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Fitted-Modified Upwind Finite Difference Method for Solving

Singularly Perturbed Differential Difference Equations

Gemechis File and Y.N. Reddy

Abstract— A fitted modified upwind finite difference method is
presented for solving singularly perturbed boundary value problems
with delay O and advance 1) parameters that are sufficiently small.
The second order singularly perturbed differential difference equation
is replaced by an asymptotically equivalent singularly perturbed
boundary value problem. A fitting factor is introduced in a modified
finite difference scheme and is obtained from the theory of singular
perturbations. Thomas Algorithm is used to solve the system and its
stability is investigated. The method 1is demonstrated by
implementing several model examples by taking various values for
the delay parameter O , advance parameter 1 and the perturbation
parameter £ .
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LINTRODUCTION

Boundary value problems involving differential-difference
equations arise in studying variational problems of control
theory where the problem is complicated by the effect of time
delays (here, the terms ‘‘delay’’ and ‘‘advance’’). This occurs
in signal transmission [1] and in depolarization in the Stein
model [2], which is a continuous-time, continuous-state space
Markov process whose sample paths have discontinuities of
the first kind [3]. The time between nerve impulses is the time
of first passage to a level at or above a threshold value; and
determining the moments of this random variable involves
differential-difference equations. This biological problem
motivates the investigation of boundary-value problems for
differential-difference ~ equations  with  small  shifts.
Furthermore, the applications of differential-difference
equations permeate all branches of contemporary sciences
such as physics, engineering, economics, and biology [4]
certainly merits its own volume.

As a result, many researchers tried to develop and present
numerical schemes for solving such problems. For example,
reference [5], [6] gave an asymptotic approach for a class of
boundary-value problems for linear second-order differential-
difference equations with small shifts. Reference [7] presented
e-uniform Ritz-Galerkin finite element method for solving
singularly perturbed delay differential equations with small
shifts. Furthermore, reference [8] constructed an e-uniform
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numerical scheme comprising of a standard upwind finite
difference operator on a fitted piecewise uniform mesh for a
class of singularly perturbed boundary value problems of
differential-difference equations with small shifts.

The objective of this paper is, therefore, to present a fitted
modified upwind finite difference method for solving
singularly perturbed differential difference equations with the
delay and the advance parameters (sometimes referred to as
“negative shift “and “positive shift”, respectively as in [5], [6]
) having the boundary layer at one end (left or right). It is
based on the concept that the singularly perturbed differential
difference equation is replaced by an asymptotically equivalent
second order singularly perturbed two point boundary value
problem. Then a fitting factor is introduced in a modified
upwind finite difference scheme and is obtained from the
theory of singular perturbations. Thomas Algorithm is used to
solve the system and the stability of the algorithm is also
considered. The method is demonstrated by implementing
several model examples by taking various values for the delay
parameter O , advance 1 and the perturbation parameter & .

II. DESCRIPTION OF THE METHOD
A. LEFT END BOUNDARY LAYER
PROBLEMS

Consider singularly perturbed differential equation with small
delay as well as advance of the form:

&"(x) +a(x)y'(x) + a(x)y(x = 5) + w(x)y(x)
+ ,B(x)y(x + 77) = f(x)

Vx €(0,1) and subject to the interval and boundary

(1

conditions

y(x)=¢(x), on -0<x<0 )

y(x)zy(x), on 1<x<l+n 3)
Where
a(x), alx), plx) olx) f(x) ¢(x), and ylx)
are bounded and continuously differentiable functions on (0,
D, O0<e<<l
0<o= 0(6‘) and 0<7y= 0(8) are the delay and the

advance parameters respectively.
By using Taylor series expansion in the neighborhood of the
point x, we have

Wx=8) = y(x) - &'(x) )
yx+n)= y(x)+my'(x) (5)

is the singular perturbation parameter; and
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Using equations (4) and (5) in (1) we get an asymptotically
equivalent singularly perturbed boundary value problem of the
form:

&"(x) + plx)y'(x) +q(x)ylx) = £ () ©
y(0) = ¢(0) = (7)
y(1)=}/(l)=7/1 (8)

where  p(x)= a(x)+ Bx)7 — a(x)s ©)

g(x) = a(x) + Blx)+ olx) (10)
The transition from (1) to (6) is admitted, because of
the condition that 0 < <<1 and 0<7m<<1 are

sufficiently small. This replacement is significant from the
computational point of view. Further details on the validity of
this transition can be found in [9]. Thus, the solution of (6)
will provide a good approximation to the solution of (1).

