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Abstract—This paper considers the problem of delay-
dependent robust stability for uncertain fuzzy singular systems 
with additive time-varying delays. The purpose of the robust 
stability problem is to give conditions such that the uncertain 
fuzzy singular system is regular, impulse free, and stable for 
all admissible uncertainties. The results are expressed in terms 
of linear matrix inequalities (LMIs). Finally, two numerical 
examples are provided to illustrate the effectiveness of the 
proposed method. 
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I. Introduction 

In real world, most physical systems and processes are 

nonlinear. Many researchers have been seeking the effective 

approaches to control nonlinear systems. Among these, 
there are growing interests in Takagi–Sugeno (T–S) fuzzy-

model-based control [1]. 

Since the pioneer work of Takag i and Sugeno [2], 

Takagi-Sugeno (T-S) fuzzy model, has been intensively 
investigated. It combines the flexibility of fuzzy logic 

theory and rigorous mathemat ical theory of linear or 

nonlinear system into a unified framework, introducing time 
delay systems. 

On the other hand, s ingular systems have been 
extensively studied in the past years due to the fact the 

singular systems describe physical systems better than 
regular ones [3]. It is also referred to as descriptor systems, 

implicit systems, generalized state-space systems, 

differential-algebraic systems or semi-state systems [4-5]. 

The delay-dependent problem for singular systems is 

much more complicated than that for regular systems 
because it requires to consider not only stability, but also 

regularity and absence of impulses (for continuous singular 
systems see, e.g., [6-7], and the references therein) and 

causality (for discrete singular systems). 

In [8-10], the authors studied the problems of stability 

and stabilization of fuzzy time-delay singular systems, 

where the delay-independent stability and stabilizat ion 
results were derived. However, to our best knowledge, there 

are few delay-dependent results for fuzzy singular systems 
with time-delay in literature. 

The problems of delay-dependent stability and H∞ 
control for a class of fuzzy singular systems  were discussed 

using model transformation techniques in [11]. But model 
transformation may lead to considerable conservativeness. 

Using free-weight matrix method, [12] discussed the 
problems of delay-dependent stability and L2−L∞ control 

for a class of fuzzy singular systems. In [13], the problems 
of sliding mode control for fuzzy descriptor systems were 

presented using delay partitioning approach, but the time -

delay is constant, which is ineffective to the time-varying  
case. 

In [14-16] it was pointed out that, in networked 
controlled system (NCS), if the signal transmitted from one 

point to another passes through few segments of networks 
then successive delays are induced with different properties 

due to variable transmission conditions, thus it is 

appropriate to consider different time-delays )(1 th  and )(2 th
 

in the same state where, )(1 th
 is the time-delay induced 

from sensor to controller and )(2 th
 is the delay induced from 

controller to the actuator. The stability analysis for regular 

continuous systems with additive time -varying delays is 

studied in [15-17] 0 1 2( ( ) ( ) ( ( ) ( ))).dx t A x t A x t h t h t   
 

Motivated by this idea, we study the problem of robust 
stability for fuzzy singular systems with two additive time-

varying delays. We develop in terms of LMIs some delay-

dependent sufficient conditions, which guarantee the fuzzy 
singular time-delay system to be regular, impulse free, and 

stable. To the best of our knowledge, there is no result in the 
literature dealing with fuzzy singular systems with addit ive 

time-vary ing delays. 

The paper is organized as follows. In section 2, the 

problem is formulated and the required lemmas are given. 

Section 3, the asymptotic stability and the robust stability 
problem are established and in section 4 we present two 

numerical examples to show the effectiveness of the 
proposed results. 

II. System Descript ion and Preliminaries  

Consider a T–S fuzzy time-varying delay singular system, 

which is represented by a T–S fuzzy model, composed of a 

set of fuzzy implications, and each implication is expressed 

by a linear system model. The i th rule of the T–S fuzzy 

model is described by following IF – THEN form: 

Plant Rule i: 
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IF )t(z1
 is 

i

1W   and … and  )t(zg  is 
i

gW  THEN 

0i 0i di di 1 2Ex(t) (A A (t))x(t) (A A (t))x(t h (t) h (t))

x(t) (t), t [ h,0],i 1,2,..., r

     


    


 

                                                                                      (1) 

where )t(z1
, )t(z 2

, … , )t(zg
 are the premise 

variables, and i

jW  , g,....,2,1j   are fuzzy sets, nR)t(x   

is the state variable, r  is the number of  if-then  rules, )t(  

is a vector-valued initial condition,  )t(h1
and )t(h 2

 is 

the time-varying delays satisfying 

1 10 h (t) h  ,
11 d)t(h  ,

22 h)t(h0  ,  

22 d)t(h  ,
21 hhh   and 

21 ddd     (2) 

