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Abstract—This paper presents a novel system Identification
method by Dynamic cluster using structural similarity. Develop
a method or technique to study the behavior of dynamic systems
from explicit knowledge of the state variables. The purpose is to
find the structure of dynamical systems by structural similarity
measures based on the theoretical basis of systems of first and
second order. We apply this method to find seismic velocity of
the ground layers and identify the location of the reflectors from
the travel time and slowness. The migration is performed directly
through patterns derived from the first and second derivative of
travel-time regarding the offset address and the depth and in
accordance with the estimated effective slowness.

I. INTRODUCTION

One learning algorithm in two stages is proposed to identify
partitions of dynamical systems, especially the cluster using
structural similarity provided with a stable estimation tech-
nique with the number of systems and their parameters. The
partition of the training sequences in groups of subsequences
must be consistent in shape and evolution in the domain
of curvature and slope-generated primitives that are labeled
symbolically. Follow a method of identifying restrictions based
on the values that estimate stable from explicit dynamic data
was implemented. The mathematical procedure was applied
from the characteristic equation to express the trajectory of the
state by itself a solution in linear systems. The simulations and
experimental results on synthetic data show that the method
of parameter estimation proposed is completely in a set of
dynamic systems that are embedded in training data models
in many areas of knowledge.

II. CLUSTERING BY STRUCTURAL SIMILARITY

The structural similarity, refers to the behavior of the
temporal patterns of the waves propagation time, as a ”change
in form in time” [9] and its considered a novel technique
to recognize the behavior of the waves emitted through the
layers in the subsoil and in order to understand these com-
plex dynamic systems, such as the seismic computation. The
following hypothesis arises: What are the essential dynamic
seismic behavior shapes? An initial strategy is to use seven
unique behavior patterns derived from the first and second
curvature of the time of propagation with respect to the
positions of the receivers.

Fig. 1: Specification of Features in Structural Similarity

The trend is to use the absolute values in the changes of the
net rates can be used to identify and recognize even unique
patterns of behavior as follows,see figure 1 [3].

1) first pattern is balanced, with linear behavior when there
is balance. Label with yellow color.

2) The second pattern is the linear growth, it has a
monotonous behavior of growth. Label with black color.

3) The third pattern is called as growth strengthened, which
is characterized by a concave upwards behavior with
monotonous growth. Label with light blue color.

4) The fourth pattern is linear fall with linear decrease
behavior. Label with purple color.

5) The fifth pattern is known as: fall forced with concave
down behavior with monotonous decrease. Label with
red.

6) Sixth pattern is referred to as growth in balance, has
concave down behavior with monotonous increase. La-
bel with blue color.

7) Seventh pattern is called fall in equilibrium, is concave
upward with monotonous increase. Label green color.

III. REFLECTORS IDENTIFICATION METHOD

The identification of parameters from a set of training data,
begins with the specification of the restrictions suggested
by Jacques Hadamard (existence, uniqueness, stability of the
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Result: classification for clustering of trajectories
initialization;
while i < length(curvature)− 1 do

if slope(i) = 0 then
A(i) = x(i)
Graph(yellow color)

end
if slope(i) > 0 ∩ curvature(i) > 0 then

A(i) = x(i)
Graph(cyan color)

end
if slope(i) > 0 ∩ curvature(i) < 0 then

A(i) = x(i)
Graph(blue color)

end
if slope(i) > 0 ∩ curvature(i) = 0 then

A(i) = x(i)
Graph(mangeta color)

end
if slope(i) < 0 ∩ curvature(i) < 0 then

A(i) = x(i)
Graph(red color)

end
if slope(i) < 0 ∩ curvature(i) > 0 then

A(i) = x(i)
Graph(green color)

end
if slope(i) < 0 ∩ curvature(i) = 0 then

A(i) = x(i)
Graph(magenta color)

end
i = i+ 1

end
Algorithm 1: Pseudo Codigo for Clustering with Structural
Similarity

solution or solutions). The condition of stability is the most
frequently breaks and to avoid this, is implemented in this
work a method of identifying restrictions on the eigenvalues
which is one of the way to analyse this condition of stability.
(A path is called stable if, for tx→∞ they converge at the
point of equilibrium). In the temporary range an i-nth sequence
of propagation times [tb, · · · , te] is a set of explicit data that
satisfies the discrete equation of dynamic system of the form:

