
 

 

  
Abstract—Constructing a predictive model of earthquake activity 

is difficult due to the complexity of mechanisms and variety of 
components. We do not know even what effective features are 
involved in seismic processes. Thus, we adopted a statistical 
approach for extracting features of global seismicity. We extracted 
the features from an open earthquake data catalog by using principal 
component analysis to reveal the spatial linkages and time 
dependence of earthquake activity. For principal component analysis, 
we defined earthquake occurrence rate and regarded its time series as 
samples and regional labels as the dimensionality. We demonstrate 
that this method accurately identifies past earthquake activity and 
reveals correlations among remote locations and time dependence of 
seismicity features. We also discussed the normality of the sample 
distribution to confirm the validity of the principal component 
analysis. These results will help the construction of a predictive 
earthquake activity model. 
 

Keywords—Global seismicity, feature extraction, dimensionality 
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I. INTRODUCTION 
E can predict and control the behavior of a system by 
revealing the relations between some features of the 

system or their time dependence. Examples of such features 
include macroscopic physical quantities of materials such as 
their Young’s modulus and magnetic permeability. We can 
predict the behavior of materials by using a few of these 
features. On the other hand, from a microscopic viewpoint, 
several grams of a material consist of Avogadro’s number of 
atoms. Thus, we need an enormous number of quantities to 
describe the exact states of the material. In statistical physics, 
this “gap problem” concerning the number of quantities is 
resolved by reducing the number of features considered. In 
concrete terms, macroscopic thermodynamic features are 
extracted from microscopic kinetic behavior under the 
assumption that the states of materials follow statistical 
distributions.  

A similar framework will be a promising candidate for 
solving problems in complex systems wherein the behavior is 
difficult to predict owing to the variety of the system’s 
components. An example of such a complex problem is 
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earthquakes [1]. Massive earthquakes kill many people and 
cause economic losses. If we could predict when earthquakes 
would occur, the resulting damage would be mitigated. In the 
case of earthquakes, the nature of the “macroscopic” features is 
unknown, but we do have observational data that correspond to 
“microscopic” features. 

So far, data-driven approaches have been adopted for 
revealing some aspects of earthquake activity [2]-[5]. For 
example, it has been reported that the epidemic-type aftershock 
sequence (ETAS) model, which is based on a stochastic point 
process, is effective for predicting the probability of aftershock 
occurrence [6], [7]. On the other hand, for constructing a 
physical model and predicting seismicity, linear principal 
component analysis is employed as a method of dimensionality 
reduction for extracting features of earthquake activity from 
observed data [8]-[10]. 

In this study, we apply this method of dimensionality 
reduction for global activity of earthquakes and discuss its 
spatial and temporal features to construct a physical model. 

II. DATA 

We used the open data catalog of earthquakes 

published on the web by the United States 

Geological Survey and analyzed earthquakes that 

met the criteria shown in Table I. 

 

Table I Selection Criteria of Data for Analysis 

Period 1990/1/1-2016/12/31 

Magnitude Greater than or equal to 4, 

less than 5 

Depth of epicen

ter 

0-200 km 

 

As indicated, we only considered earthquakes of 

relatively low magnitude, of which there were 

many examples, and we excluded deep-focus 

earthquakes because their mechanism is complex, 

and different from that of other earthquakes. 
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The total number of relevant earthquakes was 

208,614. We treated space and time as discrete 

variables and divided lines of longitude and 

latitude into 60 sections; in other words, we 

divided the surface of the earth into 3600 areas. 

The integrated number of relevant earthquakes 

over the whole period is shown in Fig. 1 in an 

equirectangular projection map. It was confirmed 

that the main contribution originated from plate 

boundary earthquakes. 

 
Fig. 1 Integrated earthquake count N in divisions 

of the earth’s surface shown as value of 

ln(1+N) 

III. METHODS 

A. Earthquake Occurrence Rate 
First, for extracting features of global earthquakes, we used 

the earthquake occurrence rate, which represents the average 
earthquake count per unit area and unit time. Here we defined 
the variables Sk, T, and Nk(t). Sk and T represent the area of 
region k and a discrete time interval, respectively. Nk(t) 
represents the number of earthquakes that occurred in region k 
during the time interval from t to t + T. 

Then, earthquake occurrence rate Xk(t) in region k at time t is 
derived as follows: 

TS
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It is noted that the area Sk depends on the latitude θ in a strict 
sense. Assuming that the earth is approximated as a perfect 
sphere, this dependence is proportional to cos θ in the same 
way as a small region on a unit sphere in polar coordinates. 

