
 

 

  

Abstract—Nonlinear oscillations and rotations of a liquid droplet 

are simulated numerically by solving the Navier-Stokes equations 

using the level set method. Mass conservation of droplet is especially 

taken into consideration for calculations of the level set function. The 

nonlinear effects of oscillation amplitude and rotation rate on 

oscillation frequency, which are known as the frequency shift, are 

shown quantitatively by comparing with theoretical predictions.  It is 

shown for the normalized amplitude and the rotation rate smaller than 

0.2 that the simulated frequency shifts are in good agreement with the 

theoretical predictions and the effects of viscosity and surface tension 

on the frequency shift are negligibly small. 

 

Keywords— Level set method, Mass conservation, Navier-Stokes 

equation, Nonlinear droplet dynamics. 

I. INTRODUCTION 

 levitated liquid droplet is used to measure material    

properties of molten metal at high temperature, since the 

levitated droplet is not in contact with a container, and the effect 

of container wall is eliminated for precise measurement [1-3]. 

Properties of surfactant solutions [4] and molten silicon [5] are 

also measured using the levitated liquid droplet. Viscosity and 

surface tension are, respectively, obtained from the damping 

and the frequency of shape oscillations of the droplet. The 

relation between material properties and oscillation parameters 

is based on the linear theory [6], and small-amplitude 

oscillations are necessary. Large-amplitude oscillations are, 

however, desirable from the viewpoint of measurement. The 

effect of amplitude is inevitable for the measurement even for 

small-amplitude oscillations. 

It has been shown experimentally [7,8] and numerically 

[9-12] that the frequency of drop-shape oscillations decreased 

with increasing amplitude. The effect of amplitude on the 

oscillation frequency has also been discussed theoretically [13]. 

Second order small deviations were taken into account for the 

linearized solution of the Lagrange equation, and the oscillation 

frequency was shown to decrease as the amplitude increased. 

On the other hand, the effect of rotation on the oscillation 

frequency has been discussed theoretically [14]. The force 

balance at the droplet surface between the surface tension and 

the pressure difference across the interface was considered. The 

dynamic pressure due to the first order effect of rotation was 

taken into account together with the distortions of the interface. 

 
 

 

In contrast to the effect of amplitude, the oscillation frequency 

increased with increasing rotation. Although the nonlinear 

effects of oscillation amplitude and rotation were shown by 

these theoretical studies, quantitative estimation is not enough 

since the theoretical approach assumed lower-order effects. 

Numerical simulations to study the effects of amplitude and 

rotation on oscillation frequency have been performed, and the 

nonlinear effects were shown to be overestimated by theoretical 

predictions [15]. Quantitative treatment was, however, not so 

strict and the effects of viscosity and surface tension were not 

discussed, though the flow fields in and around the droplet were 

shown [15].  

In this study, numerical simulations of oscillations and 

rotations of a liquid droplet are performed to study the nonlinear 

behavior of droplet quantitatively. Three-dimensional 

Navier-Stokes equations are solved using the level set method 

[16]. The level set method has been applied for simulations of 

moving interfaces and discontinuities in a wide variety of 

problems including material science [17,18]. The level set 

function, which is the distance function from the droplet surface, 

is calculated by solving the transport equation to obtain the 

surface position correctly. Mass conservation of the droplet is 

especially taken into consideration in the calculation of the level 

set function in the following. Nonlinear effects of oscillations 

and rotations are discussed in terms of the oscillation frequency, 

and the effects of viscosity and surface tension are clarified.  

II. NUMERICAL METHOD 

A. Governing Equations 

Governing equations for the droplet motion are the equation 

of continuity and the incompressible Navier-Stokes equation 

including the effect of surface tension [16]: 

  

0=⋅∇ u   ,                                                                                         (1) 

                                             
and 

 

sp
Dt

D
FD

u
−⋅∇+−∇= )2( µρ  ,                                       (2) 

 

where ρ, u, p and µ, respectively, are the density, the velocity,  

the pressure and the viscosity, D is the viscous stress tensor, and 

Fs is a body force due to the surface tension. External force 
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fields such as the gravity are not simulated in this study. The 

surface tension force is given by 

  

φσκδ∇=sF
  ,                                                                      (3) 

 

where σ, κ, δ and φ are the surface tension, the curvature of the 

interface, the Dirac delta function and the level set function, 

respectively. The level set function is a distance function 

defined as the normal distance from the interface: φ=0 at the 

interface, φ<0 in the liquid region, and φ>0 in the gas region. 

