Prime Fuzzy Bi-Ideals in Near-Subtraction Semigroups

K. Mumtha Research Scholarof Mathematics A.P.C.Mahalaxmi College for Women Thoothukudi, India. <u>mamthakasi8696@gmail.com</u> V. Mahalakshmi Assistant Professor of Mathematics A.P.C.Mahalaxmi College for Women Thoothukudi, India. <u>mahalakshmi@apcmcollege.ac.in</u> S. Usha Devi Assistant Professor of Mathematics Sri Parasakthi College for Women Courtallam, India. ushadevinathan@gmail.com

Abstract — A study on fuzzy prime ideals in near-subtraction semigroups is already known. We have to expand the concept of prime fuzzy bi-ideals in near-subtraction semigroups and analyse some of its properties to characterize it. This will lead to learn a new type of fuzzy ideal and to develope the researcher to made their research.

Keywords — Fuzzy Ideals, Fuzzy prime ideals.

I. INTRODUCTION

In 1965, fuzzy set was first introduced by L.A.Zadeh [7]. The notion of *Near-subtraction semigroup* was studied by B.M.Schein. K.H.Kim et [2] & they established the concept of *Ideals in near-subtraction semigroup* & *fuzzy set*. Prince Williams [3] described the concept of *Fuzzy ideals*. Similarly, the concept such as *Fuzzy bi-ideals* has been described by V.Chinnadurai et. al. A detailed study on *Fuzzy prime ideals* was carried out by Mumtha.K and Mahalakshmi.V [6]. In this paper, we explore the concept of prime fuzzy bi-ideals in near-subtraction semigroups and discuss some of its properties.

II. PRELILIMINARIES

Definition: 2.1

A right near-subtraction semigroup is a non-empty set X with "-" & "." satisfies:

(i) (X, -) is a subtraction algebra

(ii) (X, \cdot) is a semigroup

(iii) For all $p, q, r \in X$, (p - q).r = p.r - q.r(right distributive law)

Definition: 2.2

If p.0 = 0, p = 0, for all $p \in X$, then X is a *zero-symmetric* and is denoted by X_0 . Now after, X stands for a zero-symmetric right near-subtraction semigroup $(X, -, \cdot)$ with at least two elements.

Definition: 2.3

A *fuzzy subset* is the mapping μ from the nonempty set X into the unit interval [0,1].

Definition: 2.4

A fuzzy subset μ of X is called a *fuzzy ideal* of X if

(i)
$$\mu(x - y) = \min\{\mu(x), \mu(y)\}.$$

- (ii) $\mu(xy) \ge \mu(y)$,
- (iii) $\mu(xy) \ge \mu(x)$, for every $x, y \in X$.

Definition: 2.5

A fuzzy ideal μ is called a *fuzzy prime ideal* of X if $\sigma. \delta \subseteq \mu \Rightarrow \sigma \subseteq \mu$ or $\delta \subseteq \mu$, where $\sigma \& \delta$ are any two fuzzy ideals of X.

Definition: 2.6

Let μ and λ be any two fuzzy subsets of X. Then $\mu \cap \lambda$, $\mu \cup \lambda$, $\mu\lambda$, $\lambda\mu$, $\mu * \lambda$ are fuzzy subsets of X that are defined by,

$$(\mu \cap \lambda)(x) = \min\{\mu(x), \lambda(x)\}$$

$$(\mu \cup \lambda)(x) = \max\{\mu(x), \lambda(x)\}$$

$$(\mu - \lambda)(x) = \begin{cases} \sup_{x=y-z}^{sup} \min\{\mu(y), \lambda(z)\} & \text{if } x = y - z \\ 0 & \text{otherwise} \end{cases}$$

$$\mu\lambda(x) = \begin{cases} \sup_{x=yz}^{sup} \min\{\mu(y), \lambda(z)\} & \text{if } x = yz \\ 0 & \text{otherwise} \end{cases}$$

$$(\mu * \lambda)(x) = \begin{cases} x=ac-a(b-c) & \min\{\mu(a), \lambda(c)\} & \text{if } x = ac \\ 0 & \text{otherwise} \end{cases}$$

Definition: 2.7

For any fuzzy set μ in X and $t \in [0,1]$. We define $U(\mu;t) = \{x/x \in X, \mu(x) \ge t\}$, which is called a *upper t*-level cut of μ .