However, earthquakes happen to a lesser extent in high 
latitude regions. Thus, the following results, which ignore the 
dependence on latitude, do not differ greatly from cases in 
which latitude is considered. 

B. Principal Component Analysis 
 For extracting features of global earthquakes, we adopted 

linear principal component analysis as a method of 

dimensionality reduction. We revealed the spatial and temporal 
features of earthquakes by regarding the time series of Xk(t) 
values as samples and the regional labels as the dimensionality. 

We defined m and n as the total number of regional labels and 
discrete time intervals. Then, we defined the m×n matrix X, of 
which the rows are regional labels and the columns are discrete 
time intervals, as follows: 
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In the usual method of linear principal component analysis, 
we obtained eigenvectors u from the m×m covariance matrix 

XXm ′⋅=Σ /1  by eigenvalue decomposition. 
For the purpose of dimensionality reduction, when the 

eigenvalues were arranged in descending order we adopted the 
minimum number jmin of eigenvalues that meet the following 
criterion: 
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Here, c is a constant used to determine the ratio of retained 
variance of the data such that 0 < c < 1. 
 Furthermore, by ordering jmin eigenvectors in columns, we 
defined the m×jmin matrix U. Then, by transforming X using U, 
we obtained the new matrix Z, which consists of principal 
components, that is, new features of global earthquakes. 

XUZ ′=          (4) 
The original m×n matrix X was compressed to the jmin×n 

matrix Z. The rows of Z represent new spatial features, whereas 
the columns still represent time dependence.  

The spatial features of Z are visualized by drawing U, 
because U connects real space with the new feature space. 

The parameters used for analysis in this study are 
summarized in Table II. 

 
Table II Parameters Used in Analysis 

Name Meaning Value 
m Region of the world 60(lat.)×60(long.) 
T Discrete time interval 1 month 
c Criterion of retained variance 0.8 
 

IV. RESULTS 

A. Whole period 
First of all, we show the dependence of the retained variance 

on the number of component in Fig. 2. When we adopted 16 
principal components, 80% of the variance was retained. It was 
confirmed that the dimensionality was greatly reduced from the 
original 3600 dimensions. 
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Fig. 2 Dependence of retained variance on number of principal 

components up to 100. The dashed line represents the 
criteria that retained 80% variance. 

 
Next, we show the spatial and time dependence of the 

principal components. By plotting Uij in the real space region i, 
we can visualize the jth component of new features, as shown in 
Fig. 3 and 4. The radius of the marker corresponds to the 
intensity for that location. 

We also show the time dependence of principal components 
in Fig. 5, 6, and 7. For the sake of visibility, we plotted the 
square root of the intensity. 

From the above results, we concluded that the first 
component corresponds to the 2011 Tohoku Pacific Ocean 
earthquake (M9.0). We also found that the second component 
corresponds to the global background activity, the third 
component corresponds to the 2004 and 2005 Sumatra 
earthquakes (M9.1, M8.6), and the fourth component 
corresponds to the 2007 Kuril Islands offshore earthquake 
(M8.2). These components represent single earthquake events. 

On the other hand, some components have broad 
distributions or multiple locations. For example, the tenth 
component seems to show a correlation between earthquake 
activity in the Solomon Sea and around the international 
boundaries between Peru, Bolivia, and Chile, as shown in 
Fig. 4. This correlation seems to occur periodically, as shown 
in Fig. 6 (d). 

Here, we show the sample distribution. Since the 
earthquakes included in our study are almost all plate boundary 
type earthquakes, it is expected that the distribution of sample 
data has a peak at the plate boundary in real space. For the 
validity of principal component analysis, it is desired that the 
sample data follow a normal distribution. We show the 
distribution of the background component, namely the second 
component in Fig. 8. Here, the x-axis shows the intensity 
normalized by the maximum absolute value and divided into 50 
parts. The y-axis shows data counts for the corresponding 
normalized intensity. This distribution can be approximated by 
a normal distribution because the data has one peak and seems 
to have finite variance. Thus, it was reasonable that we adopted 
the principal component analysis for global seismicity. 

B. Time dependence of principal components 
In the previous section, we analyzed past data and confirmed 

that this method can identify some massive earthquakes 

correctly. For the purpose of predicting earthquakes, we must 
detect some signal in advance. Hence, we investigated the time 
dependence of the principal components. 

In particular, we focused on the first principal component. As 
mentioned before, this component corresponds to the 2011 
Tohoku Pacific Ocean earthquake. Thus, we divided the entire 
period into three parts; the first, second, and third parts 
consisted of the data from 1991 to 2000, from 2001 to 2010, 
and from 2012 to 2016, respectively. Furthermore, we added 
the data from 1981 to 1990. We excluded the 2011 data in 
order to make a before and after comparison for the 2011 
Tohoku Pacific Ocean earthquake. 