The curvature of the interface is expressed in terms of φ: 
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The density and viscosity are, respectively, given by 
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and 
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where the subscripts g and l indicate gas and liquid phases, 

respectively. In Eqs. (5) and (6),  H is the Heaviside-like 

function defined by 
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where ε is a small positive constant for which 1|| =∇φ  for 

εφ ≤|| . The evolution of φ is given by 
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In order to maintain the level set function as a distance 

function, reinitialization of the level set function is proposed by 

solving the following equation [16]: 
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where τ  is an artificial time, and sign(φ0) indicates the sign of 

the level set function at the beginning of the reinitialization 

procedure defined by 
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The level set function becomes a distance function in the 

steady-state solution of Eq. (9). 

Variables are nondimensionalized using liquid properties and 

characteristic values: x’=x/L, u’=u/U, t’=t/(L/U), τ’=τ/(L/U),  

p’=p/(ρlU
2
), ρ’=ρ/ρl, µ’=µ/µl, φ’=φ/L  where the primes denote 

dimensionless variables, and L and U are representative length 

and velocity, respectively. Two parameters appear in the 

nondimensional Navier-Stokes equation: the Reynolds number, 

ρlLU/µl, corresponding to the viscosity, and the Weber number, 

ρlLU
2
/σ, corresponding to the surface tension.  

B. Numerical Procedure 

The finite difference method is used to solve the governing 

equations. The staggered mesh is used for spatial discretization 

of velocities. The convection terms are discretized using the 

second order upwind scheme and other terms by the second 

order central difference scheme. Time integration is performed 

by the second order Adams-Bashforth method. The SMAC 

method is used to obtain pressure and velocities [19]. The 

pressure Poisson equation is solved using the Bi-CGSTAB 

method. The domain decomposition technique is applied and 

the message passing interface (MPI) library is used for parallel 

computations [20,26]. 

The smoothed sign function proposed for numerical 

treatment of reinitialization [21] is used for Eq. (10); 
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where h is the spatial increment in the finite difference method 

for solving the governing equations. A smoothed version of the 

sign function was also used in [16]. Smoothing of the sign 

function might be necessary for calculations of interface motion 

with a large density ratio, since the density ratio of 1000 was 

simulated in [16] and [21], while the Boussinesq approximation 

was used and smoothing was not mentioned in [22].  

In this study, mass conservation is especially taken into 

consideration to simulate nonlinear behavior of the droplet 

quantitatively. It has been reported that the mass conservation 

was not maintained in general with the above reinitialization 

procedure for the level set function, and an another 

reinitialization procedure solving the following equation was 

proposed [22]; 
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where A0 denotes the total mass for the initial condition and A 

denotes the total mass corresponding to the level set function. P 

is a positive constant for stabilization, and 1.0 was used in [22]. 

The effect of Eq. (12) is compared with that of Eq. (9) in the 

following, and the reinitialization scheme to assure the mass 

conservation of the liquid droplet is proposed, since the 

oscillation frequency is much affected by the mass of the 

droplet. 
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C. Numerical Conditions 

Free-decay oscillations of the droplet shape along the vertical 

axis are studied by changing the amplitude of the initial 

deformation and the rotation rate. A droplet with the average 

radius of 1.0 is placed in the centre of the rectangular simulation 

region, and the density ratio, lg ρρ / , and the viscosity ratio, 

lg µµ / , are both fixed at 0.01. The Reynolds number and the 

Weber number varied from 200 to 400 and from 10 to 30, 

respectively, so that the effect of the liquid properties on the 

oscillation frequency is shown.  