Definition: 2.8

Let
$$I \subseteq X$$
. Define a function $f_I : X \rightarrow [0,1]$ by,

$$f_{I}(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{cases}, \text{ for every } x \in X.$$

Clearly, f_I is a fuzzy subset of X and it is called the *characteristic function* of I.

Definition: 2.9

A fuzzy ideal μ of X is said to be *normal* if there exists $a \in X$ such that $\mu(a) = 1$

Definition: 2.10

A fuzzy ideal μ of X is said to be *weakly complete* if it is normal and there exists $z \in X$ such that $\mu(z) < 1$.

Theorem: 2.11

Let μ be a fuzzy bi-ideal of X. Then the finitely generated set, $X_{\mu} = \{x \in X/\mu(x) = \mu(0)\}$ is an bi-ideal of X.

Theorem: 2.12

Let A be a non-empty subset and μ_A be a fuzzy set in X defined by, $\mu_A(x) = \begin{cases} 1 & \text{if } x \in A \\ s & \text{otherwise} \end{cases}$, $\forall x \in X$ and

 $s \in [0,1)$. Then μ_A is a fuzzy bi-ideal of X iff A is an bi-ideal of X. Moreover, $X_{\mu_A} = A$.

Let χ_A be the characteristic function of a subset

 $A \subset X$. Then χ_A is a fuzzy bi-ideal of X iff A is an bi-ideal of X.

III. PRIME FUZZY BI-IDEALS

Definition: 3.1

A fuzzy bi-ideal f is called a *prime fuzzy bi-ideal* of X if for any two fuzzy bi-ideals g & h of X such that $g.h \le f \Longrightarrow g \le f$ (or) $h \le f$.

E.g: 3.1.1

Let $X = $	{0, 1, 2, 3	} with " -	- "&"."	are defined as,
------------	-------------	------------	---------	-----------------

-	0	1	2	3	•	0	1	2	3
0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	1	0	1	0	1
2	2	2	0	0	2	0	0	2	2
3	3	2	1	0	0 1 2 3	0	1	2	3

Let *f*, *g* & *h* be fuzzy subsets of X such that,

f(0) = 1,	f(1) = 0.8,	f(2) = 0.7,	f(3) = 0.5
g(0) = 1,	g(1) = 0.8,	g(2) = 0.6,	g(3) = 0.3
h(0) = 1,	h(1) = 0.7,	h(2) = 0.5,	h(3) = 0.2

Clearly, f is prime fuzzy bi-ideal of X.

E.g: 3.1.2

Let $X = \{0, 1, 2, 3\}$ with " –	"&"." are defined as ,
-----------------------------------	------------------------

		1					1		
0	0	0	0	0	0	0	0	0	0
1	1	0	3	2	1	0	1	2	3
2	2	0	0	2	2	0	0	0	0
3	3	0 0 0 0	3	0	3	0	0 1 0 1	2	3

Let *f*, *g* & *h* be fuzzy subsets of X such that,

 $f(0) = 1, \quad f(1) = 0.4, \quad f(2) = 0.4, \quad f(3) = 1$ $g(0) = 0.8, \quad g(1) = 0, \quad g(2) = 0.8, \quad g(3) = 0$ $h(0) = 0.8, \quad h(1) = 0, \quad h(2) = 0.8, \quad h(3) = 0$

Here $g.h \le f$ but neither $g \le f$ nor $h \le f$, for some $x \in X$.

Clearly, f is not a prime fuzzy bi-ideal of X.

Theorem: 3.2

Intersection of all prime fuzzy bi-ideals of X is also a prime fuzzy bi-ideal of X.

Proof:

Let $\{f_i / i \in \Omega\}$ be the set of all prime fuzzy bi-ideals in X.

To prove: $f = \bigcap_{i \in \Omega} f_i$ is also a prime fuzzy bi-ideal.

Let g & h be any fuzzy bi-ideals of X such that

 $g.h \leq \bigcap_{i \in \Omega} f_i \Longrightarrow g.h \leq f_i, for all i \in \Omega.$

Since each f_i is a prime fuzzy b-ideal.

Therefore,
$$g \leq f_i$$
 (or) $h \leq f_i$, for all $i \in \Omega$.

(i.e)
$$g \leq \bigcap_{i \in \Omega} f_i$$
 (or) $h \leq \bigcap_{i \in \Omega} f_i$.

