
 

 

  
Abstract—In order to solve temperature field in a typical gravity 

concrete dam and its natural foundation, the three-dimensional 
temperature diffusion equation is chosen as the mathematical model. 
The finite volume formulation is derived using Galerkin approach for 
the mesh of tetrahedral elements. This method facilitates solving 
temperature problems with complicated geometries. The algorithm 
not only is able to handle the essential boundary conditions but also 
the natural boundary conditions using a novel technique. Accuracy 
and efficiency of the algorithm is assessed by comparison of the 
numerical results for a bench mark problem of heat generation and 
transfer in a block with its analytical solution. Finally the developed 
model is applied to compute temperature field in a three dimensional 
gravity concrete dam on rock foundation. 
 

Keywords—Heat Transfer in Rock and Concrete, Galerkin Finite 
Volume Solution, Tetrahedral Computational Mesh 

I. INTRODUCTION 
Temperature profiles in the concrete gravity dams (as mass 

concrete structures) and their rock foundation form due to the 
heat generation sourcing from cement hydration. The 
temperature profiles depend to the heat exchange with the 
surrounding ambient result in time varying temperature 
profiles in the structure. On the other hand, tensile stresses 
develop in the structure due to restrained thermal movements. 
Leaving unchecked such an effect can result in thermal 
cracking of the concrete. Hence, thermal considerations are 
critical tasks in concrete gravity dams. This fact makes 
temperature profile simulation an important part of the design 
and construction process. 

Availability of the fast and powerful personal computers 
motivates the use of numerical methods for solving 
temperature fields of engineering applications. In order to 
predict the thermal behavior of the solid states with internal 
source of heat generation rate several numerical solvers are 
developed using various methods such as Finite Difference 
Methods, Finite Element Methods and Finite Volume 
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Methods. The Finite Differences  [1] convert differential form 

of the governing equations to simple formulations in the 
expense of some errors which degrades the accuracy of the 
numerical solutions. But the main problem of the Finite 
Difference Methods is serious difficulties in their application 
to solve real world problems due to necessity of the use of 
structured grids for geometric dicretization.  

The Finite Element Method [2] and Boundary Element 
Method [3] overcome the aforementioned problem by 
application of sophisticated mathematical manipulations on 
the integral form of the governing equations formulations 
which end up with complicated solution procedures. 
Consequently, the Finite Element Methods not only can 
handle complex geometries but also provide accurate 
numerical solutions for the boundary value problems. 
However, their heavy computational work load, time-
consuming complicated matrix computations and implicit 
solutions of real world applications with geometrical 
complexities some times are beyond the available hard ware 
efficiencies.  

The traditional Finite Volume Methods [4] convert the 
integral form of the governing equations for spatial problems 
into simple algebraic formulations. These methods may have 
some advantages over the Finite Difference Methods but the 
required structured meshes bring up major restrictions and 
errors with modeling of domains with complex geometries and 
irregular boundaries. The Finite Volume Methods suitable for 
the unstructured meshes [5] can handle the geometrical 
complexities using relatively simple formulations and 
computational procedures. Therefore, if the developed 
algorithm of these types of Finite Volume Method can satisfy 
the accuracy requirements of the desired problem, it would be 
an efficient means of computer simulations of the engineering 
applications on ordinary hard ware systems.  

Following the previous work of the first author [6] and [7], 
a numerical solution algorithm for the temperature field under 
the effects of internal heat generation rate as well as essential 
and natural boundary conditions is described. Here, the 
Galerkin finite volume solution algorithm is described and 
used for temporal solution of diffusive equation of heat 
generation and transfer. For this purpose, the governing 
equation of heat generation and transfer is multiplied by the 
piece wise linear shape function of tetrahedral elements of an 
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unstructured mesh and then it is integrated over all control 
volumes formed by the elements meeting every computational 
node (vertices of the elements). The algorithm takes advantage 
from the fact that the first derivatives of the linear 
interpolation function for the temperature are constant inside 
each element. By application of Gauss divergence theorem 
and using the property of the linear shape function, which 
satisfies homogeneous boundary condition on the dependent 
variable, the boundary integral terms can be omitted for every 
control volumes using surrounding nodal values. After some 
manipulations, the resulting formulations can be solved 
explicitly with rather light computational efforts.  

