Characterizations of Fuzzy W – Compactness and Fuzzy W-Closed Spaces in Fuzzy Topological Spaces

RAJA MOHAMMAD LATIF
Department of Mathematics and Natural Sciences
Prince Mohammad Bin Fahd University
P.O. Box 1664 Al Khobar 31952 KINGDOM OF SAUDI ARABIA
rlatif@pmu.edu.sa & rajamlatif@gmail.com & dr.rajalatif@yahoo.com

Abstract— The concepts of W – compactness and W – closed spaces in the fuzzy setting are defined and investigated. Fuzzy filter bases are used to characterize these concepts.

Keywords— Fuzzy topological space, fuzzy W-open set, quasi-coincident, fuzzy W-compact space, fuzzy W-closed space, fuzzy filter base.

AMS Subject Classification Code: 54A40, 54D30 and 54A20.

I. Introduction

The concept of fuzzy set operation was first introduced by Zadeh [15] and subsequently, several authors including Zadeh [15] have discussed various aspects of the theory and applications of fuzzy sets. Fuzzy topological spaces were introduced by Chakrabarty and Ahsanullah (1992) and Chang (1968). Compactness occupies a very important place in fuzzy topology and so do some of its other forms including closed space, countably compactness and Lindelof space. In [7], Talal Al – Hawary introduced the concepts of fuzzy W – closed sets, fuzzy W – open sets and Fuzzy W – generalized closed sets as well as fuzzy W – g – continuous and fuzzy W – g – irresolute functions and investigated their some basic properties. The objective of this paper is devoted to introduce and study the concepts of W – compactness and W – closed spaces in the fuzzy setting. We use fuzzy filter bases to characterize fuzzy W – compactness and fuzzy W – closed spaces. We will also explore several basic properties and characterizations of these concepts.

II. Preliminaries

Let X be a nonempty set and I = [0,1]. A fuzzy set on X is a mapping from X into I. The null fuzzy set 0 X is the mapping from X into I which assumes only the value is 0 and whole fuzzy sets 1 X is a mapping from X into I which takes the values I only. The union (resp. intersection) of a family {Aα : α ∈ Λ} of fuzzy sets of X is defined to be the mapping Sup{Aα : α ∈ Λ} (resp. Inf{Aα : α ∈ Λ}). A fuzzy set A of X is contained in a fuzzy set B of X if A(x) ≤ B(x) for each x ∈ X. A fuzzy point xβ in X is a fuzzy set defined by xβ(y) = β for y = x and xβ(y) = 0 for y ≠ x, β ∈ (0,1] and y ∈ X. A fuzzy point xβ is said to be quasi – coincident with the fuzzy set A denoted by xβqA if and only if β + A(x) > 1. A fuzzy set A is quasi – coincident (not quasi – coincident) with a fuzzy set B denoted by AqB (AqB) if and only if there exists a point x ∈ X such that A(x) + B(x) > 1 (A(x) + B(x) ≤ 1). A family T of fuzzy sets of X is called a fuzzy topology on X if X, φ belong to T and T is closed with respect to arbitrary union and finite intersection. The members of T are called fuzzy open sets and their complements are fuzzy closed sets. For any fuzzy set A of X, the closure of A (denoted by Cl(A)) is the intersection of all the fuzzy closed supersets of A and the interior of A (denoted by Int(A)) is the union of all fuzzy open subsets of A. Throughout this paper X and Y will mean fuzzy topological spaces. The complement and the support of a fuzzy set U are denoted by Uc and S(U), respectively.

Definition 2.1. Let A be a fuzzy subset of a fuzzy topological space (X, T). The fuzzy W – interior of A is the union of all fuzzy open subsets of X whose closures are contained in Cl(A), and is denoted by W – Int(A). A is called fuzzy W – open if A = W – Int(A). The complement of a fuzzy W – open subset is called fuzzy W – closed. Alternatively, a fuzzy subset A of X is fuzzy W – closed if and only if A = W – Cl(A), where W – Cl(A) = ∩α∈Λ Aα, Aα is FC – set in X. Cl
early \(\text{Int}(A) \leq W - \text{Int}(A) \leq \text{Cl}(A) \) and \(A \leq \text{Cl}(A) \leq W - \text{Cl}(A) \) and hence every fuzzy \(W - \) closed set is a fuzzy closed set, but the converse needs not be true.