Note: 3.3

Every fuzzy prime ideal is a prime fuzzy bi-ideal but the converse need not be true in general.

Theorem: 3.4

If f is a prime fuzzy bi-ideal of X then the finitely generated set is a prime bi-ideal of X.

Proof:

Assume that f is a prime fuzzy bi-ideal of X.

By Theorem 2.11, X_f is a bi-ideal of X.

To prove: X_f is a prime bi-ideal of X.

Let A & B be any two bi-ideals in X such that $AB \subseteq X_f$.

We have to prove $A \subseteq X_f$ or $B \subseteq X_f$.

Define the fuzzy subsets g & h of X as,

$$g(x) = \begin{cases} f(0) & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \quad h(y) = \begin{cases} f(0) & \text{if } y \in B \\ 0 & \text{if } y \notin B \end{cases}$$

By Theorem 2.12, *g* & *h* are fuzzy bi-ideals.

Next we verify that $g.h \leq f$.

Since $g.h(a) = \begin{cases} \sup_{a=bc} \{\min\{g(b), h(c)\}\} & if \ a = bc \\ 0 & otherwise \end{cases}$ $\Rightarrow g(b) = h(c) = f(0). \text{ So } b \in A \& c \in B.$ Now, $a = bc \in AB \subseteq X_f. (i.e) \in X_f \Rightarrow f(a) = f(0).$

Hence, $g.h(a) \le f(a), \forall a \in X$. Thus $g.h \le f$.

Since f is a prime fuzzy bi-ideal,

So we have that $g \leq f$ or $h \leq f$.

Suppose $g \le f$. If $A \not\subset X_f$, then there exists $a \in A$ such that $a \notin X_f$. This means that $f(a) \ne f(0)$. Already We know that, $f(0) \ge f(a)$. But $f(0) \ne f(a)$ and so f(0) > f(a).

Now, g(a) = f(0) > f(a).

Which is a contradiction to $g \leq f$. Hence $A \subseteq X_f$.

Similarly, If $h \leq f$, then we can show that $B \subseteq X_f$.

This shows that X_f is a prime bi-ideal of X.

Theorem: 3.5

Let I be an bi-ideal of X and f be a fuzzy set in X defined by, $f(x) = \begin{cases} 1 & if \ x \in I \\ s & otherwise \end{cases}$, $\forall x \in X \& s \in [0,1)$. If I is a prime bi-ideal of X then f is a prime fuzzy bi-ideal of X.

Proof:

Suppose I is a prime ideal of X.

To prove: *f* is a prime fuzzy bi-ideal of X.

By Theorem 2.12, f is a fuzzy bi-ideal of X. Let g & h be two fuzzy ideals of X such that $g.h \le f$.

two fuzzy ideals of X such that $g, h \leq f$. To prove: $g \leq f$ or $h \leq f$. Suppose not, (i.e) $g \leq f$ and $h \leq f$. Then g(x) > f(x) and $h(y) > f(y), \forall x, y \in X$. Now, $f(x) \neq 1$ and $f(y) \neq 1$ $\Rightarrow f(x) = f(y) = s$ andso $x, y \notin I$. Since I is a prime ideal, we have that $\langle x \rangle \langle y \rangle \not \subset I$. Then f(a) = s and hence $g, h(a) \leq f(a) = s$. Since a = cd, where $c = \langle x \rangle \& d = \langle y \rangle$. Then, $s = f(a) \geq g.h(a)$. Now, $g, h(a) = \underset{a=cd}{sup} {\min\{g(c), h(d)\}}$ $\geq \min\{g(x), h(y)\}$ $\geq \min\{f(x), f(y)\} = s$

Therefore g.h(a) > s. Which is a contradiction.

Hence, f is a prime fuzzy bi-ideal of X.

Corollary : 3.6

Let χ_P be the characteristic function of a subset $P \subseteq X$. Then χ_P is a prime fuzzy bi-ideal iff P is a prime bi-ideal of X.

Theorem: 3.7

If *f* is a prime fuzzy bi-ideal of X then, f(0) = 1. **Proof:**

Suppose f is a prime fuzzy bi-ideal of X.

To prove: f(0) = 1.

Suppose not, (i.e) f(0) < 1.

Since f is not a constant, then there exists $a \in X$ such that f(a) < f(0).