T ik = AiT
i
K−1 +Gi

K (1)

where Ai is seismic velocity as a function of matrix velocity
and Gi is bias matrix.
Given a sequence of continuous states mapped from a space
of observation, the estimation of the parameters of a matrix
velocity from the vector sequence of continuous temporary
states corresponds to a problem of minimization of forecast
errors, where propagation using time segments are specified

thus:

T̂ (i)
o =

[
t
(i)
b , ...t

(i)
e−1

]
(2)

T̂
(i)
1 =

[
t
(i)
b+1, ...t

(i)
e

]
(3)

This estimate of the parameters correspond to a problem
of prediction error minimization [[8], replacing the discrete
equation specified above. The vector of errors equation may
be expressed as:

εt = x
(i)
t −A(i)x

(i)
t−1 +G(i)) (4)

To estimate the matrix A and vector G , initially must be
specified segments using the respective deviation with their
average values and expressed as:

T̂ (i)
o =

[
t
(i)
b −m

(i)
o , ..., t

(i)
e−1 −m(i)

o

]
(5)

T̂
(i)
1 =

[
t
(i)
b+1 −m

(i)
1 , ..., t(i)e −m

(i)
1

]
(6)

where m0 and m1 are mean values derived from traveltime
data for the traces, as shown in this equation:

m(i)
o =

1

l − 1

e−1∑
i=b

t
(i)
j (7)

m
(i)
1 =

1

l − 1

e∑
i=b+1

t
(i)
j

From equation 4, it makes use of the invariant properties
known as the trace of a matrix and then derives the expression
with respect to these parameters, obtaining the following
expressions:

Ai∗ = Ti
0T̂

i+
1 (Ti

0T̂
i
0)

−1 (8)

We use the properties of the Moore-Penrose pseudo inverse
[5], reaching the following expressions:

Ai∗Ti
0T̂

i
0 = Ti

0 (9)

Gi∗ = m1 − Fi∗m0 (10)

With the purpose of preventing the over fitting of the param-
eters into consideration, a factor specified by the following
mathematical expression is used (Tikhonov regularization) :

Fi = lim
δ2

(X̂i
1X̂

iT
0 + X̂i

0X̂
iT
0 + δ2I]−1 (11)

where I represents the unitary matrix and δ is a positive real
value, known as a factor of adjustment [8].

IV. SENSITIVITY ANALYSIS OF THE BEHAVIOR OF STATE

The eigenvalues λ are a special set of scalar where each
satisfies the following equation:

|F− λI| = 0 (12)

The equation is known as the characteristic equation and where
I is the identity matrix. It is assumed that the matrix F has
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Fig. 2: Eigenvalue of Transition Matrix how Pattern in Com-
plex Plane

n distinct eigenvalues. It also has n eigenvectors rights and
eigenvectors left. The eigenvector right ri is a column vector
of size n and eigenvector left lhi s a row vector also size
n. Both this eigenvectors associated with λi and are called
pair of eigenvectors. A general solution for linear systems that
is complementary to the conventional formula adopted as an
approximation using the pair of eigenvalues is:

Xi(t) = etλ1r1iα
0
1 + etλ2r2iα

0
2 + . . .+ etλnrniα

0
n (13)

t can normalize the pair of eigenvalues F ,Transition Matrix
and Transition Matrix and its expression is

lHi rj =

{
1 si i = j
0 si i 6= j (14)

A new solution of a linear system which includes the product
between the pair of eigenvalues and the initial condition can
be generated and become expressed as follows:

Xi(t) = etλ1r1il
H
1 X(0)+etλ2r2il

H
2 X(0)+. . .+etλnrnil

H
n X(0)

(15)
The above solution specifies each of the modes of behavior
and the term lHi X(0) is a number generated via a vector
multiplication and called the coefficient associated with each
mode of behavior. however it is interesting to note that for
the same mode of behavior in different state variables, the
coefficient does not change while the own right vector could
not tune into its corresponding component.