For simulations to study the effect of amplitude, the initial 

deformation is given by the Legendre polynomial of order 2 for 

the oscillations with no rotation. The position of the droplet 

surface, r, is thus given by 

 

}2/)1cos3(1{)( 2

0 −∆+= ϑϑ rrr ,                                   (13) 

 

where θ is the angle between the vertical axis and the line 

through the origin and the surface, and r0 and ∆r are the average 
radius and the amplitude, respectively. The range of the 

amplitude is from 0.02 to 0.74. For simulations to study the 

effect of rotation, the initial rotation is imposed as a rigid 

rotation with a constant angular velocity around the vertical axis. 

The initial shape is given as the rotating ellipsoid with the 

vertical radius determined from the rotation of 

initially-spherical droplets, and the initial amplitude is fixed at 

0.02 of the vertical radius. The effect of rotation was shown in 

[15] with similar conditions, but the spherical shape was used as 

the initial shape of rotating droplet. The oscillation amplitude 

thus became large as the rotation rate increased, and the effect of 

amplitude was included largely in the numerical results in [15]. 

The ellipsoidal shape is thus used here as the initial shape to 

eliminate the amplitude effect on the rotating droplet. The range 

of the rotation rate is from 0 to 0.7. Periodic boundary 

conditions are applied at all the boundaries of the simulation 

region. 

The effects of region size, noding and time step size on 

simulation results have been examined and reported beforehand 

[15], and are not shown here. The number of calculation nodes 

in three-dimensional space was determined so as to eliminate 

the size effect: 100x100x100 for the amplitude smaller than 

0.38, 120x120x120 for the amplitude from 0.47 to 0.56, and 

140x140x140 for the amplitude larger than 0.65. The spatial 

increment was 0.03 in all directions. The time step size was 

determined so as to satisfy the CFL conditions due to surface 

tension and viscous terms [21]. The Courant number was 

chosen to be 0.5 and the time step size ∆t used in the following 

simulations was 0.0023 - 0.0040.  

The positive constant in Eq. (12) was set equal to 1.0 in the 

following as was the case in [22]. In our simulations, κ was close 

to 1.0. Then, assuming a small deviation ∆φ from the zero level 

set, the order of magnitude of the right hand side was (∆φ)2 for 

Eq. (12) while ∆φ for Eq. (9). Larger time step size ∆τ was thus 

necessary for Eq. (12), and ∆τ in Eqs. (9) and (12) were set 

equal to 0.1∆t and 1.0∆t, respectively, after some trial 

calculations. The order of magnitude could be the same by 

scaling the term (A0-A) using the interfacial area, for instance. In 

this case, the mass correction might be involved in the distance 

correction by adding a correction term similar to the right hand 

side of Eq. (12) to Eq. (9) [23]. The convergence criteria for the 

relative error of φ in Eqs. (9) and (12) were both 3.0x10
-5
, and 

actually one iteration was necessary for both procedures. 

III. RESULTS AND DISCUSSION 

A. Mass Conservation 

  The mass conservation of the level set method is evaluated 

here for simulating simple shape oscillations. Figure 1 shows 

the time history of the vertical radius with different 

reinitialization schemes. Four cases are shown: the case with 

distance and mass corrections using Eqs. (9) and (12), the case 

with distance correction using Eq. (9), the case with mass 

correction using Eq. (12), and the case with no correction. The 

Reynolds number and the Weber number are, respectively, 200 

and 20, and the initial amplitude and the rotation rate are 0.02 

and 0.0, respectively. It is shown in Fig. 1 that all cases are 

almost the same in the early stage of the transient. The cases 

with mass correction and no correction, however, become 

unstable and show anomalous behavior. It has been reported 

[22] that merging bubbles were simulated without any problem 

using the level set method with no reinitialization schemes. The 

fourth order numerical schemes in time and space were, 

however, used with a fine mesh system in [22]. It is found in Fig. 

1 that the distance correction using Eq. (9) is necessary for 

simulations of droplet oscillations under the numerical 

conditions in the present study. The distance correction is, thus, 

always performed in the following simulations regardless of the 

mass correction.  