Define the fuzzy subsets g & h as, $\forall x \in X$

g(x) = f(0) and $h(x) = \begin{cases} 1 & if f(x) = f(0) \\ 0 & otherwise \end{cases}$

Since g is a constant function, g is a fuzzy bi-ideal.

Note that, h is the characteristics function of X_f .

Now, by Theorem: 2.12, h is the fuzzy bi-ideal of X.

Since
$$h(0) = 1 > f(0)$$
 and $g(a) = f(0) > f(a)$.

We have that, $g \leq f \& h \leq f$.

Let $b \in X$. We know that,

$$g.h(b) = \begin{cases} \sup_{b=cd} \{\min\{\sigma(c), \delta(d)\}\} & \text{if } b = cd \\ 0 & \text{otherwise} \end{cases}$$

Now, we prove, $\min\{g(c), h(d)\} \le f(b)$, where b = cd.

For this, we consider two cases, h(x) = 0 & h(x) = 1 in the following:

Case - (i)

Suppose h(x) = 0. Then h(x) < h(0) (By definition of h). Now, $\min\{g(c), h(d)\} = \min\{f(0), 0\} = 0 \le f(xy) = f(b)$. Case - (ii)

Suppose h(x) = 1. Then f(x) = f(0). Now,min $\{g(c), h(d)\} = \min\{f(0), 1\} = f(0) = f(x)$ $\leq f(xy) = f(b)$.

From this, we conclude that,

 $g.h(b) = \min\{g(c), h(d)\} \le f(b) \text{ and so } g.h \le f.$

Since, f is a prime fuzzy bi-ideal, we have $g \le f$ or $h \le f$.

Which is a contradiction to $g \leq f$.

Hence, f(0) = 1.

Theorem: 3.8

Every prime fuzzy bi-ideal is normal.

Proof:

By Previous Theorem 3.7, it is obviously true.

Theorem: 3.9

Every prime fuzzy bi-ideal is weakly completely normal.

Proof:

Let *f* be prime fuzzy bi-ideal. Then *f* is normal and *f* lies between the values 0 & 1. It follows that, f(0) = 1 & f(x) < 1, for all $x \in X$. Therefore, *f* is weakly completely normal.

Theorem: 3.10

If *f* is a prime fuzzy bi-ideal of X then,

|Im(f)| = 2. Moreover, $Im(f) = \{1, s\}$, where $0 \le s < 1$.

Proof:

Suppose f is a prime fuzzy bi-ideal of X.

To prove: Im(f) contains exactly two values.

We know that, by previous Theorem 3.7, f(0) = 1.

Let *a* & *b* be two elements of X such that,

$$f(a) < 1$$
 and $f(b) < 1$.

Enough to prove: f(a) = f(b).

Part-(i)

Define the fuzzy subsets *g* and *h* as, $\forall x \in X$ and $a \in X$

$$g(x) = f(a)$$
 and $h(x) = \begin{cases} 1 & if \ x \in \langle a \rangle \\ 0 & otherwise \end{cases}$

By Theorem: 2.12, g & h are fuzzy bi-ideals of X.

Since $a \in \langle a \rangle$, we have h(a) = 1 > f(a) and so $g \leq f$. Let $z \in X$. We know that,

$$g.h(z) = \begin{cases} \sup_{z=xy} \{\min\{g(x), h(y)\}\} & \text{if } z = xy \\ 0 & \text{otherwise} \end{cases}$$

If $x \notin \langle a \rangle$, then h(x) = 0 $\Rightarrow \min\{g(x), h(y)\} = \min\{f(a), 0\} = 0 \le f(xy) = f(z)$. If $x \in \langle a \rangle$, then h(x) = 1 $\Rightarrow \min\{g(x), h(y)\} = \min\{f(a), 1\} = f(a) \le f(xy)$ = f(z). We know that, $f(x) \ge f(a)$, for all $x \in \langle a \rangle$ It follows that, $f(a) \le f(x) \le f(xy) = f(z)$. From these, we conclude that, $g, h \le f$. Since f is a prime fuzzy bi-ideal, we have $g \le f$ or $h \le f$ Since $h \le f$. It follows that $g \le f$. Now, $f(b) \ge g(b) = f(a)$.