The parametric uncertainties )t(A i0  and )t(Adi  are time-

varying matrices with appropriate dimensions, which can be 
described as : 

   dii0iidii0 EE)t(FD)t(A)t(A  , r,...,2,1i          (3) 

where 
iD ,

i0E , 
diE  are known constant real matrices with  

appropriate dimensions and )t(Fi
are unknown real time-

varying matrices with Lebesgue measurable elements 
bounded by: 

T

i iF (t)F (t) I , r,...,2,1i                                     (4) 

By using the center-average deffuzzifier, product inference 
and singleton fuzzifier, the global of T-Z fuzzy system (1) 

can be expressed as   



0 0

1

1 2

( ) ( ( ))[( ( )) ( )

           ( ( )) ( ( ) ( ))



  

   


r

i i i

i

di di

Ex t µ z t A A t x t

A A t x t h t h t

     (5) 

where,   





r

1i

iii ))t(z(/))t(z())t(z(µ ,  



g

1j

j

i

ji ))t(z(W))t(z(  

and 
i

j jW (z (t)) is the membership value of )t(z j  in 
i

jW , 

some basic properties of 
iµ (z(t))   are  

iµ (z(t)) 0 , 

r

i

i 1

µ (z(t)) 1


 . 

Definition 1 [4] 

i. The pair (E, A0i) is said regular if  det(sE- A0i) is not 

identically zero. 

ii. The pair (E, A0i) is said to be impulse free if 

deg(det(sE- A0i))=rankE.  

Definition 2  [18]: The singular t ime delay system (1) is said 

to be regular and impulse free if the pairs 
0( , )iE A

 
is regular 

and impulse free. 

For more details on other properties and the existence of the 

solution of system (1), we refer the reader to [18], and the 
references therein. In general, the regularity is often a 

sufficient condition for the analysis and the synthesis of 

singular systems. 

The following lemmas are very interesting for our 

development in this paper.  

Lemma 1 [19]: Consider a vector nR , a symmet ric 

matrix nnR Q  and a matrix nmR B , such that 

nrank )(B . The fo llowing statements are equivalent: 

(i) 0   0,  such that        ,0   BQT  

(ii) 0 QBB T  

(iii) 0  :  BBQ TµR  

(iv) 0  : TT   FBFBQF mnR  

where B denotes a basis for the null-space of B . 

Lemma 2 [20]: For any constant matrix T n nM M R   , 

0M , scalar (t) 0    , vector function   n: 0, R    

such that the integrations in the following are well defined, 
then: 

T
(t) (t ) (t )

T

0 0 0
(t) ( )M ( )d ( )d M ( )d

                 
          

Lemma 3 [21]. Let  ,  ,   TQ Q H E  and ( )F t satisfying 

( ) ( )TF t F t I  are appropriately dimensioned matrices , the 

inequality ( ) ( ) 0T T TQ HF t E E F t H    is true, if and only 

if the following inequality holds for any matrix 0,Y    

1 0.T TQ HY H E YE    

III. MAIN RESULTS 

In this section, we shall obtain the stability criteria for T -S 

fuzzy singular systems with two additive time varying delay 

based on a new Lyapunov-Krasovskii functional approach. 
First the following nominal system of system (5) will be 

considered: 

0 1 2( ) ( ) ( ( ) ( ))

( ) ( ), [ ,0]

   


  


dEx t A x t A x t h t h t

x t t t h
       (6) 

where 
i0

r

1i

i0 A))t(z(µA 


  and 
di

r

1i

id A))t(z(µA 


  

Theorem 1: The  system described by (6) and satisfying 

conditions (2) is asymptotically  stable if there exist 
symmetric positive definite matrices P ,  

1Q , 
2Q , 

1R , 

2R  and any appropriately dimensioned matrices, 0F , 
1F , 

2F , such that the following LMIs are feasible for 

r,...,2,1i   

T TE P P E   (7a) 
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1 2 0R R       (7b)  

11 1 0 0 1 0 0 2

1

22 2

2

33 1 2

44

1

1
* 0 0

* *

* * *

T T T T T

di i i

T

i

T T

di

E Q E F A A F P F A F
h

E Q E
h

F A F

 
    
 
 

   
 
   
 

 

   

                                                                                  (7c) 

