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Abstract: Many studies predict the compressive strength of 
conventional concrete from hardened characteristics; 
however, in the case of self-compacting concrete, these 
investigations are very rare. There is no study to predict 
the compressive strength of self-compacting concrete from 
mixture proportions and slump flow. This paper designs 
ANFIS models to establish relationship between the 
compressive strength as output, and slump flow and 
mixture proportions as input in eighteen combinations of 
input parameters. The applied dada is taken from 55 
previously conducted experimental studies. Effect of each 
parameter on the compressive strength and its importance 
level in the developed model has been investigated. Based 
on the error size in each combination analysis, weighting 
factor and importance level of each parameter is evaluated 
to apply the correction of factors to get the most optimized 
relationship. Obtained results indicate that the model 
including all input data (slump flow and mixture 
proportions) gives the best prediction of the compressive 
strength. Excluding the slump flow from combinations 
affects the prediction of compressive strength, 
considerably. However it’s not as much as the effect of the 
maximum aggregate size and aggregate volume in the 
mixture design. In addition, different values of powder 
volume, aggregate volume and paste content in the 
mixture reveal different ascending and descending effects 
on the compressive strength.  

Keywords:  ANFIS, Compressive strength, Mixture 
proportion, Self-compacting concrete 

 

1. INTRODUCTION 

Self-Compacting Concrete (SCC) as new type of 
concrete has the capabilities of flowing easily, filling the 
formwork and making a full compaction, under its own 
weight. Using SCC in construction eliminates the 
vibration process, improves the sustainability and 
reduces the labor works. Additionally, SCC has proven 
advantages such as enhancing construction productivity, 
reducing the overall cost of the structure, achieving 
sustainable characteristics, increasing the practically 
allowable reinforcement rate, and increasing the 
construction rate and overall quality of the cast structures 
[1]. First studies in development of SCC was carried out 
by Okamura (1994) [2]and Okamura and Ouchi (2000) 
[3] in Japan. More recently, Su et al. (2001) [4] and Su 

and Miao (2003) [5] conducted studies to develop 
alternative compacting methods in SCC. Despite 
available studies for advantages of SCC associated to its 
high performance in the fresh state since its first 
developments in the late 1980s in Japan, there are less 
available results regarding the expected hardened 
properties for the mechanical response such as 
compressive strength [1] 

SCC is highly sensitive to the changes in material 
properties and proportions and therefore, requires better 
quality control. The typical characteristics of SCC 
mixture proportions, which are necessary to ensure 
adequate fresh properties, can have significant 
consequences on hardened properties, including 
compressive strength, dimensional stability and 
durability [6]. 

Data-driven models including Artificial Neural 
Network (ANN), Adaptive Neuro Fuzzy Inference 
System (ANFIS), and Multiple Linear Regression 
(MLR) are widely utilized in different engineering fields 
such as civil engineering. These models provide more 
accurate predictions of the relationships between the 
engineering experimental data and eliminate the need for 
extensive further laboratory and in-situ testing and better 
understanding of the materials performance [7]. Among 
the existing data-driven models, ANN and ANFIS give 
more reasonable predictions of the compressive strength 
of concrete [8].  

Estimating the behavior of complex or unknown 
systems by input-output data is always of interest in the 
data-driven models among the researchers. Considering 
the complexities in mix components and proportions of 
concrete, and sensitivity of the concrete characteristic to 
the fresh state properties, prediction of the compressive 
strength of concrete is a complex problem. However, the 
literature review shows that compressive strength of the 
self-compacting concrete and its sensitivity to the 
mixture proportioning is not investigated, sufficiently [7, 
9].  

2. SIGNIFICANCE OF THE RESEARCH  

 
Early evaluation of the hardened properties of SCC is 

crucial for the most design and application purposes. The 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 6, 2019

ISSN: 2313-0512 18



 
 

compressive strength of SCC is a fundamental parameter 
to estimate its other mechanical properties. However, 
there is no direct relationship to obtain the compressive 
strength of SCC and it has to be predicted by 
experimental studies and destructive and non-destructive 
tests. Mechanical properties of SCC at hardened state 
directly come from its fresh properties. The problem is 
that following the hardening process, the quality and 
mechanical properties cannot improve. Structural 
behavior of concrete relies on mixture proportions and 
material properties of the composite system and these 
factors cannot change after hardening [10]. 
Consequently, obtaining a relationship to predict the 
hardening properties from fresh state and mixture 
proportions can be a useful achievement in widening of 
the SCC application in construction industry 

Many approaches have been developed to estimate 
the compressive strength of conventional concrete 
related to its other hardened properties (Gupta et al. 
(2006) [11], Peng et al. (2009), Cevik and Ozturk (2009) 
[12], Sobhani et al. (2010)[13], Atici (2011)) [14]. In 
addition, some investigations have been conducted to 
predict the compressive strength of concrete from the 
fresh state properties such as slump (Chidiac et al.2005 
[15], [16]; however, in self-compacting concrete there 
are very limited investigations to predict the compressive 
strength from its fresh or hardened properties.  