Using a novel numerical technique for imposing natural 
boundary conditions on incline boundaries are used for 
reducing computational efforts. Hence, an efficient solver is 
developed for the solution of three-dimensional temperature 
fields with complex boundaries which geometrically can be 
modeled by the use of unstructured mesh of tetrahedral 
elements. In order to assess the performance of the developed 
solver, the numerical solution results of temperature in a 
typical block are compared with its analytical solution. Finally 
the developed model is applied to compute temperature field 
in a three dimensional monolith of a gravity concrete dam 
with upstream and downstream slopes located on natural rock 
foundation. 

II. MATHEMATICAL MODEL 

A. Differential Form 
Assuming isotropic thermal properties for the solid 

materials, the familiar equation defining heat generation and 
transfer is of the form, 
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Here, T )( co  and Q )( 3 hmJK are temperature and the 

rate of heat generation per unit volume, respectively. If 
thermal diffusion is defined as Cρκα /= , where the 

parameters are ρ )( 3mKg density, C )( cKgJK o specific 
heat, κ )( cmW o  heat conduction coefficient, respectively. 

Consider the governing equation for heat generation and 
transfer in a homogenous domain as, 
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Where T (temperature) is the unknown parameter and 

( ) κα etQS=  is the heat source. If temperature gradient 
fluxes in i  direction (secondary variable) are defined as, 
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And hence, the equation takes the form: 
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A. Definition of Boundary Conditions 
The natural boundary condition for the equation on concrete 

external surface is taken as, 
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Where, q  is the rate of heat exchange per unit volume of 

concrete surface with surrounding ambient and the vector 

knjninn ˆˆˆˆ 321 ++=  is the surface boundary normal. The rate 
of heat exchange q  is taken into consideration through three 

mechanisms, cq  (convection), rq  (long wave radiation of 

concrete to surroundings) and sq  (solar radiation absorption). 
Hence, the total rate of heat exchange can be defined as, 

src qqqq −+±= [8].  
 

B. Definition of Source Term 
In order to compute the source of the heat generation rate in 

the concrete body, Q , the considerable influence of the 
temperature on hydration rate of cementation materials should 
be properly considered. For this propose, due to effects of 
ambient temperature on the rate of heat generation of cements, 
it is necessary to take the temperature history of various points 
in concrete body into account.  

The heat generation rate can be expressed in terms of 

equivalent time ∫= tdTHte )(  as, 
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Due to the considerable influence of the temperature on 

hydration rate of cementation materials, it is necessary to take 
the temperature history of various points in concrete body into 
account.  Various functions have been proposed for 
considering this effect and are referred to as maturity function 
[9]. The function proposed by Rastrup [10] is a well-known 
example. The time derivative of equivalent time  is determined 
using the relative rate of reaction concept as: 
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  where rT  is a reference temperature. Using heat evolution 
of concrete as a function of equivalent time )( etQ [9], we have  
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Where, E, b and n are constants obtained by regression of 
experimental heat evolution data. 

Note that using the expirations (6.b) and (6.c), for every 
single point of the concrete body, the rate of heat generation 
Q  can be computed by equation (6.a) considering as a 

function of equivalent time et by using a reference 

temperature rT  and taking the temperature history into 
account. 

  

III. NUMERICAL MODEL 
 

A. Galerkin Finite Volume Formulation 
Following the concept of weighted residual methods, by 

considering the test function equal to the weighting function, 
the dependent variable inside the domain Ω  can be 
approximated by application of a linear combination, such as 

∑ =
= nodesN

k kkTT
1

ϕ [7].  

According to the Galerkin method, the weighting function 
φ  can be chosen equal to the interpolation function, ϕ. In 
finite element methods this function is systematically 
computed for desired element type and called the shape 
function. For a tetrahedral type element (with four nodes), the 
linear shape functions, kϕ , takes the value of unity at desired 
node n, and zero at other neighboring nodes k of each 
triangular element ( nk ≠ ) [7]. 