 

 
 
Fig. 1  Effects of distance and mass corrections on droplet radius. 

 

    Two cases with distance correction shown in Fig. 1 show 

qualitatively the same oscillation behavior in time. The droplet 

radius is, however, seen to be small for the case with distance 

correction, in other words, for the case with no mass correction. 

The time history of the droplet radius is shown for longer time in 
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Fig. 2 with different initial amplitude ∆r to see the effect of 

amplitude on the difference between the cases with and without 

mass correction. It is seen for both cases with different 

amplitude that peak positions become small for the cases 

without mass correction. It indicates that the droplet radius 

becomes small without mass correction regardless of the 

amplitude. Furthermore, it is clear for the case with ∆r=0.11 

that the oscillation frequency is larger for the case without mass 

correction.  

 

 
 
Fig. 2  Effects of mass correction and amplitude on droplet radius. 

 

 

 
 

Fig. 3   Effects of mass correction and amplitude on mass ratio. 

 

In order to see clearly the effect of mass correction, the time 

history of the mass ratio, which is defined as the ratio of the total 

mass to the initial mass in the simulation region, is shown in Fig. 

3 corresponding to Fig. 2. The mass ratio decreases almost 

linearly for the cases without mass correction, while it is kept at 

about 1.0 for the cases with mass correction. It is found that the 

droplet mass is lost in time if the mass correction is not taken 

into consideration. The loss of mass was also observed in [22] 

for the second order schemes without mass correction. The 

effective droplet radius thus becomes small and the oscillation 

frequency becomes large as shown in Fig. 2, since the 

frequency ω  is given by the linear theory [6]:  
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where n, r0, and λ are the mode of oscillation, the average radius, 

and the density ratio, respectively. In our simulations, n=2, 

r0=1.0, and λ=0.01. The mass correction is thus found to be 

necessary in our simulations to study nonlinear droplet 

oscillations quantitatively, and the distance and the mass 

corrections are both performed in the following. 

   It is noted here that reinitialization schemes may not be 

necessary if we use higher order numerical schemes and finer 

mesh systems for high resolution calculations [22]. However, 

this approach needs huge computational resources such as CPU 

time and memory size especially for three-dimensional 

simulations. Numerical efficiency is one of the important issues 

for the level set approach [18]. The distance and mass 

corrections described above are both very efficient, and few 

iterations are necessary [16,22]. In our simulations, the second 

order schemes are thus applied in time and space with the mass 

and distance corrections. It was also reported that 

reinitialization and mass correction were performed even for the 

extension velocity method [23], where the level set method was 

applied for the lattice Boltzmann method. It is also noted that 

the mass correction using Eq. (12) depends on the curvature. It 

was reported that the curvature in a level set framework was 

oscillatory [24]. Although the total mass is kept correctly in our 

simulations as shown in Fig. 3, the mass distribution may be 

affected by the curvature. The effect of curvature on the mass 

correction might be apparent in some flow problems.  
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Fig. 4   Variation of droplet shape: t=0.00, 0.99, 1.98, 2.96 in the top 

row, t=3.95, 4.95, 5.93, 6.92 in the middle row, and t=7.91, 8.89, 9.88, 

10.87 in the bottom row, from left to right. 

B.  Oscillations, Frequency and Damping 

Variations of droplet shape during the first oscillation period 

are shown in Fig. 4 as examples of shape oscillations. The 

Reynolds number and the Weber number are 200 and 20, 

respectively, and the initial amplitude and the rotation rate are 

0.38 and 0.0, respectively. The initial prolate shape given by the 

Legendre polynomial of order 2 becomes a spherical shape 

gradually, since the surface tension force is larger at the top and 

bottom poles. The droplet shape then becomes an oblate 

through the spherical shape, due to the inertia of internal flow. 

The surface tension force is larger at the equator for the oblate 

shape, and the droplet returns to a prolate shape again as shown 

in Fig. 4. The droplet shape varies dynamically due to the 

surface tension, and the oscillations between prolate and oblate 

shapes continue with some viscous damping.  