Due to considerable abilities of the artificial 
intelligence in analyses of the unknown and complicated 
systems, they have been used to study the mechanical 
properties of concrete. Artificial intelligent-based 
modeling methods (artificial neural network, fuzzy 
systems, adaptive network-based inference system, 
neuro-fuzzy systems and genetic fuzzy systems) have 
been applied to simulate the non-linear and complex 
behavior of various properties of construction materials 
in recent years [17]. 

Nataraja et al. (2006) [18] designed a neuro-fuzzy 
model for mixture design of conventional concrete. 
Tesfamariam and Najjaran (2007) [19] designed adaptive 
network-fuzzy inference to estimate the compressive 
strength of concrete using the mixture design. Bilgehan 
(2010) [20] performed a comparative study to estimate 
the compressive strength of concrete using neural 
network and neuro-fuzzy modeling approaches. Nehdi 
and Bassuoni (2009) [21] found a fuzzy logic approach 
for estimating the durability of concrete.  Tanyildizi and 
Qoskun (2007) [22] used fuzzy logic model to predict 
the compressive strength of lightweight concrete made 
with scoria aggregate and fly ash. Uyunoglu and Unal 
(2006) [23] proposed a new approach to determine the 
compressive strength of fly ash concrete using fuzzy 
logic. Yang et al. (2005) [24] studied the concrete 
strength evaluation by fuzzy neural networks. 

 

3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

(ANFIS) 

 
Adaptive Neuro-Fuzzy Inference System (ANFIS) 

which has the benefits of both artificial neural network 
and fuzzy systems is particularly useful in the 
engineering applications, where classical approaches fail 
or they are too complicated to be used [25]. 

Quantity and type of membership functions 
(triangular, trapezoidal, bell-shaped, Gaussian and 
sigmoid), types of output membership function (constant 
or linear), optimization methods (hybrid or back 
propagation) and number of epochs are five important 
adjustments in ANFIS to reach the most effective model 
by minimum errors size.  

Figure (1) shows the general structure of ANFIS 
model including the number of rules and fuzzy clusters 
of each input and their relationship in the model.  

   
 

Fig.1 The structure of ANFIS network 

 

Application of ANFIS was first proposed by Jang 
(1993). Ozel (2011) [10] used ANFIS to predict the 
compressive strength of high-performance conventional 
concrete from the fresh concrete properties based on the 
experimental data. He found very poor relation (R2=0.262) 
between the real and predicted values of the compressive 

strength. Sadrmomtazi et al. (2013) [25] applied ANFIS 
analysis to study the relationship between the compressive 
strength of lightweight concrete and mixture proportions. 
They compared the results with the developed model of 
regression analysis and found that the accurate prediction 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 6, 2019

ISSN: 2313-0512 19



 
 

of compressive strength needs more effective parameters 
to be included in the analysis. 

Vakhshouri and Nejadi (2014) [16] investigated 
different combinations of membership functions, number 
of epochs, optimization method and classification method 
to get the most compatible results between the 
experimental data and ANFIS prediction of the 
compressive strength of high-strength concrete from the 
splitting tensile strength and the modulus of elasticity. 

Self-compacting concrete poses a complex inherent 
and its nonlinear behavior after hardening increases the 
difficulty to predict their mechanical properties. This 
paper aimed to design the most known hybrid neuro-fuzzy 
network ANFIS models to predict the compressive 
strength of SCC. Consequently, various relationships 
between the mix proportions, fresh properties and 
hardened characteristics of SCC have been modeled. 
Moreover, different combinations of these effective 
parameters were also evaluated to find the importance and 
weight of each parameter to predict the compressive 
strength. A total number of 55 different mixture design 
proportions and fresh properties (slump flow) of SCC 
from previously conducted experimental studies in 
literature have been analyzed to determine the 
compressive strength. 

The implemented data in ANFIS models are compiled 
to establish a fuzzy logic between the input and output 
values. The established logic between the complied 
(trained) data is verified by testing some other 
experimental data. Among the architecture type of ANFIS 
in the literature, the Mamdani and Sugeno arrangement 
has been implemented in the established models. This 
version is constructed so that it has five fuzzy “if-then” 
governing rules and processes a set of applied input 
variables to produce a single predicted output [26]. 

A trained three layer back propagation neural network 
is integrated in the model to remember the experimental 
data pertaining to fresh properties and mixture proportions 
versus the 28 days compressive strength of 55 sets of 
experimental data. 

In order to analysis and defuzzification of the 
implemented data, the fuzzy algorithm classifies the 
information and assigns values to represent the degree of 
truth (degree of membership). The membership function 

represents this degree of truth in that classification in 
which, the members have smooth boundary rather than 
classical sets. Analytical data type and related 
uncertainties define the required type and shape of the 
membership functions [27].  

Membership function has inevitable effect on the 
established neuro-fuzzy model to predict the comparable 
values with the implemented outputs. To construct the 
most reliable membership function for a series of complex 
data, especially the data from a new material with less 
supporting literature, it is crucial to have the basic 
knowledge about the general classification and nature of 
data and the effect of data variation on the interaction 
(response) between the input and output data. 