 Extending the concept to a sub-domain to the control 
volume formed by the elements meeting node n (Figure 1), the 
interpolation function nϕ  takes the value of unity at the center 

node n of control volume Ω  and zero at other neighboring 
nodes m (at the boundary of the control volume Γ ). 
Noteworthy that, this is an essential property of weight 
function, ϕ, which should satisfy homogeneous boundary 
condition on T at boundary of sub-domain [3]. That is why the 
integration of the linear combination ∑ =

= nodesN

k kkTT
1

ϕ  (as 

approximation) over elements of sub-domain Ω  takes the 
value of nT  (the value of the dependent variable in central 
node n). By this property of the shape function ϕ  ( 0=nϕ  on 
boundary Γ of the sub-domain Ω ), the boundary integral term 
in equation (9) takes zero value for a control volume which the 
values of T assumed known at boundary nodes.  

 

 
Figure 1 - Sub-domain Ω  associated with node n of 

 
By application of the Variational Method [11],  after 

multiplying the residual of the above equation by the test 
function φ  and integrating by parts over a sub-domain Ω , 
application of gauss divergence theorem and omitting zero 
term, the equation (4) takes the form,  
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In order to drive the algebraic formulation, every single 

term of the above equation first is manipulated for each 
element then the integration over the control volume is 
performed. The resulting formulation is valid for the central 
node of the control volume. 

For the terms containing no derivatives of the shape 
function ϕ , an exact integration formula is used as 

4/)3()!!!!(64321 Λ=++++Λ=∫Λ
dcbadcbadcba ϕϕϕϕ (for 

a=1 and b=c=d=0), where Λ  is the volume of the tetrahedral 
element [12]. This volume can be computed by the integration 
formula as,  

kk iiii xdx ][)( 4∑∫ ≈Λ=Λ
Λ

δ  where ix  and iδ  

are the average i direction coordinates and projected area 
(normal to i direction) for every side face opposite to node k of 
the element. 

Therefore, the transient term ∫Ω
Ω∂

∂ dTt φ  for each 

tetrahedral element Λ  (inside the sub-domain) can be written 
as, dt

dTdTt )4( Λ=Λ∂
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φ . Consequently, 

the transient term of equation (10) for the sub-domain Ω  
(with central node n) takes the form, 
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Similarly, the source term of equation (7), ∫Ω
ΩdSϕ , for 

each element Λ  (inside the sub-domain), will be written as, 

SdS )4(∫Λ
Λ=Λϕ . Then the source term of the 

equation (10), for the control volume Ω  (with central node n) 
takes the form, 
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Now we try to discrete the terms containing spatial 

derivative, Ω∫Ω
dxF

i

d
i )( ∂

φ∂ . Since the only unknown 

dependent variable is ∑=
4

k kkTT ϕ  and the shape 

functions, kϕ , are chosen piece wise linear in every 

tetrahedral element, the temperature gradient flux ( d
iF  is 

formed by first derivative) is constant over each element and 
can be taken out of the integration. On the other hand, the 
integration of the shape function spatial derivation over 
tetrahedral element can be converted to boundary integral 
using Gauss divergence theorem [9], and hence, 

i
i

ddx )(. Δ−=Λ∂
∂ ∫∫ ΔΛ

ϕϕ . Here Δ is component of the side 

face element normal to the i  direction. The discrete form of 
the line integral can be written as, 

kk iid ][1)(. 4∑∫ Λ≈Δ
Δ

δϕϕ , where ki ][ δϕ  is 

formed by considering the side of the element opposite to the 
node k, and then, multiplication of its component 
perpendicular to the i  direction by ϕ  the average shape 
function value of its three end nodes. Hence, the term 
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φ∂  for a control volume Ω  

(containing N elements sharing its central node). Since the 
shape function ϕ  takes the value of unity only at central node 
of control volume and is zero at the nodes located at the 
boundary of control volume, 3/1=ϕ  for the faces 
connected to the central node of control volume and 0=ϕ  
for the boundary faces of the control volume. On the other 
hand the sum of the projected area (normal to i direction) of 
three side faces of every tetrahedral element equates to the 
projected area of the fourth side face, hence the term 
containing spatial derivatives in i direction of the equation (7), 
can be written as, 
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Where mi ][δ  is the component of the boundary face m 

