likely to produce incomplete or inaccurate results. 
When using CBR the need for knowledge acquisition can 
be limited to establishing how to characterize cases, i.e. the 
analogous problems. A case-library can be a powerful 
corporate resource allowing everyone in an organization to 
tap in the corporate library when handling a new problem. 
A CBR system, usually designed and functioning with the 
help of computers, allows the case-library to be developed 
incrementally, while its maintenance is relatively easy and 
can be carried out by domain experts. 
    There are two styles of CBR, the Problem Solving (PS) 
style and the interpretive style. The PS style can support a 
variety of tasks including planning, diagnosis and design in 
Medicine [11], Industry [12], Robotics [13], etc. The 
interpretive style is useful for classification, evaluation or 
justification of a solution, argumentation and for the 
projection of effects of a decision. For example, lawyers and 
managers making strategic decisions use the interpretive 
style [14, 15].  
    CBR has been formalized for purposes of computer and 
human reasoning as a four steps process, often referred as 
the “four R’s”. These steps involve: 

• R1: Retrieve the most similar to the new problem 
past case. 

• R2: Reuse the information and knowledge of the 
retrieved case for the solution of the new problem. 

• R3: Revise the proposed solution. 
• R4: Retain the part of this experience likely to be 

useful for future problem solving. 
         The first three of the above steps are not linear, 
characterized by a backward - forward flow among them. A 
simplified flow - chart of the CBR process, adequate for the 
purposes of the present paper, is presented in Figure 1: 
 

 
Fig. 1: A simplified flow-chart of the CBR process  

 
      More details about the CBR methodology, history and 
applications can be found in [2, 3] and in the relevant 
references given in the above two papers. A detailed 
functional diagram illustrating the four steps of the CBR 
process is also available [2, Figure 1]. 
 

III. FUZZY NUMBERS 
 
    Basic Definitions 
    It is recalled that a fuzzy set (FS), initiated by Zadeh [16] 
in 1965, is defined as follows: 
   Definition 1: Let U denote the universal set of the 
discourse. Then a FS A on U (or otherwise a fuzzy subset of 

U), , is defined in terms of the membership function mΑ that 
assigns to each element of U a real value from the interval 
[0,1]. More explicitly, A is a set of ordered pairs of the form  
Α = {(x, mΑ(x)): x ∈U}. 
    The definition of a FN is given as follows: 
    Definition 2:  A FN is a FS A on the set R of real 
numbers with membership function mA: R → [0, 1], such 
that: 

• A is normal, i.e. there exists x in R such that 
mA(x) = 1, 

• A is convex, i.e. all its a-cuts Aa = {x∈U: mA 
(x) ≥  a},  a in [0, 1], are closed real intervals, and 

• Its membership function y = mA (x) is a piecewise 
continuous function. 

For general facts on FNs we refer to the book of Kaufmann 
and Gupta [17]. 
 
Triangular Fuzzy Numbers (TFNs) 

    TFNs is the simplest form of FNs. Roughly speaking a 
TFN (a, b, c), with a, b, c in R, states that “the value of b 
lies in the interval [a, c]”. The membership function of (a, 
b, c) is zero outside the interval [a, c], while its graph in [a, 
c] consists of two straight line segments forming a triangle 
with the OX axis (Figure 2).  
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Fig. 2: Graph and COG of the TFN (a, b, c) 

 
    Therefore the analytic definition of a TFN is given as 
follows: 
     Definition 3:  Let a, b and c be real numbers with a < b  
< c. Then the TFN (a, b, c) is a FN with membership 
function: 
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     The following Proposition uses the Center of Gravity 
(COG) technique for the defuzzification of a given TFN:     
    Proposition 4:  The coordinates (X, Y) of the COG of the 
graph of the TFN (a, b, c) are calculated by the formulas  
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X = 
3

a b c+ +
, Y = 

1
3

.  

    Proof: The graph of the TFN (a, b, c) is the triangle ABC 
of Figure 2, with A (a, 0), B(b, 1) and C (c, 0). Then, the 
COG, say G, of ABC is the intersection point of its medians 
AN and BM. The proof of the Proposition is easily obtained 
by calculating the equations of the straight lines of AN and 
BM and by solving the linear system of these two equations. 
 