Among the existing membership functions, the 
triangular or trapezoidal-shaped and Gaussian membership 
functions are generally utilized in the accelerated dynamic 
variation of data and high-accuracy requirements of the 
analytical data, respectively. The bell-shaped membership 
function is commonly used in the data related to the 
construction materials [28].   

According to Sadrmomtazi et al. (2013) [25] the bell-
shaped normalization method has been applied in this 
study in the ANFIS models with 3 membership functions 
by 500 epochs. Figure (2) presents the fuzzy domain 
decomposition using bell-shaped linguistic variables.  

 

4. MATERIALS AND DATA COLLECTION 
To carry out a precise prediction of the compressive 

strength of SCC, 55 sets of the mix proportions and fresh 
and hardened properties have been collected from 
different experimental studies presented by Domone 
(2006) [29]. Each dataset is a representative for a group of 
tests carried out by indicated researchers. Range and 
details of these sets of selected experiments are presented 
in Tables (1) and (2), respectively. To have a 
comprehensive comparison, according to Domone (2006) 
[29] almost all ranges of proportions and strengths are 
included in the study.  

 

 

 

 
Fig.2 Fuzzy domain decomposition by bell‐shaped normalization method 
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4.1. Mixture proportions 

Volume and maximum size of coarse aggregate: 
Crushed rock is used in about 50% of the case studies, 
presenting the local availability, gravel (uncrushed) in 
about 15% and lightweight aggregate in about 3% of the 
case studies. No information is given about the aggregate 
type in the remaining 32% of the studies.  

Powder: Majority of the powder types are Portland 
cement and limestone powder (in about 28% of the 
studies). Other components like ggbs, csf, Portland blast 
furnace cement, pfa and Portland fly ash cement are 
included in other case studies. In this study, the powder 
content (cement plus cementitious fillers) are included in 
the analysis in terms of the powder volume in unit volume 
of the concrete mix proportion and weight ratio of the 
water to powder (w/p by wt.). 

Paste content in the concrete mix volume (past vol., %) 
and percentage ratio of the volume of fine aggregates to 
volume of mortar (Vf/Vm, %) are other key parameters of 
SCC mixes that are taken into the account. 

 

4.2. Fresh properties 

 

Slump flow as indicator of the fresh concrete 
flowability is considered to evaluate the effect of fresh 
state properties of SCC on the hardened characteristics. In 
90% of the studies, the slump flow was in the range of 
600-700 mm and only 10% was out of this range.  

 

 

Table 1: Range of mix proportion, fresh and hardened properties of SCC 

Property 
Aggr.max 

size (mm) 

Aggregate 

(vol. %) 

Powder vol 

(kg/m3) 
w/p by weight 

Paste vol. 

( %) 
Vf/Vm (%) 

Slump flow 

(mm) 

28d‐f'c 

(MPa) 

Range  10‐40  28.1‐42.3  385‐635  0.26‐0.48  29.6‐40.4  38.1‐52.9  500‐790  22‐95 

 

 

Datasets of first 49 case studies out of 55 (89% of all) 
are selected as training data and the remaining datasets 
(11% of all) as the testing data to assess the accuracy of 
the ANFIS predictions after the training process.   

According to Table (3), each set of training data 
includes 8 parameters; 7 parameters as input data and the 
compressive strength as output data. To evaluate the 
effect, weight and importance of each parameter on the 
compressive strength, 18 combinations of these 
parameters have been evaluated. Table (3) shows different 
combinations of 7 input parameters to produce the 
compressive strength.  

Selection of the input and output data among a large 
number of data are based on the most important 
parameters in ANFIS. Input data can be categorized into 
hierarchical structure, however, there is no general 
automatic method to classify the data. Independence 
nature of the input data and equal priority assignment to 
the input variables are the common concept in application 
of the data of all engineering fields in ANFIS [30]. The 
input data in this study are independent and the most 
important variables in the mixture design of SCC. From 

the mathematical point of view, many combinations of the 
7 input parameters can be established. However, the                  
18 combinations of the input parameters cover the most 
effective parameters and their possible combinations with 
the highest impact on the hardened properties of concrete.  

 

5. RESULTS AND DISCUSSION 

 

Figure (3) shows the results of training data of all 
combinations in ANFIS models to develop a neuro-fuzzy 
based model with the minimum error size. Succeeding this 
process, in Figure (4) the testing data are compared with 
predictions of the ANFIS after training the experimental 
input and output data to establish a neuro-fuzzy model. 
ANFIS model minimizes the error size by increasing the 
number of epochs to stabilize the process. Table (4) shows 
the training error size and the average size of testing errors 
for all 18 combinations of the input data in ANFIS 
models.  
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Table 2: Details of experimental data of mix proportions, slump flow and compressive strength of SCC 

 

 

 

 

 

Year Authors aggr.max size aggr.vol% powder vol-kg/m3 w/p by wt paste vol.% vp/vm-vol.% slumpflow-mm 28d-f'c-Mpa