Where,  

11 1 1 0 0 0

1

1 T T T

i i OE Q E R F A A F
h

       

22 1 2 1 1 2

1 2

1 1
(1 )( )T TE Q E E Q E d R R

h h
        

33 2 1 2 2 1 1

2

1
(1 )T T T

di diE Q E d d R F A A F
h

         

T

22221144 FFQhQh    (8) 

Proof: 

From (7b), it fo llows that 

11 0 0 2

14 44

0.
T T

i

T

P F A F   
 

  

  (9) 

Let  0

T

iJ I A . Pre-and post-mult iplying (9) by J  and 

TJ , respectively, we get, 

1
1 1 0 0 1 0 1 0 2 0 2 0

1

1
0.T T T T T

i i i i i i

d
R E Q E PA A P h A Q A h A Q A

h


     

                    

 (10) 

Now choose two nonsingular matrices M and N such that  











00

0rI
MEN , 1 2

0 0

3 4

i i
i i

i i

A A
A MA N

A A

 
   

 

,

.
43

211














 

PP

PP
PMNP T                                         (11) 

And denote, 
1 1

TR N R N ; 11 121

1 1

13 14

T
q q

Q M Q M
q q

 
 

   
 
 

, 

21 221

2 2

23 24

T
q q

Q M Q M
q q

 
 

   
 
 

.  

By using (7a) it can be shown that 03 P . Pre-and post-

multip lying (10) by 
TN  and N  respectively, we get: 

111
0 0 0 01 1 1

1

0 02 2

01

0 0

0.

 
    

 

 

T T T

i i i i

T

i i

qd
R PA A P h A Q A

h

h A Q A

  (12) 

Since T T
1 1 0i 1 0 2 0i 2 00,  h A 0,   h A 0i iR Q A Q A   , it can 

be easily seen that 4 4 4 4 0
T T

i iA P P A  , which implies that 

4iA  is nonsingular and consequently the pair 
0( ,  )iE A  is 

regular and impulse free. 

Now, from (7c), we have, 

 
11 12 13

22 23

33

0.

   
 
    

    

                                         (13) 

Pre-and post multiply ing (13) by  I I I  and its 

transpose we get  

0 0 1 0 1 0 1 1 2 2( ) ( ) ( )( ) .T T

i di i diA A F F F F A A d R d R       
 

Which implies that the matrices 10 FF 
 

and 
0i diA A  are 

nonsingular. Then the pair 
0( ,  )i diE A A  is regular and 

impulse free. Therefore, according to the definit ion, the 

system (6) is regular and impulse free. 

Let us now prove the stability. Let ( )tx x t  
 
for 

,  0h  
 

 and consider the following Lyapunov functional: 

)()()()( 321 tttt xVxVxVxV   (14) 

where 

)()()(1 tPExtxxV T
t 

1

1

1 2

 0  

2 1
  

  

2
  

( ) ( ) ( )

            ( ) ( )

t
T T

t
h t

h t
T T

h h t

V x x s E Q Ex s dsd

x s E Q Ex s dsd

 



  

 

 

 

 

 

 
 

1

1 1 2

  ( )

3 1 2
 ( )  ( ) ( )

( ) ( ) ( ) ( ) ( )
t t h t

T T

t
t h t t h t h t

V x x s R x s ds x s R x s ds


  
    

Then, the time-derivative of )( txV  along the solution of 

system (6) gives.  

)()(2)(1 txPEtxxV T
t

 
      

(15) 

1

1

1 2

 0

2 1 1 

 

2 2 

( ) ( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( )

T T T T
t h

h T T T T

h h

V x x t E Q Ex t x t E Q Ex t d

x t E Q Ex t x t E Q Ex t d





 

       
 

       
 





    

     

1

1

2 1 1

 

1 2 2 

 

2 

( ) ( ) ( )

             ( ) ( ) ( ) ( )

             ( ) ( )

T T
t

t T T T T

t h

t h T T

t h

V x h x t E Q Ex t

x s E Q Ex s ds h x t E Q Ex t

x s E Q Ex s ds









 







  

   

 
 

For any symmetric positive definite matrices 1Q  and 2Q  the 

following inequalities always hold, see [22]. 