Example 2.2. Suppose that \(X = \{a, b, c\} \) and \(T = \{0, 1, \chi_{[a]}, \chi_{[b]}, \chi_{[a,b]}\} \). Then the set \(\chi_{[a,b]} \) is a fuzzy closed set but not a fuzzy \(W - \) closed set since \(W - \text{Cl}(\chi_{[a,b]}) = 1 \).

The intersection of two fuzzy \(W - \) open subsets need not be fuzzy \(W - \) open.

Example 2.3. Let \(X = \{a, b, c, d\} \) and \(T = \{0, 1, \chi_{[a]}, \chi_{[b]}, \chi_{[c]}, \chi_{[a,b]}, \chi_{[a,c]}, \chi_{[b,c]}, \chi_{[a,b,c]}\} \). Then \(\chi_{[a,b]} \) and \(\chi_{[a,c]} \) are fuzzy \(W - \) open sets, but \(\chi_{[a,b]} \cap \chi_{[a,c]} = \chi_{[a]} \) is not a fuzzy \(W - \) open set. The set \(\chi_{[a,b]} \) is a fuzzy closed set but not a fuzzy \(W - \) closed set since \(W - \text{Cl}(\chi_{[a,b]}) = 1 \).

In classical topology, the interior of a set is a subset of the set itself. But this is not the case for fuzzy \(W - \) open sets. Next we show that \(A \leq W - \text{Int}(A) \) and \(W - \text{Int}(A) \leq A \) need not be true.

Example 2.4. Consider the space in Example 2.3. Then
\[
W - \text{Int}(\chi_{[c]}) = 0 < \chi_{[c]} \cdot \chi_{[a,b]} < W - \text{Int}(\chi_{[a,b]}) = 1.
\]

Next, we state the result as proved in [7] that arbitrary unions of fuzzy \(W - \) open subsets are fuzzy \(W - \) open.

Theorem 2.5. If \((X, T) \) is a fuzzy topological space, then arbitrary unions of fuzzy \(W - \) open subsets are fuzzy \(W - \) open.

Corollary 2.6. The arbitrary intersection of fuzzy \(W - \) closed subsets are fuzzy \(W - \) closed, while finite unions of fuzzy \(W - \) closed subsets need not be fuzzy \(W - \) closed.

Corollary 2.7. If \(A \) is a fuzzy \(W - \) dense subset of \(X \), \((W - \text{Cl}(A) = 1) \), then \(W - \text{Int}(A) = 1 \).

Definition 2.8. A collection \(\xi \) of fuzzy subsets of a fuzzy topological space \((X, T) \) is said to form a fuzzy filterbases if and only if for every finite subcollection \(\lambda \) of \(\xi \), \(\bigcap A \neq 0_X \).

Definition 2.9. A collection \(\mu \) of fuzzy sets in a fuzzy topological space \((X, T) \) is said to be a cover of a fuzzy set \(U \) of \(X \) if and only if \(\left(\bigcup_{\alpha \in \mu} A \right)(x) = 1_X \), for every \(x \in S(U) \).

Definition 2.10. A fuzzy cover \(\mu \) of a fuzzy set \(U \) in a fuzzy topological space \((X, T) \) is said to have a finite subcover if and only if there exists a finite subcollection \(\eta \) of \(\mu \) such that \(\left(\bigcup_{\alpha \in \eta} A \right)(x) \geq U(x) \), for every \(x \in S(U) \).

III. Fuzzy \(W - \) Compact Spaces

Definition 3.1. A fuzzy topological space \((X, T) \) is said to be fuzzy \(W - \) compact if and only if for every family \(\mu \) of fuzzy \(W - \) open sets such that \(\bigcup_{\alpha \in \mu} A = 1_X \) there is a finite subfamily \(\eta \subseteq \mu \) such that \(\bigcup_{\alpha \in \eta} A = 1_X \).

