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Abstract—Machine learning consists of a set of computational
tools for performing large multi-dimensional data set analysis
where standard statistical tests are not easily implemented. Many
parametric approaches for machine learning consist of model
selection and at least a two-step process. Using these techniques
the underlying structure of the observed data may not be fully
realised. On the other hand, Bayesian non-parametric methods
perform inference operations over an infinitely greater number
of parameters and because the inherent model uncertainty is
also incorporated in the single-step approach, this can lead
to a more robust estimation of resulting values. This paper
applies this approach to the modelling geophysical events, which
is a challenging spatio-temporal problem domain. This paper
contributes to the ongoing investigation of optimal methods
for geophysical event modelling by introducing a numerical
computation solution using a Bayesian unsupervised learning
algorithm with earthquake magnitude and location data from
Central Chile following a recent 8.8 magnitude earthquake that
destroyed many buildings and other property. It is envisaged that
this method could be applied to other major earthquakes and
further work is gathering data for analysis in this regard.

I. I NTRODUCTION

Earthquakes are random geophysical events that can have
catastrophic dimensions and deeply affect the lives of people.
The study of the statistical properties of earthquakes have a
long tradition in physics,mathematical and applied statistics
but because of their un-predictable nature, no solution has been
found for alerting people when one is about to arrive. Instead,
analyzing seismic activity data leads to explanations of what
the nature of the event is and more importantly, what the
probability is of a new earthquake given all recorded seismic
events [10].

Conventional statistical modeling of geophysical data as-
sumes a linear and Gaussian distribution of observations. The
variogram is a widely used descriptor of spatial dependency
for a group of observations and kriging is used to interpolate
data from sparsely sampled observations [4]. Important to note
here is that this standard spatial prediction method utilizes a
stationary Gaussian process but many geophysical events are
best described as point patterns instead [16].

Earthquakes locations and magnitudes are observed as ran-
domly scattered events, and suitable statistical models are
point processes [13]. Figure 1 shows the distribution of the
number of earthquakes by magnitude in Richter scale. Point

processes are stochastic models for random events happening
in space and time, and the summary statistics of a point process
is given by a function which is also known in geostatistics as
the hazard function.
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Fig. 1. Histogram of earthquake magnitudes in central Chile between years
2006 and 2010. Most of the seismic activity is concentrated in low magnitude
events (less than 5 points in Richter scale), and few events with magnitude
above 7 points. A single event of more than 8 points produces a long tail in
the distribution.

Earthquakes can be clustered by using the main event (a
single and largest magnitude) surrounded by several after-
shocks, or alternatively by swarms of closely spaced events
with similar magnitudes [7]. In order to perform spatial
inference of the swarming behavior, we can fit a finite mixture
model to represent the seismic activity represented by the
hazard function of the underlying point process. Finite mixture
models are probabilistic or model-based approaches for soft
clustering and are characterized by the parametrization of
mixing proportions, also having specific mixture component
densities. Given that the neither the locations or the number
of earthquakes is knowna priori, the number of clusters or
the number of mixture components have to be determined in
a model selection step.
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II. RELATED WORK

This paper has connections with other previous work where
artificial intelligence and machine learning techniques have
been used to model environmental systems [3]. In this context,
supervised methods like neural networks have been preferred
for building classifier systems. Also, unsupervised neural
networks such as self-organizing maps have been proposed
for modelling geophysical systems [11]. More closely related
to this work, Ansari et.al. [1] proposed a fuzzy clustering
algorithm for analyzing regionalized seismic hazard. The au-
thors used a heuristic approach based on fuzzy hyper-volumes
and partition density indexes for determining the number of
clusters.

In this paper, we propose a Bayesian non-parametric ap-
proach for soft clustering earthquakes hazards. The Dirichlet
process [6] is used to sample a distribution from an infinitely
countable number of probability measures. In this approach,
we integrate model selection (determining the number of
clusters) and parameter estimation (determining the cluster
centroids and mixing proportions) into a single inference
step. Bayesian non-parametric methods for spatial mixture
modeling were also formulated for rainfall measurements [8]
and clustering cells in immunofluorescence histology [9].

III. SPATIAL MIXTURE MODELLING

One of the main purposes of spatial modeling is prediction
or estimating the realization of a random variabley(x) in a
spatial locationx by means of a stationary Gaussian process
θ(x). The residual is usually modelled as a zero-mean Gaus-
sian processǫ(x), and estimates at different locations yields
a predictive surface of the process. Equation 1 represents the
resulting Gaussian process process.

y(x) = µ(x) + θ(x) + ǫ(x) (1)

Now we concentrate in the Dirichlet process specifications,
according to [8] we allow the stationary Gaussian process
θ(x) to be a realization of a dependent Ditichlet process. A
Dirichlet process is specified by a base distributionGo(x) and
a concentration parameterα, so a distributionG(x) is a sample
from a DPM when:

G(x) ∼ DP (α, G0(x)) (2)

Extending finite mixture model to a non-parametric ap-
proach can be achieved by means of the Dirichlet Process
Mixture (DPM) model [2]. More particularly, a Dirichlet pro-
cess is used as to sample the conditional distribution of a finite
mixture model withk components using a Dirichlet process
prior. Given that many spatial models are neither Gaussian or
stationary, parametric methods such as finite mixture models
can be used to represent spatial dependency among a set
of variables. More specifically, a Gaussian mixture model
is a combination of a finite number of Gaussian densities,
parametrized by their component parameters, such as the mean

and covariance being written asφi = (µi, Σi), but also having
a mixing parameterπi with i = 1, . . . , k. The resulting density
of a data pointy can be written as:

p(y|Θ) =

k∑

i=1

πi N (φi) (3)

Whose parameters are distributed according to:

y|ci(x), Φ ∼ N (φi) (4)

ci(x)|Π ∼ M(π1, . . . , πk) (5)

φi ∼ G0(x) (6)

πi ∼ Dir(α/k, . . . , α/k) (7)

Whereci(x) represents a location-aware conditional latent
variable that indicates the class where the data pointy belongs,
Π = {π1, . . . , πk} and Θ = {θ1, . . . , θk} represents the
collections of all mixing and component parameters, and
M(·) and Dir(·) represents the multinomial and Dirichlet
distributions respectively.

Takingn realizations of the spatial process(y1, . . . , yn) also
yields a distribution of the indicator variablesci(x) given the
mixing probabilitiesΠ:

p(c1,i(x), . . . , cn,i(x)|Π) =

k∏

i=1

πni

i (8)

with ni =
∑n

j=1
δj,i being the number of observations

belonging to classi. Assuming now the Dirichlet prior onπ
leaves the following conjugate form for the class consitional
indicators:

p(cj,i(x)|c\j,i(x), α) =
n\j,i + α/k

n − 1 + α
(9)

where c\j,i represents all indicator variables for classj
excepting the data pointyj , andn\j,i =

∑
l6=j δl,i

As the number of componentsk tends to infinity, from Neal
[12] using a “Chinese Restaurant process” we represent the
class conditional indicator variables as:

p(cj,i(x)|c\j,i(x), α) =
n\j,i

n − 1 + α
(10)

p(ci 6= cj∀j < i |c1, . . . , ci−1) =
α

n − 1 + α
(11)

A. Spatial Hierarchical Dirichlet process mixture

Now we would like to concentrate on problems where a
spatial DPM might not be able to successfully represent the
diversity of a group of samples, so the spatial distribution
also introduces a hierarchical structure by using a dependent
Dirichlet process mixture (HDPM) [15]. The spatial HDPM
extends the spatial DPM in a way that a new set of clusters is
generated by each cluster of the base DPM. This setup allows
to model spatial heterogeneity among a set of observations
that shares a common feature.
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In the case of earthquakes, events can be clustered around
their magnitudes, but the spatial distribution does not have to
be an stationary Gaussian random field. In this case, we allow
the spatial distribution to be a DPM itself. Furthermore, the
hierarchical extension is an straightforward extension of the
DPM formulation, having now a base distributionH0 specified
by:

G(x) ∼ DP (γ, H0) (12)

H0 ∼ DP (α, G0(x)) (13)

B. Markov chain Monte Carlo implementation for the spatial
DPM and HDPM

Markov chain Monte Carlo (MCMC) methods, and specially
the Gibbs sampler plays a central role in Bayesian mixture
modelling [5], where conjugate priors on the component
parameters are used to for a hierarchichal sampling scheme.
Gibbs sampling is an iterative MCMC scheme where each
variable is updated in turn, using the its conditional distribution
given all other variables.

p(y|ci) ∼ N (µi, Σi) (14)

In the case of multivariate Gaussian mixtures, the prior for
the meanµi is specified by a multivariate Gaussian distribution
with hyper-parametersλ andr, so the prior can be written as:

p(µi|λ, r) ∼ N (λ, r) (15)

The hyper-parametersλ andr are conjugate priors, specified
by:

p(λ) ∼ N (µy, Σy) (16)

p(r) ∼ IW (1, Σy) (17)

whereµy andΣy are the mean and covariance of the data
repectively, andIW represents the inverse-Wishart distribu-
tion.