1993 Hayakawa M, Matsuoka Y, Shindoh 20 32.1 500 0.34 34.6 46 650 60

1993 Sakamoto J, Matsuoka Y, Shindoh T, Tangtermsirikul S 20 34.2 500 0.34 34.6 44.3 650 53.7

1993 Sakamoto J, Matsuoka Y, Shindoh T, Tangtermsirikul S 20 34.9 500 0.34 34.7 45.5 650 44.2

1993 Miura N, Takeda N, Chikamatsu R, Sogo S 20 34.1 488 0.34 33.8 44.9 500 48

1993 Miura N, Takeda N, Chikamatsu R, Sogo S 20 30.6 500 0.34 34.6 48.1 650 39

1994 Furuya N, Itohiya T, Arima I 40 42.3 410 0.35 29.6 44.2 550 36

1993 Kuroiwa S, Matsuoka Y, Hayakawa M, Shindoh T 20 34.3 500 0.34 34.2 46 675 53

1994 Umehara H, Uehara T, Enomoto Y, Oka S 15 34.9 607 0.26 36 40.3 650 65

1996 Kosaka H, Higuchi M, Takeuchi H, Nanni A 20 31.2 470 0.35 34 48.4 620 55

1996 Kosaka H, Higuchi M, Takeuchi H, Nanni A 20 37.5 472 0.35 33.9 43.8 650 55

1995 Fukute T, Moriwake A, Sano K, Hamasaki K 20 30.9 385 0.48 31.2 51.8 645 41

1997 Fukute T, Hamada H, Sano K, Sueoka E, Moriwake A, Tkeichi H 20 31 448 0.4 32.7 48.7 647 56

1996 Sedran T, de Larrard F, Hourst F, Contamines C 20 35.2 484 0.35 33.1 49.8 650 50

1996 de Larrard F, Gillet G, Canitrot B. 20 32.9 473 0.38 33.5 50.8 640 94

1998 Khayat HK, Aitcin P-C 10 33.6 520 0.42 38.3 41.6 640 42

1998 Khayat HK, Aitcin P-C 25 32.5 466 0.45 37 43.5 580 45

1998 Khayat HK, Aitcin P-C 25 31.8 537 0.42 40.3 38.1 610 58

1998 Khayat HK, Aitcin P-C 14 29.6 532 0.41 40.4 38.8 615 35

1999 Sonebi M, Bartos PJM 20 28.3 525 0.38 38.3 46.5 650 47

1999 Sonebi M, Bartos PJM 10 28.3 530 0.37 36.9 47.6 690 80

1999 Billberg P, Petersson O, Osterber T 16 29.5 595 0.28 36.7 44.5 670 62.3

1999 Billberg P, Petersson O, Osterber T 16 31 526 0.31 33.7 47.9 700 69.3

1998 Petterson O 16 30.9 525 0.34 36.1 46.3 650 44

1998 Petterson O 10 31.1 480 0.35 32.6 50 710 70

1999 Nishizaki T, Kamada F, Chikamatsu R, Kawashima H 20 29.8 585 0.3 36.5 43.7 650 60

1999 Nagai T, Kojima T, Miura N. 15 33.3 580 0.32 37.4 47 695 73

2000 Henderson N. 20 30 550 0.35 38.4 43.4 625 75

1999 Mizobuchi T, Yania S, Takada K, Sakata N, Nobuta Y 20 32.9 533 0.3 32.9 47.5 650 32.5

1999 Mizobuchi T, Yania S, Takada K, Sakata N, Nobuta Y 20 32.6 625 0.27 38.8 39.7 650 24

1999 Mizobuchi T, Yania S, Takada K, Sakata N, Nobuta Y 20 33.4 635 0.26 39 40.6 700 24

1999 Mizobuchi T, Yania S, Takada K, Sakata N, Nobuta Y 20 31 554 0.32 35.7 45.9 650 30

1999 Wetzig V. 16 30.1 480 0.36 32.5 52.6 640 50

1999 Wetzig V. 16 31.3 460 0.4 33.3 52.9 670 50

1999 Wetzig V. 32 38.6 460 0.37 32.2 50 650 50

1999 Chikamatsu R, Shinkai C, Kushigemachgi H 20 31 501 0.33 33.4 48.5 605 39

1999 Maeda MK, Yamada K, Uchida A 20 30.9 529 0.34 35.6 46.9 700 25

1999 Maeda MK, Yamada K, Uchida A 20 29.5 462 0.35 33.2 50.2 650 22

2001 Tanaka M, Mori K 20 28.9 520 0.3 33.6 52.5 670 25

2001 Inoue H, Takeichi Y, Ohtomo T 20 31.8 500 0.32 33.8 48.8 650 25

2001 Johansen K, Kyltveit B-P 20 29.5 432 0.45 33.5 49.3 725 52

2001 Ohtomo T, Asaka S, Kim JY, Park CG, Beak SJ, Jung CS, et al 20 29.9 438 0.41 32.4 49 650 64

2001 Kubo M, Nakano M, Aoki H, Sugano S, Ouchi M 20 30.6 529 0.3 33.5 49.6 650 60

2002 Centing M, Jonsson U, Nilsson H, Tuutti K, Widenbrant K 16 29.8 538 0.33 36 48.8 700 78

2002 Centing M, Jonsson U, Nilsson H, Tuutti K, Widenbrant K 16 29.4 532 0.32 34.8 50.3 700 78

2001 Fleming D 20 37.7 450 0.4 32.3 48.8 630 62

2002 Khayat KH, Morin R 10 29.7 480 0.37 33.4 49.2 675 57

2002 Osterberg T. 16 30.5 600 0.28 38.4 45.3 740 75

2002 Lessard M, Talbot C, Baker D 19 34 450 0.42 33.7 48.5 660 28

2003 Collepardi M, Collepardi S, Ogoumah Ologat JJ, Troli R 16 31.3 500 0.36 34.5 50.5 700 43

2003 Collepardi M, Collepardi S, Ogoumah Ologat JJ, Troli R 22 34.5 530 0.33 35.2 43.7 730 95

2003 Collepardi M, Collepardi S, Ogoumah Ologat JJ, Troli R 20 31.1 435 0.41 33.2 52.8 790 42

2003 Fredvik TI, Gundersen NL, Johansen K 20 29.5 432 0.47 34 48.9 725 52