(opposite to the central node of the control volume Ω ) 

perpendicular to i  direction. Note that, d
iF  is computed at 

the center of tetrahedral element of the control volume, which 
is associated with side m. The temperature gradient flux in i  
direction, 

i

d
i x

TF ∂
∂α= , at each tetrahedral element can be 

calculated using Gauss divergence theorem, 
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is the projection of side faces of the element perpendicular to 
i  direction. By expressing the boundary integral in discrete 

form as, ∑∫ ≈Δ
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inside the control volume Ω. Therefore, we have, 
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Where, iδ  is the component of kth face of a tetrahedral 

element (perpendicular to the i direction) and T is the 
average temperature of that face and Λ is the volume of the 
element. 

Note worthy that for control volumes at the boundary of the 
computational domain, central node n of the control volume 
Ω  locates at its own boundary. For the boundary sides 
connected to the node n there are no neighboring element to 
cancel the contribution. Hence, their contributions remain and 
they act as the boundary sides of the sub-domain. Therefore, 
there is no change to the described procedure for computation 

of the spatial derivative terms Ω∫Ω
dxF

i

d
i )( ∂

ϕ∂ .    

Finally, using expressions (8.a), (8.b) and (8,c), the equation 
(7) can be written for a control volume Ω (with center node 
n) as: 
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The volume of control volume, Ω  can be computed by 

summation of the volume of the elements associated with node 
n.  

Remember, the heat source for each node n in concrete 
body is defined by ( ) nnenn tQS κα= . 

The resulted numerical model, which is similar to Non-
Overlapping Scheme of the Cell-Vertex Finite Volume 
Method on unstructured meshes, can explicitly be solved for 
every node n (the center of the sub-domain Ω  which is 
formed by gathering elements sharing node n). The explicit 
solution of temperature at every node of the domain of interest 
can be modeled as, 
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B. Time Integration 
Now we need to define a limit for the explicit time step, 
tδ . Considering thermal diffusivity as Cρκα=  with the 

unit ( sm2 ), the criterion for measuring the ability of a 
material for temperature change. Hence the rate of temperature 
change can be expressed as, 

n
n

t αδ ≈Ω . Therefore, the 

appropriate size for local time stepping can be considered as, 
 

 
n

nt αβδ Ω=      )1( ≤β                                  (12) 

 
β is considered as a proportionality constant coefficient, 

which its magnitude is less than unity. For the steady state 
problems this limit can be viewed as the limit of local 
computational step toward steady state.  

However, there are different sizes of control volumes in 
unstructured meshes. This fact implies that the minimum 
magnitude of the above relation be considered. Hence, to 
maintain the stability of the explicit time stepping the global 
minimum time step of the computational field should be 
considered, so, 

 

min)(
n

nt
α

βδ Ω
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Noteworthy that for the solution of steady state problems on 

suitable fine unstructured meshes, the use of local 
computational step instead of global minimum time step may 
considerably reduce the computational efforts.  
 

C. Implementation of Boundary Conditions 
Two types of boundary conditions are usually applied in 

this numerical modeling. The essential and natural boundary 
conditions are used for temperature and temperature gradient 
flux (gradients) at boundaries, respectively [7].  

For those boundary nodes where nodal temperatures are to 
be imposed (essential boundary conditions), there is no need 
to compute the temperature. Hence, computed temperature at 
those node have to be replaced by the given certain values at 
the end of each computational step.  