    Trapezoidal Fuzzy Numbers 

    Another simple form of FNs that are frequently used in 
applications are the TpFNs. Roughly speaking, a TpFN (a, 
b, c, d) with a, b, c, d in R states that “a certain real value 
lies in the interval [b, c], which is a sub-interval of [a, d]”. 
Its membership function y=m(x) is constantly 0 outside the 
interval [a, d], while its graph in this interval is the union of 
three straight line segments forming a trapezoid with the X-
axis (Figure 3). 
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Fig. 3: Graph of the TpFN (a, b, c, d) 

    Therefore, the analytic definition of a TpFN is given as 
follows: 
    Definition 5: Let a < b < c< d be given real numbers. 
Then the TpFN (a, b, c, d) is the FN with membership 
function: 
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    A TFN (a, b, d) can be considered as a special case of the 
TpFN (a, b, c, d) with b=c, i.e. the TpFNs are 
generalizations of  the TFNs. 
     Te following Proposition utilizes the COG technique for 
defuzzifying TpFNs: 
    Proposition 6: The coordinates (X, Y) of the COG of the 
graph of the TpFN (a, b, c, d) are calculated by the formulas 

X = 
2 2 2 2

3( )
c d a b dc ba

c d a b
+ − − + −

+ − −
, Y = 

2 2
3( )

c d a b
c d a b
+ − −
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Proof: We divide the trapezoid forming the graph of the 
TpFN (a, b, c, d) in three parts, two triangles and one 
rectangle (Figure 3). The coordinates of the three vertices of 
the triangle ABE are (a, 0), (b, 1) and (b, 0) respectively. 
Therefore, by Proposition 4 the COG of this triangle is the 

point C1 (
2 1,

3 3
a b+

). Similarly one finds that the COG of 

the triangle FCD is the point C2 ( 2 1,
3 3

d c+
). Also, it is 

easy to check that the COG of the rectangle BCFE, being 

the intersection of its diagonals, is the point C3 (
1,

2 2
b c+

). 

Further, the areas of the two triangles are equal to S1 = 

2
b a−

 and S2 = 
2

d c−
respectively, while the area of the 

rectangle is equal to S3 = c - b (in all cases the 
corresponding height is 1, since the TpFN (a, b, c, d) is a 
normal fuzzy set on R).  
    It is well known then [18] that the coordinates of the 
COG of the trapezoid, being the resultant of the COGs Ci 
(xi,  yi), i=1, 2, 3, are calculated by the formulas:  
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where S = S1 + S2 + S3 = 
2

c d b a+ − −
 is the area of the 

trapezoid. 
    The proof of the Proposition is completed by replacing 
the above found values of S, Si, xi and yi, i = 1, 2, 3, in 
formulas (1) and by performing the corresponding 
calculations. 
 
     Arithmetic Operations on TFNs/TpFNs 

     Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then 
one can define [17]:  

• The sum A + B = (a+a1, b+b1, c+c1). 
• The difference A - B = (a-c1, b-b1, c-a1). 

    Consequently, the sum and the difference of two TFNs 
are always TFNs. The product and the quotient of two 
TFNs can be also defined, but, although they are FNs, they 
are not always TFNs [17]. 
    One can further define the following two scalar 
operations: 

• k + A= (k+a,  k+b,  k+c), k∈R 
• kA = (ka,  kb,  kc), if k>0 and kA = (kc, kb, ka), if 

k<0. 
It can be shown [17] that the same rules can be applied 

for the corresponding arithmetic operations between TpFNs. 
 
Mean value of TFNs/TpFNs  

The following definition is introduced to be used in Section 
IV for assessing the performance of CBR systems with the 
help of TFNs/TpFNs: 
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    Definition 7: Let Ai , i = 1, 2,…, n  be TFNs/TpFNs, 
where n is a non negative integer, n ≥ 2. Then we define the 
mean value of the Ai’s to be the TFN/TpFN:  

A= 
1
n (A1 + A2 + …. + An). 