2003 Fredvik TI, Gundersen NL, Johansen K 16 32.1 474 0.38 34.8 48.5 650 50

2003 Ouchi M, Sada-aki N, Osterberg T, Hallberg S-E, Lwin M 20 31.7 470 0.33 30.4 52.3 630 74

2003 Ouchi M, Sada-aki N, Osterberg T, Hallberg S-E, Lwin M 20 28.1 575 0.3 37.3 46.4 665 71
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Table 3: Different combinations of slump flow and mixture proportions of CSS 

Comb.  Mixture proportion and slump flow  Output 

A  Aggr.max size + aggr.vol% + powd. vol. + w/p by wt + paste vol.% + vp/vm‐vol.% + slump flow   
B  aggr.vol% + powder vol + w/p by wt + paste vol.% + vp/vm‐vol.% + slump flow   
C  aggr.max size + powder vol + w/p by wt + paste vol.% + vp/vm‐vol.% + slump flow   
D  aggr.max size + aggr.vol% + w/p by wt + paste vol.% + vp/vm‐vol.% + slump flow   
E  aggr.max size + aggr.vol% + powder vol + paste vol.% + vp/vm‐vol.% + slump flow   
F  aggr.max size + aggr.vol% + powder vol + w/p by wt + vp/vm‐vol.% + slump flow   
G  aggr.max size + aggr.vol% + powder vol + w/p by wt + paste vol.% + slump flow   
H  aggr.max size + aggr.vol% + powder vol + w/p by wt + paste vol.% + vp/vm‐vol.%   
I  powder vol + w/p by wt + paste vol.% + vp/vm‐vol.% + slump flow   
J  w/p by wt + paste vol.% + vp/vm‐vol.% + slump flow   
K  paste vol.% + vp/vm‐vol.% + slump flow   
L  vp/vm‐vol.% + slump flow   
M  slump flow   
N  aggr.max size + aggr.vol% + powder vol + w/p by wt + paste vol.%   
O  aggr.max size + aggr.vol% + powder vol + w/p by wt   
P  aggr.max size + aggr.vol% + powder vol   
Q  aggr.max size + aggr.vol%   
R  aggr.max size   
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Fig. 3: Minimizing the error size by increasing the epochs to establish relation between the input and output data 
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Fig. 4: Testing the trained data with some non-trained data to evaluate the accuracy of training process 

 

 
According to Figure (4), the third, fourth and sixth 

case studies in the test data are compatible with 
predictions of the trained data in all combinations. The 
first case study (Collepardi M et al. 2003) has the main 
role to increase the errors in testing process of the trained 
data in combination G, M, O, P and Q. In addition, the 
second case study (Collepardi M et al. 2003) is not 
adjusted with the trained data in the combinations D, H, I, 
J and K. The fifth case study in testing data (Ouchi M et 
al. 2003) is not compatible with the trained data in the 
combinations A, B, C, E, F, G, H, L, N, O, Q and R. In the 
combination A and B with acceptable training error sizes, 
the fifth case study causes large error sizes. The main 

reason of incompatibility between the first and fifth case 
studies is the considerably higher values of the 
compressive strength of the self-compacting concrete type 
compared to the other experimental data. The second case 
study has the highest value of the slump flow that may be 
incompatible with that of the other normal strength SCC 
mixes.  

As a sample of all combinations, Figure (5) shows the 
predicted values of ANFIS model versus the experimental 
compressive strength at the last epoch of training process 
in combinations B and L, respectively. As mentioned 
before, among the whole 55 case studies, 49 case studies 
were imported in the training process and the remaining 6 
studies were imported in testing process. 
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Fig. 5: Predicted values of last epoch in ANFIS vs experimental compressive strength in Table 2  

 

 
 

Figure (6) shows some Three-Dimensional (3D) 
surface diagrams of the input and output parameters after 
analysis. To study the individual relationship of each input 
data with the output data, Figure (7) shows Two-
Dimensional (2D) diagrams of the surface diagrams 
presented in Figure (6). 