1 1

  

1 1  ( )
( ) ( ) ( ) ( )

t tT T T T

t h t h t
x s E Q Ex s ds x s E Q Ex s ds

 
      

 
1 1  ( )

2 2  ( )
( ) ( ) ( ) ( )

t h t h tT T T T

t h t h t
x s E Q Ex s ds x s E Q Ex s ds

 

 
        

where )()()( 21 ththth   

1

1

2 1 1

 

1 2 2 ( )

 ( )

2 ( )

( ) ( ) ( )

            ( ) ( ) ( ) ( )

            ( ) ( )

T T
t

t T T T T

t h t

t h t T T

t h t

V x h x t E Q Ex t

x s E Q Ex s ds h x t E Q Ex t

x s E Q Ex s ds









 







  

   

 
 

which by lemma 2 gives 
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2 1 1 2 2

1 1 1

1

1 2 1

2

( ) ( ) ( ) ( ) ( )

1
    ( ) ( ( ) ( ) ( ( )

1
   ( ( )) ( ( ) ( ( )) ( ( )

T T T T
t

T T

T T

V x h x t E Q Ex t h x t E Q Ex t

x t x t h t E Q E x t x t h t
h

x t h t x t h t E Q E x t h t x t h t
h

 

          

            

    

 (16)                                                                                                                        

 

3 1 1 1 1 1

1 1 2 1

1 2 2

( ) ( ) ( ) (1 ( )) ( ( )) ( ( ))

              (1 ( )) ( ( )) ( ( ))

               (1 ( ) ( )) ( ( )) ( ( ))

T T
t

T

T

V x x t R x t h t x t h t R x t h t

h t x t h t R x t h t

h t h t x t h t R x t h t

    

   

    





 
 

3 1 1 1 1 2 1

1 2 2

( ) ( ) ( ) (1 ) ( ( ))( ) ( ( ))

              (1 ) ( ( )) ( ( ))

T T
t

T

V x x t R x t d x t h t R R x t h t

d d x t h t R x t h t

     

    



 
(17)

 
where 

1 2 0R R   

Now, let 

  TTTTT txEthtxthtxtxt )())(())(()()( 1
 , 

Taking account of (15), (16) and (17), we have 

( ) ( ) ( )T
tV x t t    (18) 

where  

11 12

22 23

33

44

0

0

0

P  
 
    

   
 
     

 

and 

11 1 1

1

1 TQ E Q E
h

  
 

12 1

1

1 TE Q E
h

 
 

22 1 2 1 1 2

1 2

1 1
(1 )( )T TE Q E E Q E d R R

h h
      

 

23 2

2

1 TE Q E
h

 
 

33 2 2

2

1
(1 )TE Q E d R

h
    

 

44 1 1 2 2h Q h Q  
 

Now, Let 

 IAAB d  00 , 























2

1

0

0

F

F

F

F  

Then we can verify that 0B . The matrix M in (7c) can be 

written as: 

0 TT FBFBM  
Applying lemma 1 we have 0T

 which implies that 

0)( txV . Thus, the system (6) is asymptotically stable.   

 

Remark 1. To the best of our knowledge, all the results 
studying T-S fuzzy singular systems with t ime delay 

consider systems with single delay term as: 

IF )t(z1  is 
i

1W   and … and  )t(zg  is 
i

gW  THEN 

0 0( ) ( ( )) ( ) ( ( )) ( ( ))

( ) ( ), [ ,0], 1,2,...,

i i di diEx t A A t x t A A t x t h t

x t t t h i r

    


   


 

Where h)t(h0   and d)t(h  , and there is no results 

dealing with additive time varying delay.  

Remark 2: Comparing with earlier works, in references 

[12,23], the Lyapunov matrices which are the matrices of 
the Lyapunov functional, aren't involved in any product 

terms with the system matrices. We emphasize here that our 

paper presents a new approach, based on Finsler's lemma, to 
establishing delay dependent stability of fuzzy singular 

delay systems. 

Theorem 2 : The uncertain system (5) satisfying conditions 

(2) is robustly stable if there exist symmetric positive 
definite matrices P,  Q1, Q2, R1, R2, Y and any appropriately 

dimensioned matrices, F0, F1, F2, such that the following 

LMIs are feasible for i=1, …,r. 

T TE P P E                                                                     (19a) 

1 2 0R R                                                                        (19b) 

11 0 0 1 0 0 1 0 0 0 2 0

1

22 2

2

33 1 2 1

44 2

1

1
* 0 0

0 

* *

* * *

* * * *

T T T T T T T

i i di i i di i i

T

T T T

di di di i

i

E YE E Q E F A A F E YE P F A F F D
h

E Q E
h

E YE F A F F D

F D

Y

 
      
 
 

 
 

    
 

 
  

                                                                                      (19c)  

Where
11 , 

22 , 
33 and 

44  are defined in (7). 