Further, we assume that q(x) =a(x)+ ﬂ(x)+ a)(x) <0,
p(x) =a(x)+ ,B(x)q - a(x)5 > M >0 throughout the
interval [0, 1], where M is some constant. Under these

assumptions, (5) has a unique solution y(x) which in general,

and

exhibits a boundary layer of width O(g) on the left side
(x = 0) of the underlying interval.

From the theory of singular perturbations in [10] it is
known that the solution of (5) - (6) is of the form:

Y =30+ Z G =09 o o
an

where Y, (x)is the solution of the reduced problem:

Py () +g(x)y, () = f(x), »,(0) =y, (12)

By taking the Taylor’s series expansion for p(x) and q(x)

about the point ‘0’ and restricting to their first terms, (11)
becomes:
[ 2©_q0) ),

ﬂm=yum+@wwumw[€‘”J+ow)an
Now we divide the interval [0, 1] into N equal parts with

constant mesh length h. Let 0=Xx,, X, X,, ..., X =1

be the mesh points. Then we
havex, =ih, i=0,1, 2, ..., N .From (13) we have:
4{p%®fmﬂﬂ}
. . (0)
lim y(ih) = y,(0) + (¢, =, (e " T +0(e)
(14)
where p = —
€
Furthermore, by Taylor’s series expansion:
yll yt+lh yt _Eylﬂ_{_O(hZ) (15)

Thus, the modified upwind scheme corresponding to (6)-(8) is:
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h Viu =2+ Vi, Yin = Vi
E——p. +
( 2 P )[ h? pi h (16)

+q,y, = f, +O(h*)

Yo =@y Yy =7, (17)
Where
p(x)=p., qx)=q,, [f(x)=f, y(x)=y,.

Introducing a fitting factor o(p) into (16) we get

h yi+l_2yi+yi—1 Yia — Vi
o E——PD. + p | =
(p)( 217,][ e 21—

= £, +O(h*)
(18)

=y, which is to be determined in such

+q,y;

with Yo = by, Vn
a way that the solution of (18) with the boundary conditions
converges uniformly to the solution of (6) - (8) which is in turn
a good approximation to the solution of (1) - (3). Multiplying

(18) by A and taking the limit as # — 0 ; we get
. Pi
a(p) }gn[g - 7)[(yi+1 =2y, + v )+ P, = 2.)]=0

(19)
Provided f(x;)—¢g(x;)y, is bounded. By substituting (14)
in (19) and simplifying, we get the constant fitting factor

_ [ 2pp(0) | 1
2~ pp(0) | p%m—mmn}_l
_eXpK FORS I
(20)
Now, from (18) we have:
o
e 5 P\X; )|\ Via
2 h .
- (h—f(s - pl )j + % —q(x, )jyi
21)

)|+ 22 = ()

N —1 where the fitting factor o is given by

o h
+—le—=
(-

i=1 2, ..,
(20). Equation (21) can be written as the three term recurrence
relation of form:

Ey,-Fy+Gy.,=H, ;i=12,.., N-1
(22)
where
E, :O-(g—hp(x.)j (23)
T 5 P\
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_2o( _h ;) 24
P =22 o2l |+ 250 ) 24
_of. _h px;) 25
=) o 2 o)
H, =f(x,) (26)

This gives us the tridiagonal system which can be solved easily
by Thomas Algorithm described in the next section.