 

 
 

Fig. 5   Oscillation frequency as a function of surface tension. 

 

        
 

Fig. 6    Effects of viscosity on normalized amplitude. 

 
The oscillation frequencies obtained using different surface 

tensions are compared in Fig. 5 with the theoretical value given 

by Eq. (14). The Reynolds number is fixed at 200, and the 

Weber number is varied. The initial amplitude is 0.02 so that the 

nonlinear effect of amplitude is small enough. It is shown that 

the agreement between the simulation and the linear theory is 

satisfactory. It is found that the present numerical simulations 

perform well for studying quantitatively the effect of the surface 

tension on the droplet oscillations. 

Variations of normalized amplitude with different viscosity 

are shown in Fig. 6. The normalized amplitude is obtained as the 

oscillation amplitude normalized by the initial amplitude. It is 

shown that the damping is affected by the Reynolds number, 

while the oscillation frequency is almost the same. This is 

because the oscillation frequency depends on the surface 

tension as given by Eq. (14), and is not a function of viscosity. 

The effect of viscosity is estimated in terms of the damping 

constant. The oscillation amplitude is proportional to exp(-t/τ) , 

where the time constant τ is given by the linear theory [16],  
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In the above equation, η is the viscosity ratio, which is 0.01 in 

our simulations. The damping of oscillation amplitude using Eq. 

(15) is shown in Fig. 6 for each Reynolds number. It is shown 

again that the agreement between the simulation and the linear 

theory is satisfactory. The present simulations are thus found to 

perform well for studying quantitatively the viscous effect as 

well. 

It is confirmed so far that the effects of viscosity and surface 

tension, which are included in the nondimensional governing 

equations as the Reynolds number and the Weber number, 

respectively, are simulated quantitatively well in our 

simulations. This indicates that the reinitialization scheme using 
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Eqs. (9) and (12) is efficient for the level set approach to study 

the nonlinear droplet dynamics.  

C. Effect of Amplitude on Oscillation Frequency 

The effect of initial deformation on the time history of 

normalized amplitude is shown in Fig. 7. The Reynolds number 

and the Weber number are 200 and 20, respectively, and the 

rotation rate is 0.0. It is shown, as the amplitude increases, that 

the oscillation curves shift toward the positive direction of time 

axis and the frequency becomes small. The theoretical damping 

curve using Eq. (15) is also shown in Fig. 7. The agreement 

between the theoretical curve and the simulated results is not 

good for large amplitude, and it is found that the damping 

constant is also affected by the oscillation amplitude.  

The relation between the oscillation frequency and the 

amplitude is shown in Fig. 8. It is shown clearly that the 

oscillation frequency decreases as the amplitude increases. The 

oscillation frequency is obtained by the linear theory in terms of 

the surface tension, density, radius and mode of oscillation as 

given by Eq. (14). The frequency is, however, shown to be 

affected much by the amplitude in Fig. 8. This is one of the 

important nonlinear characteristics of oscillating droplets 

known as the frequency shift [7-12]. The effect of mass 

correction is also indicated in Fig. 8. The result without mass 

correction shows higher frequencies, though the decrease in 

frequency is simulated qualitatively well. This is due to the 

decrease in droplet radius in Eq. (14) corresponding to the loss 

of mass shown in Fig. 3.  

 

  
 

Fig. 7    Effect of initial deformation on normalized amplitude. 

 

 
 

Fig. 8   Relation between frequency and amplitude: effect of mass 

correction. 