Part-(ii)

Now, we construct fuzzy bi-ideals $\rho \& \theta$ of X,

 $\rho(x) = f(b) \text{ and } \theta(x) = \begin{cases} 1 & \text{if } x \in \langle b \rangle \\ 0 & \text{otherwise} \end{cases}, \forall x \in X$ As in part-(i), we can verify that $f(a) \ge f(b)$.

 $\int dx = \int dx =$

Thus from parts-(i) & (ii), it follows that f(a) = f(b).

Hence the proof.

Theorem: 3.11

Let f be fuzzy bi-ideal in X. Then f is a prime fuzzy bi-ideal of X iff each level subset $f_t, t \in Im(f)$ of f is a prime bi-ideal of X.

Proof:

Assume that f is a prime fuzzy bi-ideal of X.

By Theorem 3.7, f_t is an bi-ideal of X.

To prove: f_t is a prime bi-ideal of X.

Let A & B be two ideals in X such that $AB \subseteq f_t$.

Define the fuzzy subsets g & h of X as,

$$g(x) = \begin{cases} 1 & if \ x \in A \\ 0 & otherwise \end{cases} and \ h(x) = \begin{cases} 1 & if \ x \in B \\ 0 & otherwise \end{cases}$$

By Theorem 2.12, g & h are fuzzy bi-ideals of X.

Next we verify that, $g.h \leq f$.

Since,
$$g.h(a) = \begin{cases} \sup_{a=bc} \{\min\{g(b), h(c)\}\} & \text{if } a = bc \\ 0 & \text{otherwise} \end{cases}$$

We conclude that, $g(b) = h(c) \ge t$. So $b \in A \& c \in B$.

Now,
$$a = bc \in AB \subseteq f_t$$
. (i.e) $a \in f_t \Longrightarrow f(a) \ge t$.

Hence $g.h(a) \le f(a), \forall a \in X$. Thus $g.h \le f$.

Since *f* is prime fuzzy bi-ideal, we have $g \le f$ or $h \le f$.

Suppose $g \le f$. If $A \nsubseteq f_t$, then there exists $a \in A$ such that $a \notin f_t$. This means that $f(a) \ge t$. (i.e) f(a) < t.

Now, $g(a) \ge t > f(a)$. Which is a contradiction to $g \le f$.

Similarly, If $h \leq f$, then we can show that $B \subseteq f_t$.

This shows that f_t is a prime bi-ideal of X.

Conversely,

Assume that $f_t, t \in Im(f)$ is a prime bi-ideal of X. To prove: f is a prime fuzzy bi-ideal of X.

Let f be a fuzzy set in X defined by,

$$F(x) = \begin{cases} 1 & \text{if } x \in f_t \\ s & \text{otherwise} \end{cases}$$

By Theorem 2.12, f is an fuzzy bi-ideal of X.

Let g & h be two fuzzy bi-ideals of X such that $g h \le f$.

Enough To prove: $g \leq f$ or $h \leq f$.

Suppose $g \leq f$ and $h \leq f$.

To prove: *f* is prime.

Then g(x) > f(x) and $h(y) > f(y), \forall x \in X$.

Now, $f(x) \neq 1$ and $f(y) \neq 1$

 $\Rightarrow f(x) = f(y) = s$ and also $x, y \notin f_t$.

Since f_t is a prime ideal, we have that $\langle x \rangle \langle y \rangle \not\subset f_t$.

Then f(a) = s and hence $g.h(a) \le f(a) = s$.

Since a = cd, $c = \langle x \rangle \& d = \langle y \rangle$. Then $s = f(a) \ge g$. h(a).

Now, $g.h(a) = \min\{g(c), h(d)\}$

$$\geq \min\{g(c), h(d)\}$$
$$\geq \min\{g(x), h(y)\}$$
$$> \min\{f(x), f(y)\} = s.$$

Therefore, g.h(a) > s. Which is a contradiction.

Hence f is a prime fuzzy bi-ideal of X.

Theorem: 3.12

Let P be a prime bi-ideal of X and α be a prime element of L, $L \in [0,1]$. Let f be a fuzzy subset of X defined by, $f(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{cases}$ iff f is a prime fuzzy bi-ideal of X.

Proof:

Clearly, f is a non-constant fuzzy bi-ideal.

To prove: f is prime.

Let g & h be two fuzzy bi-ideals such that, $g \leq f$ and $h \leq f$. Then there exists $x, y \in X$ such that $g(x) \leq f(x)$ and $h(y) \leq f(y)$.