B. THOMAS ALGORITHM

A brief description for solving the tri-diagonal system using
Thomas algorithm is presented as follows: Consider the
scheme:

Ey —-Fy +Gy,=H, ;i=12,.., N-1 (27

subject to the boundary conditions

Yo=1(0) =¢;; (28)
yy=yO =7, (29)

Weset y, =W, y,,+1,,i=N-1, N-2, ..., 2,1
(30)

where W, =W (x,)and T, =T(x,)which are to be

determined. From (30), we have:

Via=W_y,+T, (€2))
By substituting (31) in (27) and comparing with (30) we get
the recurrence relations:

W:(G% J (32)
E—-EW,_,

| Bl = A ) (33)

l Fz _EiVVH

To solve these recurrence relations
fori =1, 2, ..., N—1, we need the initial conditions for
W,and T,. For this we take y, =@, =W,y, +T,. We
choose W, =0 so that the value of 7, =¢,. With these
initial values, we compute W, and T for

i=1, 2, .. N -1 from (32) and (33) in forward process,
and then obtain ),in the backward process from (29) and
(30).

C. STABILITY ANALYSIS

We will now show that the algorithm is
computationally stable. By stability, we mean that the effect of
an error made in one stage of the calculation is not propagated
into larger errors at later stages of the calculations. Let us now
examine the recurrence relation given by (32). Suppose that a

small error e, ; has been made in the calculation of W, ;
then, we have VVZ._I = Wi_1 +e, , a, where V?l._l the exact

value at (i — 1) step and calculating
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A (34)
F—EJW,,

From (32) and (34), we have

G, G, W'E,
e = - = €,
’ F,—EW,_ +e.) F,-EW,_, G, .

(35)
under the assumption that the error is small initially.
From the assumptions made earlier
that p(x) = a(x) + B(x)y — a(x)5 > 0 and

q(x):a(x)+,6’(x)+ a)(x)S 0 , we have
F>2E +G,; i=1,2,.., N-1.

Form (32), we have ;;, _ 9 <1,since F| > G,
1 ];w1
__ G G
F, -E,W, F2 - E2

,since W, <1,

2

< G, —1,since F, 2 F, +G,
E,+G,-E,

E,

G,

i

Successively, it follows that ‘el,‘ = ‘WI‘Z

€ ‘

< e since |£|<|G-
b

Therefore, the recurrence relation (32) is stable. Similarly we
can prove that the recurrence relation (33) is also stable.
Finally the convergence of the Thomas Algorithm is ensured

by the condition|Wi| <l,i=1,2, .., N-1.

D. NUMERICAL EXAMPLES WITH LEFT
END BOUNDARY LAYER

To demonstrate the applicability of the method we
have applied it to three boundary value problems of the type
given by equations (1)-(3) with left-end boundary layer. The
approximate solution is compared with exact solution.

The exact solution of such boundary value problems having

coefficients  (i.e. a(x) =a, a(x) =,

Blx)= B, f)=r. #x)=¢

and ]/(x) = ¥ are constants) is given by:

constant

o(x)= o,
y(x) =c exp(mlx)+ c, exp(mzx)+ i (36)
c

where

_— [+ re+explm, \f — )
(eXp(ml )_ exp(m2 ))C

G
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_ f—}/c+exp(m1)(—f+¢c)

C
T (explm, )—exp(m, ))e
_ —(a—a5+ﬂn)+\/(a—a5+ﬂn)2 —4ec
b 2¢
3 —(a —a§+ﬂn)—\/(a —a5+ﬂ77)2 —4ec
P 2¢
c=a+f+o
Example 1: Consider the model boundary value pro 3I(Zr)n
given by equations (H-(3) with

a(x) =1, a(x) =2, f(x)=0, o(x)=-3,
S(x)=0, ¢(x)=1, y(x)=1.
The exact solution of the problem is given by (36)-(37).

The numerical results are given in tables 1, 2 for €=0.01 and
0.005 respectively.

Example 2. Consider the model boundary value problem
given by equations (H-3) with

a(x)=1, a(x)=0, A(x)=2, o(x)=-3,
f(.X')= 05 ¢(X): la 7(x)= 1
The exact solution of the problem is given by (36)-(37).