 

V.  ASSESSING THE PERFORMANCE OF CBR SYSTEMS USING TFNS/TPFNS 

     In this section two examples are presented in which the 
TFNs/TpFNs are used as tools for assessing the 
effectiveness of CBR systems. For this, ranking in a range 
from 0 to 100 the effectiveness of a CBR system’s past 
cases when used with new similar problems, we consider the 
following linguistic labels (or grades or degrees) for their 
performance: A (85-100) = excellent, B (75-84) = very 
good, C (60-74) = good, D (50-59) = fair and F (0- 49) = 
unsatisfactory. 
    Note that the scores attached to the above linguistic labels 
are not standard, depending on the designer’s personal 
criteria. For example, in a more strict evaluation one could 
consider A (90 - 100), B ( 80 – 89), C (70 – 79), D (60 – 
69), F (0 – 59), etc. 
    Our new fuzzy assessment approach is validated by 
comparing its outcomes in our examples with the 
corresponding outcomes of two traditional assessment 
methods of the bi-valued logic, the calculation of the mean 
values and of the GPA index.  
 

Fxample 1 (GPA – TFNs) 

    Consider two CBR systems designed for help desk 
applications, with their libraries containing 105 and 90 past 
cases respectively.  The designers of both systems have 
supplied them with the same mechanism (software) for 
assessing the degree of success of their past cases when 
used with new similar problems. The outcomes of this 
mechanism are depicted in Table 1 for each of the three first 
steps of the CBR process:  

Table 1: Degrees of success for the CBR systems 

FIRST SYSTEM 

Steps F D C B A 

R1 0 0 51 24 30 

R2 18 18 48 21 0 

R3 36 30 39 0 0 

 
SECOND SYSTEM 

 
    Here we shall use the GPA index and the TFNs as 
assessment methods: 
(i) GPA index: We recall that the Great Point Average 
(GPA) index is a weighted mean in which more importance 
is given to the higher scores by attaching greater 
coefficients (weights) to them [18]. In other words, the 
GPA index focuses on the quality performance of a system.   
    Denote by yi , i =  1, 2, 3, 4, 5 the frequencies of  the 
CBR system’s cases whose performance is characterized by 
F, D, C, B and A respectively, then the GPA index is 
calculated by the formula  GPA = y2 + 2y3 + 3y4 + 4y5   (2).  
In case of the ideal performance (y5 = 1) we have GPA = 4, 
while in the worst case (y1 = 1) we have GPA = 0; therefore 
0 ≤  GPA ≤  4. Consequently, values of GPA greater than 
the half of its maximal value (4 : 2 = 2) correspond to a 
more than satisfactory system’s performance 
In our case, the data of Table 1 give the following 
frequencies:  

Table 2: Frequencies of success for the CBR systems 

FIRST SYSTEM 

Steps Y1 Y2 Y3 y4 y5 

R1 0 0 51
105

 24
105

 30
105

 

R2 18
105

 18
105

 48
105

 21
105

 
0 

R3 36
105

 30
105

 39
105

 
0 0 

 
SECOND SYSTEM 

 
Steps Y1 Y2 Y3 y4 y5 

R1 0 18
90

 45
90

 27
90

 
0 

R2 18
90

 24
90

 48
90

 
0 0 

R3 36
90

 27
90

 27
90

 
0 0 

 
    Replacing the values of frequencies from Table 2 in 
formula (2) one finds the following values for the GPA 
index:   

Steps F D C B A 

R1 0 18 45 27 0 

R2 18 24 48 0 0 

R3 36 27 27 0 0 
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    First System: R1:  
294
105

 = 2.8, R2: 
177
105

≈ 1.69, R3: 

108
105

≈ 1.03.  

    Second System: R1: 
189
90

= 2.1, R2: 
168
90

≈ 1.87, R3: 

81 0.9
90

= .  