Definition 3.2. A fuzzy set \(U \) in a fuzzy topological space \((X, T) \) is said to be fuzzy \(W - \) compact relative to \(X \) if and only if for every family \(\mu \) of fuzzy \(W - \) open sets such that \(\bigcup_{\alpha \in \mu} A \geq S(U) \) there is a finite subfamily \(\eta \subseteq \mu \) such that \(\bigcup_{\alpha \in \eta} A \geq U(x) \) for every \(x \in S(U) \).

Theorem 3.3. A fuzzy topological space \((X, T) \) is fuzzy \(W - \) compact if and only if for every collection \(\{A_j : j \in J\} \) of fuzzy \(W - \) closed sets of \(X \) having the finite intersection property, \(\bigcap_{j \in J} A_j \neq 0_X \).

Proof. Let \(\{A_j : j \in J\} \) be a collection of fuzzy \(W - \) closed sets with the finite intersection property. Suppose that \(\bigcap_{j \in J} A_j = 0_X \). Then \(\bigcup_{j \in J} A_j^c = 1_X \). Since \(\{A_j^c : j \in J\} \) is a collection of fuzzy \(W - \) open sets cover of \(X \), then from the \(W - \) compactness of \(X \) it follows that there exists a finite subset \(F \subseteq J \) such that \(\bigcup_{j \in F} A_j^c = 1_X \).

Then \(\bigcap_{j \in F} A_j = 0_X \) which gives a contradiction and therefore \(\bigcap_{j \in J} A_j \neq 0_X \).

Conversely, Let \(\{A_j : j \in J\} \) be a collection of fuzzy \(W - \) open sets cover of \(X \). Suppose that for every finite subset \(F \subseteq J \), we have \(\bigcup_{j \in F} A_j \neq 1_X \). Then
\[\bigcup_{x \in A} A^c_x \neq 0 \]. Hence \(\{ A^c_x : j \in J \} \) satisfies the finite intersection property. Then from the hypothesis, we have \(\bigcap_{j \in J} A^c_x \neq 0 \) which implies \(\bigcap_{j \in J} A_j \neq 1 \) and this contradicts the fact that \(\{ A_j : j \in J \} \) is a fuzzy \(W \)-open open cover of \(X \). Thus \(X \) is fuzzy \(W \)-compact.

Now, we give some results of fuzzy \(W \)-compactness in terms of fuzzy filterbases

Theorem 3.4. A fuzzy topological space \((X, T) \) is fuzzy \(W \)-compact if and only if every filterbases \(\xi \) in \(X \),

\[\bigcap_{G \in \xi} W - \text{Cl}(G) \neq 0 \]

Proof. Let \(\mu \) be a fuzzy \(W \)-open set cover of \(X \) and \(\mu \) has no finite subcover. Then for every finite subcollection \(\lambda \) of \(\mu \), there exists \(x \in X \) such that \(A(x) < 1 \) for every \(A \in \lambda \). Then \(A^c(x) > 0 \), so that \(\bigcap_{\lambda \in \lambda} A^c(x) \neq 0 \).

Thus \(\{ A^c : A \in \mu \} \) forms a filterbases in \(X \). Since \(\mu \) is fuzzy \(W \)-open set cover of \(X \), then

\[\left(\bigcup_{A \in \mu} A \right)(x) = 1 \]

for every \(x \in X \) and hence

\[\left(\bigcap_{A \in \mu} W - \text{Cl}(A^c) \right)(x) = \left(\bigcap_{A \in \mu} A^c \right)(x) = 0 \]

which is a contradiction. Then every fuzzy \(W \)-open set cover of \(X \) has a finite subcover and hence \(X \) is fuzzy \(W \)-compact.