Contrarily, there is no need to change the computed 
temperature at the boundary nodes where the natural boundary 
condition is to be imposed. In order to impose a given 
temperature gradient normal to the boundary faces, G (the rate 
of heat exchange per unit volume of the surface), the normal 
vector of the boundary faces ),,( 321 mmmm nnnn = can be 

utilized to compute ),,( 321 mmm GnGnGnG =  at the 
desired boundaries. Although simple techniques for imposing 
gradient at boundary can be applied for the cases that the 
boundary normal is parallel to one of the main directions of 
coordinate system, computational difficulties arise for the 

inclined or curved boundaries. For overcoming the problem, 
the computed gradient flux vector, ),,( 321

dddd FFFF = , at 
the centre of adjacent element may be modified at the end of 
each computational step. First, the vector of temperature 
gradient tangent to the desired boundary face is decomposed 
from the computed gradient at the centre of adjacent element, 
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Then, the normal vector of temperature gradient can be 

imposed as, 
 

mNormal nGF =                                                   (14.b) 

 
Finally, the temperature gradient vector at the centre of 

element adjacent to the desired boundary face is considered as, 
 

NormalTangantial
d

Modified FFF +=                             (15) 

 
 Using above mention technique the difficulties associated 

with inclined or curve boundaries are overcome. Therefore, 
the proposed technique suites the present algorithm which is 
adopted for the domains with complex boundaries discretized 
using unstructured meshes. 
 

IV. MESH GENERATION 
 Structured tetrahedral mesh can be generated by 

considering 5 or 6 tetrahedron between an eight nodded cubic 
mesh spacing (Figure 2). A general view of two typical 
meshes which are formed by considering 5 or 6 tetrahedron 
between an eight nodded cubic mesh spacing are presented in 
figure 3. 
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Fig. 2 Two cubic mesh spacing formed by eight nodes 
which are filled by a) 5 and b) 6 tetrahedral 
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Fig. 3 A general view of two typical meshes which are 

formed by considering 5 or 6 tetrahedron between an eight 
node cubic mesh spacing. 

 

V. VERIFICATION CASES 

A. Heat Generation and Transfer in a Cub 
The accuracy of the solution of spatial derivative terms is 

investigated by comparison of the results of the numerical 
solver with the analytical solution of the following steady state 
diffusion equation (boundary value problem) with a constant 
source term as [2],  
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in the spatial field of ( ){ }1,0 <<=Ω yx . Considering 

the constants of the above equation as 1=k  and 10 =Q   as 

well as the boundary conditions at 1=x , 1=y  as 0=T  

and  0=∂
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T  at 01 =x , 02 =x . The analytical solution 

is given by [2],  
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In order to obtain a temperature field similar to the two 

dimensional solution of this problem on a section of the cube, 
the requirement of imposing natural boundary condition is 
relaxed by doubling the dimension, and hence, essential 
boundary condition ( 0=T ) is imposed over four the 
boundaries ( ){ }1,1, −=yx  and natural boundary condition 

( 0=∂
∂

n
T ) at  ( ){ }1,1−=z .   The tetrahedral mesh which 

is generated by considering 6 tetrahedral between cubic mesh 
spacing with eight nodes is presented in figure 3.b. This 2m ×2 
m×2m mesh is formed by 11×11×11 grid points.  

The result of the numerical solution of equation (16) is 
shown in figure 4 in the form of temperature contour maps. 
The accuracy of numerical solution can be assessed in figures 
5 by comparison between the computational and the analytical 
solution in two directions along the two lines in the cub. 
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Fig. 5 Comparison between the computational and the 

analytical solution,  
a: along the line y=0 (0<x<1) and  

b: along the line y=x (0<x<1) 
 

B. Heat Generation and Transfer in Prisms  
In order to assess the performance of introduced technique 

for imposing natural boundary conditions (i.e. symmetric 

condition 0=∂
∂

n
T ) at incline boundary surfaces a 

reduction is considered on computational field of previous test 
case. This is done by dividing the original field into a prism 
that its volume is equal to 1/16 of original test case (figure 6). 
As can be seen one of the symmetry surfaces is incline. 