    The above values of the GPA index show that the first 
system demonstrated a better quality performance at steps 
R1 and R3 (Retrieve, Revise),, while the second one 
demonstrated a better performance at R2 (Reuse). Further, 
the two systems’ performance was proved to be more than 
satisfactory at R1 and less than satisfactory at the other two 
steps, being worse at R3. This was logically expected, since 
the success in each step depends on the success in the 
previous steps.  
    Note that the two systems’ performance at the last step R4 
was not examined, since all past cases, even the 
unsuccessful ones, are retained in a system’s library for 
possible use in future with related new problems; the 
unsuccessful ones to help for exploring possible reasons of 
failure to find a solution for a new problem. 
    Finally, the mean values of the GPA indices for the two 
systems at the steps R1, R2 and R3 are approximately equal 
to 1.84 and 1.62 respectively, showing that the first system 
demonstrated a better overall performance.   
     (iii) Use of the TFNs: We assign to each assessment 
grade a TFN (denoted for simplicity by the same letter) as 
follows:  A= (85, 92.5, 100), B = (75, 79.5, 84), C = (60, 
67, 74), D= (50, 54.5, 59) and F = (0, 24.5, 49). The left 
and right entries of each of the above TFNs are equal to the 
minimal and maximal score respectively assigned to the 
corresponding degree, whereas the middle entry is equal to 
the mean value of the other two entries.. 

   If T is one of the TFNs A, B, C, D, F then b =
2

a c+
. 

Therefore, Proposition 4 gives that  

 
3( )2( )

3 6

a ca c a cX T b

+
+ + +

= = = .  

    But, by Definition 7 the mean value M of a linear 
combination of the TFNS A, B, C, D and  F with 
coefficients non zero integers is of the form 
M=k1A+k2B+k3C+k4D+k5F, with ki non negative rational 
numbers, i=1, 2, 3, 4, 5. Consequently, if A (a1, b1, c1), B 
(a2, b2, c2),…., F(a5, b5, c5) and M(a, b, c), then   

5 5 5 5

1 1 1 1
( , , ) ( , , )i i i i i i i i i i

i i i i
M k a b c k a k b k c

= = = =

= =∑ ∑ ∑ ∑ .  

Therefore   
5 5 5

5
1 1 1

1
( )

3 3

i i i i i i
i i i i i i

i
i

k a k b k c
a b cX M k= = =

=

+ +
+ +

= =
∑ ∑ ∑

∑

 
5

1
i i

i
k b b

=

= =∑  (3). 

    Inspecting the data of Table 1 one finds that for the step 
R1 of the first system we have 51 TFNs equal to C, 24 TFNs 
equal to B and 30 TFNs equal to A. Then, by Definition 7, 
the mean value of these TFNs, denoted for simplicity by the 

same letter R1, is equal to R1 = 1
105

(51C + 24B + 30A) = 

1
105

[(3060, 3417, 3772) + (1800, 1908, 2016) + (2550, 

2775. 3000) = 1
105

(7410, 8100, 8788) ≈ (70.57, 77.14, 

83.7). Therefore, equation (3) gives that X(R1) ≈  77.14, 
which shows that the first system demonstrated a very good 
mean performance at the step of retrieval. 
   In the same way one calculates the mean values R2 = 

1
105

(18F + 18D+ 48C + 21B) ≈  (51, 60.07, 69.14) and  

R3 = 1
105

(36F + 30D + 39C) ≈  (36.57, 48.86, 61.14). 

Therefore, X(R2) ≈ 60.07 and X(R2) ≈  48.86, showing that 
the first system demonstrated a good performance at R1 and 
an unsatisfactory performance at R3. 
    The overall system’s performance can be assessed by the 

mean value R = 1
3

(R1 + R2 + R3) ≈  (52.71, 62.02, 71.33), 

which shows that the first system demonstrated a good (C) 
mean performance.  
    A similar argument gives for the second system the mean 
values R1 = (62.5, 68.25, 74), R2 ≈ (45.33, 55.17, 65) ,  R3 
= (33, 46.25, 59.5) and R ≈  (46.94, 56.56, 66.17). 
Observing the middle entries of the above TFNs one 
concludes that the second system demonstrated good 
performance at R1, fair performance at R2, unsatisfactory 
performance at R3 and a fair overall performance. 
Therefore, the first system demonstrated a clearly better 
performance than the second one. 
 