Conversely, suppose there exists a filterbases \(\xi \) such that

\[\bigcap_{G \in \xi} W - \text{Cl}(G)(x) \neq 0 \]

so that

\[\bigcap_{G \in \xi} \left(\left(W - \text{Cl}(G) \right)^c \right)(x) = 1 \]

for every \(x \in X \) and hence \(\mu = \left(\left(W - \text{Cl}(G) \right)^c : G \in \xi \right) \) is a fuzzy \(W \)-open set cover of \(X \). Since \(X \) is fuzzy \(W \)-compact, then \(\mu \) has a finite subcover. Then there exists a finite subset \(\lambda \subseteq \mu \) such that

\[\left(\bigcup_{G \in \lambda} W - \text{Cl}(G) \right)(x) = 1 \]

and hence

\[\left(\bigcap_{G \in \lambda} G^c \right)(x) = 1 \]

so that \(\bigcap_{G \in \lambda} G = 0 \) which is a contradiction since \(\lambda \) is a finite subset of filterbases \(\xi \). Therefore

\[\bigcap_{G \in \xi} W - \text{Cl}(G) \neq 0 \]

for every filterbases \(\xi \), such that every finite set of members of \(\xi \) is quasi-coincident with \(U \), and

\[\left(\bigcap_{G \in \xi} W - \text{Cl}(G) \right)(x) \neq 0 \]

for some \(x \in S(U) \), then for every \(x \in S(U) \),

\[\left(\bigcap_{G \in \xi} W - \text{Cl}(G) \right)(x) \neq 0 \]

and hence \(\xi = \{ A^c : A \in \mu \} \) forms a filterbases and

\[\left(\bigcap_{A \in \lambda} W - \text{Cl}(A^c) \right)(x) = 0 \]

for every \(x \in S(U) \).

Thus \(\mu = \left(\left(W - \text{Cl}(G) \right)^c : G \in \xi \right) \) is fuzzy \(W \)-open cover of \(U \). Since \(U \) is fuzzy \(W \)-compact relative to \(X \), then there exists a finite subcover, say

\[\left(\left(W - \text{Cl}(G_j) \right)^c : j = 1, \ldots, n \right) \], such that

\[\left(\bigcup_{j=1}^n \left(W - \text{Cl}(G_j) \right)^c \right)(x) \geq U(x) \]

for every \(x \in S(U) \). Hence

\[\left(\bigcap_{a=1}^n \left(W - \text{Cl}(G_j) \right)^c \right)(x) \leq U(x) \]

for every \(x \in S(U) \), so that \(\left(\bigcap_{a=1}^n \left(W - \text{Cl}(G_j) \right)^c \right)(x) \leq U(x) \) which is a contradiction. Therefore for every filterbases \(\xi \), such that
every finite set of members of ξ is quasi–coincident with U, $(\bigcap_{A \in \nu} W - \text{Cl}(G)) \cap U \neq 0_X$.

The following theorem proves that hereditary property for fuzzy W–compact spaces.

Theorem 3.6. Every fuzzy W–closed subset of a fuzzy W–compact space (X, T) is fuzzy W–compact relative to X.

Proof. Let ξ be a fuzzy filterbases in X such that $Uq \cap \{G : G \in \lambda\}$ holds for every finite subcollection λ of ξ and a fuzzy W–closed set U. Consider $\xi^* = \{U\} \cup \xi$. For any finite subcollection λ^* of ξ^*, if $U \not\in \lambda^*$, then $\bigcap_{\lambda^*} \neq 0_X$. If $U \in \lambda^*$ and since $Uq \cap \{G : G \in \lambda^* - \{U\}\}$, then $\bigcap_{\lambda^*} \neq 0_X$. Hence λ^* is a fuzzy filterbases in X. Since X is fuzzy W–compact, then $\bigcap_{A \in \nu} W - \text{Cl}(G) \neq 0_X$, so that $\left(\bigcap_{A \in \nu} W - \text{Cl}(G)\right) \cap U = \left(\bigcap_{A \in \nu} W - \text{Cl}(G)\right) \cap \text{Cl}(U) \neq 0_X$.

Hence by Theorem 3.5, we have U is fuzzy W–compact relative to X.