V. THE DESCRIPTION OF PROBLEM

Understanding of the proposed problem [4] makes it nec-
essary to start from a graphical representation to explain the
geometry of the relationship between traveltime behavior and
the horizontal distance in a point of reflection-refraction of
a wave front in an environment characterized by seismic
change. The vision of the receiver of a trace from a reflected

Fig. 3: Geometry of the vision of a receiver from a reflected
source

wave emitted from a source is illustrated in geometry (2D)
and makes an abstraction of a reflective process with their
respective seismic objects that are specified below:

• Specific position of the source (xs, zs) and position of
the receiver (xr, zr) .

• Positions of a point of the reflector (x, z).
• Positions of the image (xs, zs) and half the distance

between the source and the image (
xs+x

′
s

2 ,
zs+z

′
s

2 ) .
• The descent (lines to points) in the reflection point and

the distance of effective slowness ~p and its first derivative
with respect to the position of the receiver ~px.

• The angle of reflection α and the distance between the
surface t

~p and the position of the image.
From the illustration and geometry specified above are derived
then mathematical expressions for first and second derivative
of the slowness with respect to the positions of the receivers.
Assuming t , the propagation time of a signal from a source
with location given by the coordinates (xs, zs) to the receiver
located in (xr, zr) then horizontal slowness on the receiver is
defined as:

sx =
∂t

∂xr
(16)

Wave propagation through a constant effective velocity of the
medium with seismic slowness is ~p = 1

~v , where ~v is the
effective velocity. Then, is posible to find a reflector at a
point of reflection through a search on the reflected image.
The coordinates of the image shall be given by the following
equations:

z(s
′
) = zr +

t

s

√
1−

(sx
s

)2
= zr +

t

s2

√
s2 − s2x (17)

x(s
′
) = xr −

tsx
s2

(18)

As illustrated in figure 3, the reflection point is located at the
line of intersection that passes through the receiver and the
source image, indicated by the green dashed line.(

z+s − zr)(x− xr) = (xs+ − xr)(z − zr)
)

(19)
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In the intersection of the line that is normal to the source line
and the middle of the black dotted it‘s posible set down the
next relation:(
x− xs + x+s

2

)(
x

′

s − xs
)
=

(
z − zs + zs+

2

)
(zs+ − zs)

(20)
The coordinates of the reflection point are derived from the
last two equations and are formulated thus:

x =
2p2xr

(
t+
√
p2 − p2x (zr − zs)

)
2p2

(
t+ px (xs − xr) +

√
p2 − p2x (zr − zs)

)+ (21)

px

(
p2
(
x2s − x2r + (zr − zs)2

)
− t2

)
2p2

(
t+ px (xs − xr) +

√
p2 − p2x (zr − zs)

)

t0 =

√
p2 − p2x

(
t2 − p2

(
(xr − xs)2

))
p
(
t+ px (xs − xr) +

√
p2 − p2x (zr − zs)

)+ (22)

2p2zr (t− px (xr − xs))

p
(
t+ px (xs − xr) +

√
p2 − p2x (zr − zs)

)
order to obtain an analytic expression for the temporal migra-
tion with effective constant velocities its necessary to know
the medium effective seismic slowness ~p and satisfy the
equilibrium condition which set down that values with seismic
slowness can be found if and only if its assumed that the
reflector can be approximate to a plane.
The preceding statement implies that the derivatives with
respect to xr from equations (6 and 7) must be equated to zero.
To carrying out this derivation gives the following equations:

0 = 1− sx
p2
− t

p2
pxx (23)

p2 = p2x + tpxx (24)

where ~p is the effective slowness and pxx = ∂2t
∂2xr

is the second
derivative (curvature) . This equation is used to determine the
effective slowness which is inverse of the seismic velocity.

VI. SEISMIC MODEL.

In order to illustrate this approach authors propose to
use the model showed by Gerard T. Schuster in his work
”Seismic interferometry”(http://utam.gg.utah.edu/Inter.LAB1/)
which specifies the following information: There are 400
shooting eventually displaced on a surface and 12 geophones
eventually displaced from the Center (3000m offset) in a range
of 1900 to 2100 meters in depth. See figure 4 and figure 5
which are the problem input.
To address this problem is used a new method for determining
the speed of migration that requires only that the domain data
be formulated as offset-time (time series); using the first and
second derivative of the propagation time of the waves with
respect to the location of the receiver from a family of common
shooting data entry of the proposed problem is the behavior of
the density and traveltime in different strata at known depths.