Theoretically, the relationship between each input data 
with the output data is constant and is independent from 
the other input data. However, it’s not valid in the neuro-
fuzzy logic environment of ANFIS. In other words, in the 
neuro-fuzzy system of ANFIS, the interaction between 
each input parameter with the output parameter is 
changing in different combinations. However, it follows a 
similar diagram in terms of the extreme points and curve 
shape. The reason is that each input data in the 
combination strongly influences the structure of the 
developed ANFIS model; that in turn, affects every 
singular sub-relation of the output with each input 
parameter. 

The best prediction of the compressive strength comes 
from the combination including all 7 input parameters. 
While, the model excluding the slump flow and the ratio 
of powder volume resulted in the least accurate 
predictions. Concurrently, excluding the aggregate volume 
and slump flow from the model improves the predicted 
compressive strength values. The best-fitting model 
contains all the mixture proportions and slump flow to 
result the most compatible prediction of the compressive 
strength of SCC.  

 

 

 

 

     
N  B  J 

 
Fig. 6:  3D surface diagrams, combinations A (aggregate max size, w/p vs. ), B (slump flow, powder volume vs. 

) and J (slump flow-w/p vs. ) 

 

 

 

 

 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 6, 2019

ISSN: 2313-0512 26



 
 
 

     
‐Aggregate max size ‐A  ‐aggregate volume‐ A  ‐slump flow ‐ A 

     
‐paste volume% ‐ E  ‐ w/p by wt  ‐A  ‐ w/p by wt ‐ B 

     
‐paste volume% ‐ A  ‐powder volume ‐A  ‐powder volume  ‐  B 

     
‐paste volume% ‐ B  ‐vf/vm  ‐ A  –vf/vm ‐ B 

Fig. 7 Relationship between the mix proportion and slump flow with compressive strength in ANFIS model  
  

 

Table 4: Training errors and average testing error in 18 combinations of input data to predict the 
compressive strength of SCC 

 
Comb. A B C D E F G H I 

Training error 0.00955 0.01610 1.1917 0.0839 0.00463 0.0240 0.7157 0.1140 1.4406 

Ave. Testing error 45.8998 54.2443 84.776 91.390 52.4694 28.773 40.8151 81.952 106.83 

          

Comb. J K L M N O P Q R 

Training error 2.6487 5.9326 13.963 15.19 0.78403 4.7145 10.3084 14.410 15.643 

Ave. Testing error 524.3267 208.338 37.990 18.479 25.5487 58.1361 22.2368 26.153 25.236 

 

6. EFFECT OF ERROR SIZE  

For the ANFIS-based soft sensor models, when 
estimation/prediction accuracy is concerned, it is 
assumed that both data which used to train the model 
and testing data to make the estimations, are free of 

errors. However, rarely a data set is clean and free of 
error before extraordinary effort having been put to 
clean the numbers [31]. Several studies have 
investigated the effect of error size on accuracy of the 
predictions of computer-based models. Bansel et al. 
(1993) [32] found a considerable effect of the testing 
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data errors on the predictions made by neural network 
and linear regression models.  

As presented in Table (3) and illustrated in Figures 
(3) and (5), the best fitting between the trained data 
versus the given output data are obtained in 
combinations A, B and E in which, the minimum error 
size tends to be zero. All combinations which include 
at least 6 out of 7 input data, give better estimation of 
the output data.  

The models including less than 6 input parameters 
dramatically under or overestimate the compressive 
strength of SCC. However, as presented in Table (4), 
the effect of each input data on the compressive 
strength of SCC is totally changed in different 
combinations.  

Combination E gives the least training error size 
and the best fitting of trained data with experimental 
data. Replacing paste volume with water/powder ratio 
in combination E (resulting the combination F) has 
minor effect on prediction of the compressive strength. 
It increases the training error size from 0.004 to 0.02. 
While, replacing powder volume with water/powder 
ratio increases the error size from 0.004 to 0.08.  

By comparing the combinations C and D, 
compressive strength of SCC is more sensitive to the 
aggregate volume, rather than the powder volume. 
This conclusion is also evident in comparison of the 
combinations P, Q and R.  

According to the results of ANFIS analysis, the 
least consistency in the models is observed between 
the maximum size of aggregate and the compressive 
strength of SCC. By combining the results, effect of 
the aggregate volume on the predicted compressive 
strength of SCC is higher than the effect of the 
maximum size of aggregate.  

By analysis of the combinations H and L in ANFIS 
models, eliminating the slump flow from the general 
equation shows no considerable effect on the predicted 
compressive strength of SCC. While, including the 
slump flow in combinations L and M, causes higher 
error sizes in the predicted values. Therefore, the 
slump flow cannot be a reliable basis to estimate the 
compressive strength of SCC.  

Combination E has the best-fitting of the 
experimental and predicted data in training process. 
Excluding the water/powder ratio from input 
parameters improves the predicted results. In addition, 
according to combinations O and P, including the 
water/powder ratio together with the aggregate volume 
and maximum size of the aggregate and the powder 
volume, improve the accuracy of the output data. The 
paste volume has certain effect on the predicted values 
of the compressive strength. 