IV. Fuzzy W–Closed Spaces

Definition 4.1. A fuzzy topological space (X, T) is said to be fuzzy W–closed space if and only if for every family μ of fuzzy W–open sets such that $\bigcup_{A \in \nu} A(x) = 1_X$ there is finite subfamily $\eta \subseteq \mu$ such that $\left(\bigcup_{A \in \nu} W - \text{Cl}(A)\right)(x) = 1_X$, for every $x \in X$.

Theorem 4.2. A fuzzy topological space (X, T) is fuzzy W–closed if and only if for every fuzzy W–open filterbases ξ in X, $\bigcap_{A \in \nu} W - \text{Cl}(G) \neq 0_X$.

Proof. Let μ be a fuzzy W–open set cover of X and let for every finite subfamily η of μ, $\left(\bigcup_{A \in \nu} W - \text{Cl}(A)\right)(x) < 1_X$, for some $x \in X$. Then $\left(\bigcap_{A \in \nu} W - \text{Cl}(A)\right)(x) > 0_X$ for some $x \in X$. Thus $\xi = \left\{\left(W - \text{Cl}(A)\right)^c : A \in \mu\right\}$ forms a fuzzy W–open filterbases in X. Since μ is a fuzzy W–open set cover of X, then $\bigcap_{A \in \nu} A^c = 0_X$ which implies $\bigcap_{A \in \nu} W - \text{Cl}(W - \text{Cl}(A))^c = 0_X$, which is a contradiction. Then every fuzzy W–open set cover of X has a finite subfamily η such that $\left(\bigcup_{A \in \nu} W - \text{Cl}(A)\right)(x) = 1_X$ for every $x \in X$. Hence X is fuzzy W–closed.

Conversely, suppose there exists a fuzzy W–open filterbases ξ in X such that $\bigcap_{A \in \nu} W - \text{Cl}(G) = 0_X$, so that $\left(\bigcup_{A \in \nu} \left(W - \text{Cl}(A)\right)^c\right)(x) = 1_X$ for every $x \in X$ and hence $\mu = \left\{(W - \text{Cl}(A))^c : G \in \xi\right\}$ is a fuzzy W–open set cover of X. Since X is fuzzy W–closed, then μ has a finite subfamily η such that $\left(\bigcup_{A \in \nu} W - \text{Cl}(W - \text{Cl}(A))^c\right)(x) = 1_X$ for every $x \in X$, and hence $\bigcap_{G \in \eta} (W - \text{Cl}(W - \text{Cl}(G))^c) = 0_X$.

Thus $\bigcap_{G \in \eta} G = 0_X$ which is a contradiction, since all the G are members of filterbases.

Definition 4.3. A fuzzy set U in a fuzzy topological space (X, T) is said to be fuzzy W–closed relative to X if and only if for every family μ of fuzzy W–open sets such that $\bigcup_{A \in \nu} A = U$, there is a finite subfamily $\eta \subseteq \mu$ such that $\left(\bigcup_{A \in \nu} W - \text{Cl}(A)\right)(x) = U(x)$ for every $x \in S(U)$.

Theorem 4.4. A fuzzy subset U in a fuzzy topological space (X, T) is fuzzy W–closed relative to X if and only if for every fuzzy W–open filterbases ξ in X, $\left(\bigcap_{A \in \nu} W - \text{Cl}(G)\right) \cap U = 0_X$, there exists a finite subfamily λ of ξ such that $\left(\bigcap_{A \in \lambda} G\right) \cap U$.