Now, using the data likelihood from Equation 3, the pos-
terior distribution of the means, conditioned on the prior and
the indicator variables can be written as:

p(µi| c, y, Σj, λ, r) ∼ N (
ȳiniΣi + λr

niΣi + r
,

1

niΣi + r
) (18)

ȳi =
1

nj

∑

cj=i

yj (19)

where ni is the occupation number andȳj is the class
conditional mean. Consequently, the posterior distribution of
the hyper-parameters is given by:

p(λ|µ1, . . . , µk, r) ∼ N (
µy Σ−2

y + r
∑k

j=1
µj

Σ−2
y + kr

,
1

Σ−2
y + kr

)

(20)

The component covariancesΣj are also sampled from an
inverse-Wishart distributionp(Σj |β, w) with hyper-parameters
β andw with the following distributions:

p(β) ∼ IG(1, 1) (21)

p(w) ∼ IW (1, Σy) (22)

The extension to the infinite limit has been [12] and [14],
and consists of allocating data points to mixture components or
creating new components using Equations 11. The extension
to the hierarchical setup is performed by marginalizing the
random effect variable, allocating data points to the resulting
mixture model and creating a new DPM for each subset of the
data.

IV. CASE STUDY : EARTHQUAKES MAGNITUDE IN

CENTRAL CHILE

In order to exemplify the non-parametric approach, we
analyze seismic activity in central Chile between the years
2006 and 2010. Chile is characterized by its continual seismic
activity, but recently a devastating8.8 magnitude earthquake
hit the central part of the country. Figure 2 displays a summary
of the recorded epicentres and magnitudes.
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Fig. 2. Summary of the earthquakes dataset. The magnitude data is plotted
against the latitude (X coord) and Longitude (Y coord).

The catastrophic dimensions of the earthquake leaded to
several hundred human losses and more than US$30 bil-
lion required to reconstruct the cities. Furthermore, several
aftershocks with magnitude above5 points in Richter scale
continued to affect the country more than 3 months after the
main earthquake. Figure 3 shows the locations of the main
earthquakes in central Chile between the years 2006 and 2010.

Now we concentrate on the output of MCMC sampler for
the spatial DPM. Figure 4 shows the number of mixture
components used to fit the hazard function of a point process
model of the data. Cluster centres are expected to be found
in areas where there is more seismic activity, and aftershocks
should be concentrated around those areas. Because neither
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Fig. 3. Earthquakes locations in central Chile. Circles are used to represent
the spatial location of an earthquake, and the radius is proportional to the
magnitude. Several low magnitude earthquakes were recorded during the
period of study, and the spatial distribution of bigger magnitude earthquakes
shows no apparent sign of spatial clustering.
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Fig. 4. Number of mixture components v/s MCMC iterations. Thefirst 3000
iterations are taken as MCMC burn-in period, and the remaining of a total of
10000 iterations are used as the output of the algorithm. The MCMC sampler
produces multiple configurations of the earthquakes hazard function being
fitted with a finite mixture model.

the number of clusters or their locations is given, the DPM is
able to sample multiple configurations of the hazard function.

Several clusters represent areas of low magnitude earth-
quakes (below 5 point of magnitude), which can be associated
with background seismicity areas. It is worth noting that the
“clustering” effect of the Chinese restaurant process prior
defined in Equation 11 is in accordance with the distribution
discussed for the magnitudes in Figure 1. Most earthquakes are
below 5 points magnitude so they would enter into a cluster
given the number of existing events associated to it.
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Fig. 5. Sample from a DPM after 10000 iterations. A 12 component mixture
model is used to represent the hazard function of earthquakes magnitudes at
different locations.

From Figure 5 we can see that earthquakes with big magni-
tudes are still not represented by a locally stationary Gaussian
random field. Figure 6 represent the number of components
obtained after10000 iterations.
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Fig. 6. Number of mixture components v/s MCMC iterations for the spatial
HDPM. After 10000 iterations, a 14 component model is used to represent
the magnitudes.

Now, we concentrate on the subset of the data that was
under-represented by the spatial DPM. Taking the data points
belonging to the higher magnitude events, we run a DPM for
the spatial distribution (locations) of that subset of the data.
Figure 7 shows a sample of the resulting HDPM after10000
iterations.
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Fig. 7. Sample from a HDPM after 10000 iterations. A 2 component mixture
model represents the spatial distribution of earthquakes above 5 degrees
magnitude.
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V. CONCLUSIONS

We proposed a Bayesian non-parametric approach to mod-
eling geophysical events. The model is based on the spatial
Dirichlet process mixture, and we have shown that the imple-
mentation is an straightforward extension of standard MCMC
procedures for Dirichlet processes. This approach allowed us
to overcome a complex model selection step, which is not easy
to solve in many geophysical problems where the collected
data might not be fully explanatory for the response variables.

Moreover, we have also highlighted the potential issues
of modelling geo-referenced data as stationary Gaussian pro-
cesses. In that sense, a finite mixture model enables to relax
that assumption, providing a non-Gaussian representation to
the posterior density. A Bayesian approach for mixture models
is also taken, and the resulting hierarchical model is also sorted
with the same MCMC algorithm.

Further work will consider the associated time differences
of foreshocks and aftershocks, as well as the depth of the
earthquakes. In that case a spatio-temporal Markovian model
can be considered, so an extension of the hierarchical approach
could be used.
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