 

The effects of surface tension and viscosity on the relation 

between the frequency shift and the oscillation amplitude are 

shown in Fig. 9. The vertical axis indicates the frequency shift, 

which is defined as the frequency difference normalized by the 

frequency for the amplitude of 0.02. The frequency itself 

decreases as the amplitude increases as shown in Fig. 8, and the 

frequency shift is thus negative and becomes large in Fig. 9. It is 

also shown that the frequency shift becomes large as the 

Reynolds number increases or the Weber number decreases, 

though these effects are not notable for small amplitude. The 

theoretical curve [13], which was derived by taking into account 

a second order deviation from the linear theory, is also shown 

along with the simulation results. The theoretical curve, in 

which the effects of surface tension and viscosity are not 

included, agrees well with the simulation result for small 

amplitude. It is found that the nonlinear effect due to the higher 

order deviation is notable, as well as the effects of viscosity and 

surface tension, as the oscillation amplitude becomes larger than 

0.2. 
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Fig. 9   Relation between frequency shift and amplitude: effects of 

surface tension and viscosity. 

 

   
  

Fig. 10   Effect of rotation on normalized amplitude. 

 

D. Effect of Rotation on Oscillation Frequency 

The effect of rotation on the time history of normalized 

amplitude is shown in Fig. 10 for oscillations with the initial 

amplitude of 0.02. The Reynolds number is 200 and the Weber 

number is 20. In contrast to the effect of amplitude, the 

oscillation curves shift toward the negative direction of time 

axis and the frequency becomes large as the rotation rate 

increases. This is because the average force balance in the 

droplet is related to the oscillation frequency [25], and the 

centrifugal force provides the additional restoring force for 

oscillations of a rotating droplet [14]. The theoretical damping 

curve using Eq. (15) is also shown in Fig. 10. The agreement 

between the theoretical curve and the simulated results is not 

good for large rotation rate, and the damping constant is also 

found to be affected by the rotation rate.  

 

 
 

Fig. 11   Relation between frequency and rotation rate: effect of mass 

correction. 

 

 

 
 

Fig.12   Relation between frequency shift and rotation rate: effects of 

surface tension and viscosity. 

 

The relation between the oscillation frequency and the 

rotation rate is shown in Fig. 11. It is shown that the oscillation 

frequency increases as the rotation rate increases. The effect of 

mass correction is again indicated in Fig. 11. The result without 

mass correction shows slightly higher frequencies due to the 

loss of mass shown in Fig. 3. It is clear in Figs. 8 and 11 that the 

mass conservation is important for the level set approach to 

study the nonlinear droplet dynamics quantitatively.  

The effects of surface tension and viscosity on the relation 

between the frequency shift and the rotation rate are shown in 
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Fig. 12. Although these effects are small, the frequency shift is 

shown to be large as the Reynolds number increases or the 

Weber number decreases as shown in Fig. 9. The theoretical 

curve [14], which was derived by taking into account a first 

order effect of the dynamic pressure due to rotation, is also 

shown along with the simulation results. The theoretical curve 

agrees well with the simulation results for small rotation rate. It 

is found that the nonlinear effect due to the higher order effect of 

rotation is notable, as well as the effects of viscosity and surface 

tension, as the rotation rate becomes larger than 0.2.  

IV. CONCLUSION 

In this study, nonlinear oscillations and rotations of a liquid 

droplet have been simulated numerically by solving the 

three-dimensional Navier-Stokes equations using the level set 

method. The importance of mass conservation was 

demonstrated, and the effective reinitialization scheme 

composed of mass and distance corrections was proposed. The 

frequency shifts due to the oscillation amplitude and the rotation 

rate, which are characteristic features of nonlinear droplet 

dynamics, were simulated well. It was shown that the simulated 

frequency shifts were in good agreement with the theoretical 

predictions for the normalized amplitude and the rotation rate 

smaller than 0.2. It was also shown that the effects of viscosity 

and surface tension on the frequency shift, which were not 

included in the theoretical predictions, were negligibly small as 

the normalized amplitude and the rotation rate were smaller than 

0.2. The effects of nonlinearity, as well as the effects of 

viscosity and surface tension, became notable with increasing 

amplitude or rotation. It would be necessary for the theoretical 

treatments to include higher order terms with the effects of 

viscosity and surface tension for analyzing nonlinear droplet 

dynamics more precisely. Our approach using the level set 

method with accurate mass conservation would be applicable to 

simulations of complicated fluid phenomena involving 

two-phase interfaces [27] or free surfaces [28,29].  
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