Despite a good fitting between the experimental 
and trained data in combination L, the 14th (Delarrad F. 
et al. (1996)), 35th (Chikamatsu et al. (1999)) and 36th 
(Maeda MK et al. (1999)) case studies of the training 
dataset cause the major error sizes in the training 
process. Depending on the research purposes, similar 

diagrams can be drawn for any other combinations of 
the input parameters.  

The following interpretations can be drawn from 
the diagrams presented in Figure (7): 

- In combination A that includes all 
the input parameters, the maximum size of 
aggregate up to 25 mm, increases the 
compressive strength. The maximum size of 
aggregate above 25 mm, decreases the 
compressive strength of SCC;  

- Increasing the aggregate volume 
above 35% in the SCC mix, decreases the 
compressive strength of SCC;  

- Increasing the powder volume over 500 
kg/m3 in the SCC mix, decreases the 
compressive strength of SCC. Meanwhile, 
increasing the water to powder ratio will 
enhance the compressive strength prediction.  

- Increasing the ratio of fine aggregate 
volume to the mortar volume up to 45% 
decreases the compressive strength of SCC. 
Additionally, the ratio above 45% increases 
the compressive strength of SCC. 

- Majority of the collected 
experimental data are from high-strength 
SCC. Although, some data for normal 
strength SCC are included in the training 
data; however, according to the results, 
predicting the compressive strength of 
normal-strength SCC from high-strength 
SCC is not recommended.  

- Much the same conclusions can be 
made from the ANFIS analysis. Since they 
mostly rely on the fuzzy logic, some 
disagreements might be seen between the 
ANFIS analysis results with the 
mathematical and theoretical assumptions of 
the concrete technology as well. 

7. CONCLUSIONS 

  
Fifty five datasets of the previously conducted 

experimental studies on 28 days compressive strength 
of SCC have been analyzed in ANFIS models. To have 
a comprehensive study on the effects of mixture design 
proportions and fresh properties of SCC on the 
compressive strength, 18 combinations of these 
parameters have been analyzed and the results were 
compared. The following conclusions can be made 
from the results and comparison of the combinations:  

ANFIS approves a strong relationship between the 
fresh state properties and mix proportions with the 
compressive strength as a representative of the 
hardened state characteristics of the self-compacting 
concrete; 

The relationship between each input parameter and 
the compressive strength may change in different 
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combinations. In spite of the constant values of each 
input parameter, their relationship with the 
compressive strength in different combinations is not 
similar with the theoretical relationship in the concrete 
technology. Effect of each parameter on the structure 
of ANFIS model is main reason to such differences.  

In the ANFIS analysis, increasing the ratio of fine 
aggregate volume to the mortar volume up to 45%, 
decreases the compressive strength of SCC. The 
compressive strength is augmented by increasing the 
ratio above 45% (ratio of fine aggregate volume to the 
mortar volume). 

Majority of the collected data are from high-
strength self-compacting concrete and only minor part 
of the collected data are from normal-strength 
concrete, However, prediction of the compressive 
strength of the normal-strength SCC using this method 
is not reliable. 

The results of this study can be assessed by other 
mathematical and artificial intelligent-based systems. 
Furthermore, for comprehensive evaluating of the self-
compacting concrete, effect of fiber reinforcing and 
size effect should be included and investigated as well.  

 
 

REFERENCES 

 
1. Almeida Filho, F., et al., Hardened properties of self-compacting 

concrete—a statistical approach. Construction and Building 
Materials, 2010. 24(9): p. 1608-1615. 

2. Okamura, H. and K. Ozawa. Self-compactable high-performance 
concrete in Japan. in International Workshop on High Performance 
Concrete (Edited by Paul Zia). 1994. 

3. Okamura, H., K. Ozawa, and M. Ouchi, Self-compacting concrete. 
structural Concrete, 2000. 1(1): p. 3-17. 

4. Su, N., K.-C. Hsu, and H.-W. Chai, A simple mix design method for 
self-compacting concrete. Cement and concrete research, 2001. 
31(12): p. 1799-1807. 

5. Su, N. and B. Miao, A new method for the mix design of medium 
strength flowing concrete with low cement content. Cement and 
Concrete Composites, 2003. 25(2): p. 215-222. 

6. Koehler, E.P., Aggregates in self-consolidating concrete. 2007: 
ProQuest. 

7. Khademi, F., et al., Predicting strength of recycled aggregate 
concrete using artificial neural network, adaptive neuro-fuzzy 
inference system and multiple linear regression. International Journal 
of Sustainable Built Environment, 2016. 5(2): p. 355-369. 

8. Khademi, F., M. Akbari, and S.M. Jamal, Prediction of compressive 
strength of concrete by data-driven models. i-manager's Journal on 
Civil Engineering, 2015. 5(2): p. 16. 

9. Mansouri, I., et al., Predicting behavior of FRP-confined concrete 
using neuro fuzzy, neural network, multivariate adaptive regression 
splines and M5 model tree techniques. Materials and Structures, 2016. 
49(10): p. 4319-4334. 