We defined the index of seismicity with the following 
equation: 

∑
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1
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k
iki UY .                                  (5) 

 Yi represents the locations where we determined seismicity is 
active; these can be seen, in Fig. 9. From 1981 to 1990, 
earthquake activity was widespread, but it was concentrated on 
the western side of the Pacific Plate from 1991 to 2000, and 
activity around Japan was calm from 2001 to 2010. After that, 
the 2011 Tohoku Pacific Ocean earthquake occurred. From 
2012 to 2016, there was a resurgence in widespread activity. 

V. DISCUSSION 
The new features extracted effectively identified past major 

earthquakes, even though we only considered relatively low 
magnitude earthquakes. This is because the Gutenberg-Richter 
law holds locally. Furthermore, the method seems to show a 
correlation among earthquakes that occurred at remote 
locations as the tenth principal component. It is expected that 
we will be able to extract features with more local detail by 
applying this method not to the whole world but to a local area. 
However, we must point out that the correlation between 
earthquakes revealed in this study does not definitely originate 
from a physical cause. There is a possibility that this feature 
was extracted because of coincidences in the occurrence of 
earthquakes. Thus, for understanding and predicting the 
activity of earthquakes, we must investigate this feature by 
collecting data and providing a physical rationale. 

The time dependence of the index of seismicity shows 
periods of concentrated activity, followed by quiescent periods. 
It is considered that energy for generating massive earthquakes 
is conserved by this quiescence. More detailed analysis in 
which a limited region is surveyed must be conducted to reveal 
the signals for individual earthquakes. 

VI. CONCLUSION 
In this study, we extracted new features of global 

earthquakes using linear principal component analysis from 
observational data published on the web. Some past massive 
earthquakes appeared as principal components, even though 
we only considered relatively low-magnitude earthquakes. 
Furthermore, it is implied that there has been a correlation 
between South American and Solomon Sea earthquakes, which 
seems to be periodic. Before massive earthquakes, periods of 
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concentrated activity followed by quiescence are confirmed by 
the time dependence in the index of seismicity Yi. In future 
work to predict earthquake activity, we must investigate 
whether or not these new features originate from physical 
causes. 

 
 
 

 
 
 
 
 
 
 

 
(a) first principal component                                                     (b) second principal component 

 

 
(c) third principal component                                                    (d) fourth principal component 

 

 
(e) fifth principal component                                                     (f) sixth principal component 

 

 
(g) seventh principal component                                                (h) eighth principal component 
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Fig. 3 Spatial distribution of principal components from first to eighth 
 
 
 
 
 
 
 

 
(a) ninth principal component                                                 (b) tenth principal component 

 

 
(c) eleventh principal component                                            (d) twelfth principal component 

 

 
(e) thirteenth principal component                                          (f) fourteenth principal component 

 

 
(g) fifteenth principal component                                           (h) sixteenth principal component 
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Fig. 4 Spatial distribution of principal components from ninth to sixteen 
 
 
 
 
 
 
 

 
(a) first principal component                                                     (b) second principal component 

 

 
(c) third principal component                                                    (d) fourth principal component 

 

INTERNATIONAL JOURNAL OF GEOLOGY Volume 11, 2017

ISSN: 1998-4499 31



 

 

 
(e) fifth principal component                                                     (f) sixth principal component 

 
Fig. 5 Time dependence of principal components from first to sixth 

 
 
 

 
(a) seventh principal component                                                 (b) eighth principal component 

 

 
(c) ninth principal component                                                 (d) tenth principal component 
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(e) eleventh principal component                                            (f) twelfth principal component 

 
Fig. 6 Time dependence of principal components from seventh to twelfth 

 
 
 

 
(a) thirteenth principal component                                          (b) fourteenth principal component 

 

 
(g) fifteenth principal component                                           (h) sixteenth principal component 

 
Fig. 7 Time dependence of principal components from thirteenth to sixteenth 
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Fig. 8 data distribution of the background component 
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(a) from 1981 to 1990                                                                (b) from 1991 to 2000 

 

 
(c) from 2001 to 2010                                                               (b) from 2012 to 2016 

 
Fig. 9 time dependence of locations of activity Yi 

 

INTERNATIONAL JOURNAL OF GEOLOGY Volume 11, 2017

ISSN: 1998-4499 34


	INTRODUCTION
	Data
	METHODS
	Earthquake Occurrence Rate
	Principal Component Analysis

	RESULTS
	Whole period
	Time dependence of principal components

	Discussion
	CONCLUSION
	References