Proof: Replacing 
i0A and 

diA  by 
i0iii0 E)t(FDA  and 

diiidi E)t(FDA  in (7), respectively, the corresponding 

formula o f (7) for system (5) can be rewritten as follows:   

0H)t(FEE)t(HF TT

i

T

ii                                         (20) 

Where  T

2

T

i

T

1

T

i

T

0

T

i

T FDFD0FDH   and  0E0EE dii0 . 

According to Lemma 3, (20) is true If there exist 0Y  , 

such that the following inequality holds:  

  0YEEHHY TT1

i                                           (21) 

By Schur complement, (21) is equivalent to (19). Th is 

completes the proof. 

IV. NUMERICAL EXAMPLE 

In this section, we aim to demonstrate the effectiveness of 

the proposed approach presented in this paper by theorem 1 
and theorem 2. 

Example 1[12]: Consider a system with the following rules: 

Rule 1: If )t(z1 is 1W , then 

01 1 1 2( ) ( ) ( ( ) ( ))dEx t A x t A x t h t h t     
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            If )t(z2
is 

2W , then 

02 2 1 2( ) ( ) ( ( ) ( ))dEx t A x t A x t h t h t     

And the membership functions for rule 1 and ru le 2 are  

))t(z2exp(1

1
))t(z(

1

11


 , ))t(z(1))t(z( 1112   

where, 

E=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 0];  

A01=[-3 0 0 0.2;0 -4 0.1 0;0 0 -0.1 0;0.1 0.1 -0.2 -0.2];  

Ad1=[-0.5 0 0 0;0 -1 0 0;0 0.1 -0.2 0;0 0 0 0];  

A02=[-2 0 0 -0.2;0 -2.5 -0.1 0;0 -0.2 -0.3 0;0.1 0.1 -0.2 -0.2];  

Ad2=[-0.5 0 0 0;0 -1 0 0;0 0.1 -0.5 0;0 0 0 0];  

Assume that the delay 
1 2( ) ( ) ( )h t h t h t   satisfies (2). 

Table I tabulates the maximum allowable upper delay 
bound 

21 hhh   for a prescribed d=d1+d1.  

From the table I, it can be seen that the method of Theorem 

1 is effective for improving the upper bound of delay , 
showing the advantage of the result with two additive t ime 

varying delay in this paper. 

Example 2 : Consider the following uncertain fuzzy  

singular system with two additive t ime vary ing delay: 



3

0 0

1

1 2

( ) ( ( ))[( ( )) ( )

           ( ( )) ( ( ) ( ))



  

   


i i i

i

di di

Ex t µ z t A A t x t

A A t x t h t h t

 

where, 

 
1 0

0 0
E

 
  
 

, 

01

0.25 1
A

1 5

 
  

 
, 02

4 0.5
A

0.5 2

 
  
 

, 03

5 1
A

2 2

 
  
 

, 

d1

0.1 0.5
A

0.2 0.3

 
  

 
 

d2

0.1 0.5
A

0.2 0.3

 
  

 
 d3

0.1 0
A

0 0.3

 
  
 

 

 01E 0.2 0.2 ,  02E 0.2 0.2  ,  03E 0.2 0.2  , 

 d1E 0.1 0.2 ,  d2E 0.2 0.1    d3E 0.1 0.1   

1

0.1
D

0.1

 
  
 

2

0.1
D

0.1

 
  
 

, 
3

0.1
D

0.1

 
  

 
 

Supposing that the delay h(t) satisfies (2) with d1=d2=0 

The values of the upper bound obtained by applying 

Theorem2 is 
1 2 2.34  h h h . 

Through this example, we found that our results are 
effective. 

Table I. Allowable upper bound of 
21 hhh   

d d=0.1 d=0.35 

Theorem 1 3.7010 3.1906 

Theorem 3.1 [12] 3.3685 3.156 

Theorem 3.2[12] 3.3642 3.011 

Corollary 3.1[12] 3.3623 2.981 

Theorem 1 [11] 3.3623 2.981 

 

V. CONCLUSION 

This note deals with the problems of robust stability for a 
class of singular Takagi–Sugeno fuzzy systems with two 

additive time varying delay. Delay-dependent conditions are 
presented in terms of linear matrix inequalities (LMIs) for 

asymptotic stability and robust stability. The LMIs proposed 
have been obtained by utilizing a Lyapunov Krasovskii 

functional. Numerical examples are given to illustrate the 
effectiveness of the proposed method and to show that our 

criteria give less conservative results.  
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