Proof. Let U be a fuzzy W–closed relative to X, suppose ξ is a fuzzy W–open filterbases in X such that for every finite subfamily λ of ξ, $\left(\bigcap_{A \in \lambda} G\right) \cap U$, but
\[
\left(\bigcap_{G \in \xi} W - \text{Cl}(G) \right) \cap U = 0_x. \quad \text{Then for every } x \in S(U), \quad \left(\bigcap_{G \in \xi} W - \text{Cl}(G) \right)(x) = 0_x \quad \text{and hence}
\]
\[
\left(\bigcup_{G \in \xi} \left(W - \text{Cl}(G) \right)^c \right)(x) = 1_x \quad \text{for every } x \in S(U).
\]
Then \(\mu = \left\{ \left(W - \text{Cl}(G) \right)^c : G \in \xi \right\}\) is a fuzzy \(W\)-open set cover of \(U\) and hence there exists a finite subfamily \(\lambda \subseteq \xi\) such that \(\bigcup_{G \in \lambda} W - \text{Cl}(W - \text{Cl}(G))^c \supseteq U\), so that
\[
\bigcap_{G \in \lambda} \left(W - \text{Cl}(W - \text{Cl}(G))^c \right)^c = \bigcap_{G \in \lambda} W - \text{Int}(W - \text{Cl}(G)) \leq U^c \quad \text{and hence}
\]
\[
\bigcap_{G \in \lambda} G \leq U^c. \quad \text{Then } \left(\bigcap_{G \in \lambda} G \right) \bar{q} U \quad \text{which is a contradiction.}
\]
Conversely, let \(U\) not be a fuzzy \(W\)-closed set relative to \(X\), then there exists a fuzzy \(W\)-open set \(\mu\) cover of \(U\) such that every finite subfamily \(\eta \subseteq \mu\),
\[
\left(\bigcup_{A \in \eta} W - \text{Cl}(A) \right)(x) \leq U(x) \quad \text{for some } x \in S(U)
\]
and hence \(\left(\bigcap_{A \in \eta} W - \text{Cl}(A)^c \right)(x) > U^c(x) \geq 0\) for some \(x \in S(U)\). Thus
\[
\xi = \left\{ \left(W - \text{Cl}(A)^c \right)^c : A \in \mu \right\} \quad \text{forms a fuzzy}
\]
\(W\)-open filter bases in \(X\). Let there exists a finite subfamily \(\left\{ \left(W - \text{Cl}(A)^c \right)^c : A \in \eta \right\}\) such that
\[
\left(\bigcap_{A \in \eta} W - \text{Cl}(A)^c \right)^c \bar{q} U. \quad \text{Then}
\]
\[
U \leq \bigcup_{A \in \eta} W - \text{Cl}(A). \quad \text{So there exists a finite subfamily}
\]
\(\eta \subseteq \mu\) such that \(\bigcup_{A \in \eta} W - \text{Cl}(A) \supseteq U\) which is a contradiction. Then for each finite subfamily \(\lambda = \left\{ \left(W - \text{Cl}(A)^c \right)^c : A \in \eta \right\}\) of \(\xi\), we have
\[
\left(\bigcap_{A \in \eta} W - \text{Cl}(A)^c \right)^c \bar{q} U. \quad \text{Hence by the given condition}
\]
\[
\left(\bigcap_{A \in \mu} W - \text{Cl}(W - \text{Cl}(A))^c \right) \cap U \neq 0_x, \quad \text{so there exists}
\]
\(x \in S(U)\) such that
\[
\left(\bigcap_{A \in \mu} W - \text{Cl}(W - \text{Cl}(A))^c \right)(x) > 0_x. \quad \text{Then}
\]
\[
\left(\bigcup_{A \in \mu} \left(W - \text{Cl}(W - \text{Cl}(A))^c \right)^c \right)(x) =
\]
\[
\left(\bigcup_{A \in \mu} W - \text{Int}(W - \text{Cl}(A)) \right)(x) < 1_x, \quad \text{and hence}
\]
\[
\left(\bigcup_{A \in \mu} A \right)(x) < 1_x \quad \text{which contradicts the fact that } \mu \quad \text{is a fuzzy } W\quad \text{-open set cover of } U. \quad \text{Therefore } U \quad \text{is fuzzy}
\]
\(W\)-closed relative to \(X\).

Conclusion

In this paper, we have introduced the concepts of fuzzy \(W\)-compactness and fuzzy \(W\)-closed spaces and have investigated their several properties by making use of fuzzy filter bases. We can extend this concept to introduce the notions of fuzzy \(W\)-generalized compactness and fuzzy \(W\)-generalized closed spaces and may also investigate several characterizations of these new notions via fuzzy filter bases.

Acknowledgment

The author is highly and gratefully indebted to the Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia, for providing necessary research facilities during the preparation of this paper.

References