The computed temperature fields which are computed 
using natural boundary conditions on symmetry boundaries of 
the mesh is presented at figure 6 are shown in figure 7 in the 
form of color coded map of temperature field. As can be seen 
the applied technique for imposing natural boundary condition 
preserves the accuracy of temperature gradients, even on 
inclined surfaces.   
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 Fig. 6. 3D mesh of a prism with an incline boundary 

surface  
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Fig. 7. Computed color coded map of temperature field in a 

prism with an incline boundary surface  
 

C. Cement Heat Generation in a Concrete Cub  
In order to evaluate the accuracy of the source term 

representing the rate of the heat generation, a set of 
experimental measurements on a concrete cube with 100×100 
×120 (cm3) dimensions caste by 300 kg/m3 is used [10]. The 
concrete block was insolated all over the faces and is placed in 
the shade, therefore radiation and sun did not considered in the 
modeling. The convection from the isolation is considered by 
considering a sinusoidal variation of ambient temperature 

between 19.5 and 24.5
o c . The coefficients of the described 

relation for the heat generation are calibrated for the applied 
cement and tabulated in the reference. A three dimensional 
rectangular triangular mesh with 2.5 cm spacing is utilized for 
numerical simulations. Assuming the concrete was kept in 
shaded area, the effect of solar radiations was omitted. The 
properties of concrete is considered as 0038.0=cα  hm 2  and 

hcmKJ o/9=κ . The average experimental data have been 
measured at some points of concrete block.  

a 

b 

c
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Fig.8. Computed temperature profiles in terms of iso-

temperature surfaces 
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Fig.9. Comparison of computed results with the experimental 

data for a permanently isolated concrete block  
 

The computed temperature profiles in terms of color coded 
temperature surfaces are plotted in figure 8.  The results of the 
computer model are compared with the experimental data for 
the permanently isolated concrete block present reasonable 
agreements, in figure 9. 

I. APPLICATION CASE 
In this section, the application of the developed three-

dimensional Galerkin finite volume solver is demonstrated. 
For this purpose, the developed model is applied to compute 
temperature field in a three dimensional monolith of a gravity 
concrete dam with 10 m, height 10 m base, 0.1:1 upstream and 
0.8:1 downstream slopes located on  a 15×15 ×15 (m3) natural 
rock foundation (Figure 10). 

 

 
Fig.10. Computational model for a gravity concrete dam 

monolith on rock foundation  
 

The cement content of the concrete is considered to be 150 
kg/m3.  The convection from the gravity concrete monolith 
dam surfaces is considered by considering a sinusoidal 
variation of ambient temperature between 14 and 26 co . It is 
assumed that the vertical is of the monolith covered by e=5 cm 
form work on The coefficients of the described relation for the 
heat generation are calibrated for the applied cement and 
tabulated in the reference. The properties of concrete is 
considered as 0038.0=cα  ( hm 2 ) and )/(9 hcmKJ o=κ . The 
average experimental data have been measured at some points 
of concrete block. The rock foundation is assumed to be sound 
granite.  

 

 
Fig.11. Computed color coded temperature lines at the final 

stage of dam completion in a vertical section 
 

The laminar construction of the concrete part of the 
computational domain is modeled by gradual activation of the 
horizontal layers of the structured mesh. The computed 
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temperature profiles at the final stage of dam completion are 
plotted in terms of color coded temperature lines in a vertical 
section in figure 11. The maximum computed temperatures 
during the construction of the dam are plotted in figure 12. 
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Fig.12. Computed maximum temperature during dam 

completion  
 

II. CONCLUSION 
   The equation of heat generation and transfer is solved on 

triangular element mesh utilizing linear shape function as an 
alternative test function. The resulted Galerkin finite volume 
algorithm provides light explicit computation of time 
dependent problems.  

The numerical model was verified in three stages. First, by 
using a boundary value problem and its analytical solution, the 
accuracy of the solution of the spatial terms was assessed. 
Second, the quality of the results for imposing natural 
boundary conditions on incline surfaces is assessed. Third, 
adopted formulation for source term of heat generation rate of 
the concrete is evaluated by the comparison of the computed 
results with the available experimental measurements.  

The results of the developed model present reasonable 
agreements to the analytical and experimental data.  

The direction of edges did not degrade the computational 
results and no worse effect due to unidirectional edges inside 
the mesh was appeared in the solution results. 

Application of the developed model for a multi material 
case with complicated boundary surfaces is examined by 
modeling temperature field in a three dimensional monolith of 
a gravity concrete dam with upstream and downstream slopes 
located on natural rock foundation. 

The efficiency of the present modeling algorithm and the 
accuracy of the results encourage its further developments and 
application to the real world problems. 
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