Example 2 (TFNs – TpFNs) 

    Six different users of a CBR system ranked with scores 
from 0-100 the effectiveness of its following five past cases 
for solving new related problems:  
C1 (Case 1): 43, 48, 49, 49, 50, 52, C2: 81, 83. 85, 88, 91, 
95, C3: 76, 82, 89, 95, 95, 98, C4: 86, 86, 87, 87, 87, 88, 
C5: 35, 40, 44, 52, 59, 62.  
    Here we shall evaluate the system’s effectiveness with 
respect to the above five cases by calculating the mean 
value of the scores assigned to them and by using the TFNs 
and the TpFNs: 
    (i) Mean value: The mean value of the 30 in total scores 
assigned by the six users to the five cases is approximately 
equal to 72.07 demonstrating a good performance.  
    (ii) TFNs: We consider again the TFNs A, B, C, D and F 
used in our previous example. Observing the given scores 
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one finds that in the present example we have 14 TFNs 
equal to A, 4 equal to B, 1 equal to C, 4 equal to D and 7 
TFNs equal to F characterizing the five cases’ performance.  
      The mean value of the above TFNs is equal to  

M = 1
30

(14A + 4B + C + 4D + 7F) ≈ (60.33, 68.98, 

79.63). Therefore, the system demonstrates a good (68.98) 
mean performance  
(ii) TpFNs: We assign to each case Ci , I = 1, 2, 3, 4, 5 a 
TpFN (denoted, for simplicity, with the same letter) as 
follows: C1 = (0, 43, 52, 59), C2 = (75, 81, 95, 100), C3 = 
(75, 76, 98, 100), C4 = (85, 86, 88, 100) and C5 = (0, 35, 
62, 74). Each of the above TpFNs characterizes the 
performance of the corresponding case in the form (a, b, c, 
d), where a is the lower bound of its performance with 
respect to the corresponding linguistic grades, b and c are 
the lower and higher scores respectively assigned to the 
case by the six system’s users and d is the upper bound of 
its performance with respect to the linguistic grades. 
    For assessing the overall system’s performance with 
respect to the given five past cases we calculate the mean 
value of the TpFNs Ci , i =1, 2, 3, 4, 5, which is equal to the 

TpFN  C = 
5

1

1
5 i

i
C

=
∑ = (47, 64.2, 79, 86.6).  

    Then, by Proposition 6 one finds that X(C) is equal to 
2 2 2 279 (86.6) (64.2) 47 79*86.6 47*(64.2) 68.84

3(79 86.6 47 64.2)
+ − − + −

≈
+ − −

, 

which shows that the system demonstrated a good mean 
performance. 
    The mean value M of the TFNs determines, before its 
defuzzification, the score corresponding to the system’s 
performance to be in the interval [60.33, 79.63], whereas 
the mean value C of the TpFNs determines it to be in the 
interval [64.2, 79]. Obviously, the use of the TpFNs gives     
more accurate results in general. However, in many cases,    
like in Example1, it is practically difficult to use the TpFNs 
as assessment tools due to the great number of the existing 
past cases. 

V. DISCUSSION AND CONCLUSIONS 

    From the discussion performed in this paper the following 
conclusions can be drawn: 

• Using TFNs or TpFNs one can assess the mean 
performance of the CBR systems. The use of the 
TpFNs gives in general more accurate results, but 
in many cases it is difficult to be applied in 
practice due to the great number of the existing 
past cases in the system’s library..  

• The differences appearing to the outcomes when 
using the traditional assessment methods of the bi-
valued logic (mean value, GPA) instead of the 
FNs is mainly due to the different philosophy of 
FL (multiple values) with respect to the traditional 
logic. 

• Another reason is that the GPA index focuses on 
the system’s quality performance by assigning 
greater coefficients to the higher scores. 

• The use of the TFNs/TpFNs as assessment tools 
seems to have the potential of a general 
assessment method that could be used for 
assessing a variety of other human or machine 
activities [19, 20]. This gives a good hint for more 
future research on the subject.   
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