10. Özel, C., Prediction of compressive strength of concrete from volume 
ratio and Bingham parameters using adaptive neuro-fuzzy inference 
system (ANFIS) and data mining. International Journal of Physical 
Sciences, 2011. 6(31): p. 7078-7094. 

11. Gupta, R., M.A. Kewalramani, and A. Goel, Prediction of concrete 
strength using neural-expert system. Journal of materials in civil 
engineering, 2006. 18(3): p. 462-466. 

12. Cevik, A. and S. Ozturk, Neuro-fuzzy model for shear strength of 
reinforced concrete beams without web reinforcement. Civil 
Engineering and Environmental Systems, 2009. 26(3): p. 263-277. 

13. Sobhani, J., et al., Prediction of the compressive strength of no-slump 
concrete: A comparative study of regression, neural network and 
ANFIS models. Construction and Building Materials, 2010. 24(5): p. 
709-718. 

14. Atici, U., Prediction of the strength of mineral admixture concrete 
using multivariable regression analysis and an artificial neural 
network. Expert Systems with applications, 2011. 38(8): p. 9609-
9618. 

15. Chidiac, S. and F. Habibbeigi, Modelling the rheological behaviour of 
fresh concrete: An elasto-viscoplastic finite element approach. 
Computers and Concrete, 2005. 2(2): p. 97-110. 

16. Vakhshouri, B. and S. Nejadi, Application of Adaptive Neuro-Fuzzy 
Inference System in High Strength Concrete. International Journal of 
Computer Applications, 2014. 101(5): p. 39-48. 

17. Neshat, M., et al., A comparative study on ANFIS and fuzzy expert 
system models for concrete mix design. IJCSI International Journal of 
Computer Science Issues, 2011. 8(3): p. 196-210. 

18. Nataraja, M., M. Jayaram, and C. Ravikumar, Prediction of early 
strength of concrete: a fuzzy inference system model. International 
Journal of Physical Sciences, 2006. 1(2): p. 47-56. 

19. Tesfamariam, S. and H. Najjaran, Adaptive network–fuzzy inferencing 
to estimate concrete strength using mix design. Journal of materials in 
civil engineering, 2007. 19(7): p. 550-560. 

20. Bilgehan, M. and P. Turgut, The use of neural networks in concrete 
compressive strength estimation. Comput Concr, 2010. 7(3): p. 271-
283. 

21. Nehdi, M. and M. Bassuoni, Fuzzy logic approach for estimating 
durability of concrete. Proceedings of the Institution of Civil 
Engineers-Construction Materials, 2009. 162(2): p. 81-92. 

22. Tanyildizi, H. and A. Qoskun, Int Earthquake Symp. 2007, Kocaeli, 
Turkey. 

23. Uygunoğlu, T. and O. Ünal, A new approach to determination of 
compressive strength of fly ash concrete using fuzzy logic. Journal of 
scientific & industrial research, 2006. 65: p. 894-899. 

24. Xiao-Feng, Y., et al., Is decompressive craniectomy for malignant 
middle cerebral artery infarction of any worth? Journal of Zhejiang 
University Science B, 2005. 6(7): p. 644-649. 

25. Sadrmomtazi, A., J. Sobhani, and M. Mirgozar, Modeling 
compressive strength of EPS lightweight concrete using regression, 
neural network and ANFIS. Construction and Building Materials, 
2013. 42: p. 205-216. 

26. Vakhshouri, B. and S. Nejadi, Predicition Of Compressive Strength In 
Light-Weight Self-Compacting Concrete By ANFIS Analytical Model. 
Archives of Civil Engineering, 2015. 61(2): p. 53-72. 

27. Duch, W., Uncertainty of data, fuzzy membership functions, and 
multilayer perceptrons. IEEE transactions on neural networks, 2005. 
16(1): p. 10-23. 

28. Vakhshouri, B. and S. Nejadi, Application of adaptive neuro-fuzzy 
inference system in high strength concrete. International Journal of 
Computer Applications, 2014. 101(5). 

29. Domone, P., Self-compacting concrete: An analysis of 11 years of 
case studies. Cement and Concrete Composites, 2006. 28(2): p. 197-
208. 

30. Elena Dragomir, O., et al., Adaptive Neuro-Fuzzy Inference Systems 
as a strategy for predicting and controling the energy produced from 
renewable sources. Energies, 2015. 8(11): p. 13047-13061. 

31. Jassar, S., Z. Liao, and L. Zhao. Impact of data quality on predictive 
accuracy of ANFIS based soft sensor models. in Proceedings of the 
World Congress on Engineering and Computer Science. 2009. 

32. Bansal, A., R.J. Kauffman, and R.R. Weitz, Comparing the modeling 
performance of regression and neural networks as data quality 
varies: a business value approach. Journal of Management 
Information Systems, 1993. 10(1): p. 11-32. 

 

INTERNATIONAL JOURNAL OF FUZZY SYSTEMS and ADVANCED APPLICATIONS Volume 6, 2019

ISSN: 2313-0512 29