This implies that $f(x) = f(y) = \alpha$ and hence $x, y \notin I$. Since I is prime, then there exists an element r in X such that $xry \notin I$.

Now, we have $f(x) \leq \alpha \& f(ry) \leq \alpha$ (otherwise $h(y) \leq \alpha$) and since α is prime, $g(x) . h(xy) \leq \alpha$ and hence $g.h(xry) \leq \alpha = f(xry)$ so that $g.h \leq f$.

Hence f is prime fuzzy bi-ideal.

Conversely,

Let f be a prime fuzzy bi-ideal. Then, f(0) = 1.

Next we observe that f assumes exactly two values.

Let a & b be elements of X such that f(a) < 1 & f(b) < 1.

Define
$$g \& h$$
 as, $g(x) = \begin{cases} 1 & \text{if } x \in \langle a \rangle \\ o & \text{otherwise} \end{cases}$ and $h(x) = f(a), \forall x \in X.$

By Theorem: 2.12, g & h are fuzzy bi-ideals.

And also we have,
$$g(x)$$
. $h(y) \le f(xy)$, $\forall x, y \in X$.

And hence $g, h \le f$. Put $g \le f$. Since g(a) = 1 > f(a). Since *f* is prime fuzzy bi-ideal andso $h \le f$ so that

 $h(b) \le f(b)$ hence $f(a) \le f(b)$. Thus *f* assumes only one value, say α other than 1.

Let $I = \{x \in X/f(x) = 1\}$. Then clearly, I is a proper bi-ideal of X and for $x \in X$, $f(x) = \begin{cases} 1 & \text{if } x \in I \\ \alpha & \text{otherwise} \end{cases}$.

Now, to prove: I is a prime bi-ideal of X & α is a prime element in L.

That α is prime follows that the fact that for any $a \in L$ & for the constant map $\overline{a} \leq f$ iff $a \leq \alpha$. Let J & K be ideals of X such that $JK \subseteq I$. Then $\chi_J \chi_K = \chi_{JK} \subseteq \chi_I \subseteq f$ so that $\chi_I \subseteq f$ or $\chi_K \subseteq f$. Which implies that $J \subseteq I$ or $K \subseteq I$.

Corollary: 3.13

Let L be a complete chain and P is an bi-ideal of X. Then P is a prime bi-ideal of X iff χ_P is a prime fuzzy bi-ideal of X..

IV. CONCLUSION

We have analyse the concept of prime fuzzy bi-ideal f in near-subtraction semigroups and investigated some of its properties. We find

- f(0) = 1
- $Im(f) = \{1, s\}$, where $0 \le s < 1$.
- Prime fuzzy bi-ideal iff each level subset is prime fuzzy bi-ideal.

ACKNOWLEDGEMENT

We thank the anonymous referees for their useful suggestions.

REFERENCES

- [1] B.Zelinka, "Subtraction semigroups", Math. Bohemica. 120 (1995), pp. 445-447.
- [2] B. M. Schein, "Difference semigroups", Communications in algebra 20 (1992), pp. 2153-2169.
- [3] D.R.Prince Williams, "*fuzzy ideals in near-subtraction semigroups*", International journal of computational & mathematical sciences, 2 (2008) pp. 39-46.
- [4] G.Pilz, "Near-ring, The theory and its applications". Second edition. North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983. xv+470 pp. ISBN:0 7204-0566-1.
- [5] J.B.Jun and K.H.Kim, "On ideals in subtraction algebras", Sc. Math. Jpn. 65 (2007), pp. 129-134.
- [6] K.Mumtha and V.Mahalakshmi, "Fuzzy prime ideals in near-subtraction semigroups", 5 (2020) pp. 269-277.
- [7] L.A.Zadeh, "*Fuzzy sets*", Information control 8 (1965), pp. 338-353.
- [8] P.Dheena and G.Mohanraj, "Fuzzy weakly prime ideals of near-subtraction semigroup", 4 (2012), pp. 235-242.
- [9] P.Dheena and G.Satheeshkumar, "Weakly prime left ideals of near-subtraction semigroup", 23 (2008), pp. 325-331.
- [10] P.Dheena and G.Satheeshkumar, "On prime & fuzzy prime ideals of near-subtraction semigroup", 4 (2009), pp. 2345-2353.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 <u>https://creativecommons.org/licenses/by/4.0/deed.en_US</u>