Fig. 4: Traveltime Data from foward Method

Fig. 5: Densidad Model

This field work is called data models.
The behavior of the traveltime-the offset is the result of using
”forward” methods for ray-tracing. Figure 6, illustrates a shot
gather and velocity distribution in the feature spaces (slope-
curvature). The history of the propagation time of a trace is
represented by dynamic average values (top) and temporal
dynamic points green, red, blue, black and Brown) according
to the concept of structural similarity. It can be seen that all
the segments represented by sequences of the same color to
converge zero. The application of the concept of structural
similarity for the traveltime paths are generated from every
one of the shots from one or more sources. Grouping begins
with the process of extraction of the features (derivation of first
and second derivative) with respect to the distance between
sources and receivers) and the operation of conjunction that
relates them to their respective values of slope and curvature
resulting in a method of grouping labeled by different colors
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Fig. 6: Shot Gather and velocity Distribution

Fig. 7: Seismic Velocity Distribution for Gather

Fig. 8: EigenValue Location for Trajectories Pattern

Fig. 9: Transition Matriz of Linear System with Seismic
Velocity

Fig. 10: Identification of Reflectors from The Curvature and
Slope

as shown in the figure above, for shooting 100, 200, 300 and
400 with respect to the positions of the receivers(see figure 8).
Implementation carried out with discrete data using the central
approach of the partial derivatives of the propagation time
differences and from equation 13 is estimated the effective
”slowness”. Data obtained by computational methods are
illustrated in figure 8, and can be called estimate velocity.
Represents the behavior in space offset-depth of 400 shots
and the first and second derivative of traveltime using finite
differences. These examples illustrate the diversity of the
forms of the curves of the propagation time of the waves,
that can result from simple changes in inland subsoil. From
the standpoint of geology the resulting complexities increases
at the point where the identification of cause and effect is
impossible.

The hypothesis of the research process that originates this
document can be stated this way: The location of reflectors
can be identified in the change of pattern using the grouping
method with structural similarity and based on the change of
speed formalized by Snell’s law and of Huygens principle in
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the waves propagation in continuous media. To demonstrate
the above hypothesis, tests were made with each of the
traces of the traveltime determined the graphic concordance
between the change of speed of the respective plots and
dynamic clustering (structural similarity) derived from the
conjunctive implementation between the values of the slope
and curvature in differential form. Method of data migration
from a shoots group has an optimal implementation for
synthetic data and it is possible application for the method of
imaging during seismic acquisition of the data transition
matrix.
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VII. CONCLUSIONS

Starting from the hypothesis, whose statement is the pos-
sible location of the reflectors using the concept of structural
similarity which match specifically on the form and evolution
of trajectories. authors shows in this document an application
process research in the field of seismic migration methods pre
stack from a group of traces generated on a source and using a
dynamic clustering, where were used the slope and the curva-
ture of trace. It is known as seismic ”travel time” regarding the
position of the receptors in the offset and extended with the
derivative with respect to depth. It has been assumed than the
effective speed is constant and that reflectors are locally planes
that did not affect the computational applicability to certain
geological situations as demonstrated through the proposed
example.
The presented method depends only on the shot group and
it is not necessary to know the relative positions between
sources and receivers, which are re-placed by the slopes and
local horizontal and vertical curvatures. In conclusion this
method has many advantages over existing methods of speed-
independent migration processes.
The method is computationally fast and requires little memory.
It’s an extension of the method of grouping proposed Colina-
Casta ñeda for the method of clustering and identification of
linear dynamical systems with restrictions on the eigenvalues.

Standard migration techniques require an speed model. This is
a fast method of migration in pre-stack time and discover its
potential features of processes of segmentation by structural
similarity and the recognition of dynamic patterns in temporal
trajectories. The linear propagation in time are defined as
linear segments with the same slope and, therefore, the same
apparent speed.
Such a curves of propagation time cannot be directly explained
by the majority of the surface refraction seismic interpretation
methods. To identify this problem two parameters of the
propagation time are used. These are: The time reciprocal
coating and the apparent speed of the refractor. The technique
of reverse generation of profiles is essential. The ray tracing
technique is important to calculate the curves of synthetic
travel time of the first arrivals. Surprisingly, this issue is rarely
discussed in the literature, and if ever it is often without
suggestions for interpretation.
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