The numerical results are given in tables 3, 4 for €=0.01 and
0.005 respectively.

Example 3. Consider the model boundary value problem
given by equations (H-(3) with

alx)=1, alx)=-2, px)=1, o(x)=-5,
f(x)=0, g(x)=1, y(x)=1.
The exact solution of the problem is given by (36)-(37).

The numerical results are given in tables 5, 6 for e=0.01 and
0.005 respectively.

E. RIGHT-END BOUNDARY LAYER
PROBLEMS

We now consider (6)-(8) and assume that
p(x) =a(x)+ ,B(x)77 - a(x)5 <M <0 throughout the
interval [0, 1], where M is constant. This assumption merely
implies that the boundary layer will be in the neighborhood of
x=1.
Thus, from the theory of singular perturbations the solution of
(6) - (8) is of the form:

@ =1+ 20 e
p(x)

1[”‘X>_M)dx
& p(x)

+0(¢)

(38)
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where ), (x) is the solution of the reduced problem

P(X)ye(X)+q(x)yy(x) = f(x), y,(0)=4¢,.

By taking the Taylor’s series expansion for p(x) and q(x)

about the point ‘1’ and restricting to their first terms, (38)
becomes

(39)

(20 a0,
y(x) =y, () + (7, =y, (e © "+ 0(e) (40)
Now we divide the interval [0, 1] into N equal parts with
constant mesh length h. Let 0 = Xgs X5 Xyy oo
be the mesh points. Then we
havex, =ih, i=0,1, 2, ..., N .From (40) we have

2
P W-ag())(1
a(l) ][a ” ]

, Xy =1

lim y(ih) = y,(0) + (7, = », (1)) e[

+0(¢)
(41)

where p = —. Applying the same procedure as in section 2.1
€

and using (41) we can get the tri-diagonal system (22)-(26)
with a fitting factor as

2p(0) } 1

- {2 —pp(0) _expﬁpz(z(_l)gq(l)]p } B |

which can be solved by Thomas Algorithm described in
section (B).

F. NUMERICAL EXAMPLES WITH RIGHT
END BOUNDARY LAYER

Here we considered four boundary value problems of the type
given by equations (1)-(3) with right-end boundary layer. The
approximate solution is compared with the exact solution. The
exact solution of such boundary value problems having

constant a(x) =d, a (x) =,

Blx)= B, fx)=r  glx)=¢

and y(x) = ¥ are constants) is given by equation (36)-(37).

coefficients  (i.e.

olx)=o,

Example 4: Consider the model boundary value problem
given by equations (D-(3) with

a(x)=-1, a(x)=-2, A(x)=0, w(x)=1,
J(x)=0, g(x)=1, y(x)=-1.
The exact solution of the problem is given by (36)-(37). The

numerical results are given in tables 7, 8 for €=0.01 and 0.005
respectively.
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Example 5: Consider the model boundary value problem
given by equations (D-(3) with

alx)=-1, a(x)=0, p(x)=-2, o(x)=1,
f(x)=0. gx)=1, y(x)=-1.
The exact solution of the problem is given by (36)-(37). The

numerical results are given in tables 9, 10 for €=0.01 and
0.005 respectively.

Example 6: Consider the model boundary value problem
given by equations (H-(3) with

alx)=-1, a(x)=-2, plx)=-2, o(x)=1,
f(x)=0, glx)=1, y(x)=-1.

The exact solution of the problem is given by (36)-(37). The
numerical results are given in tables 11, 12 for £€=0.01 and
0.005 respectively

Example 7: Consider the model boundary value problem
given by equations (D-3) with

alx)= —(1 +exp(x’ )), a(x)=—x,
ﬂ(x) = —(1 - exp(—x)), a)(x) =x7, f(x) =1,
px)=1, y(x)=—1.

The exact solution of the problem is not known. The
numerical results are given in tables 13, 14 for £=0.01 and
0.005 respectively

III. DISCUSSIONS AND CONCLUSIONS

We have presented a fitted-modified upwind finite
difference method to solve singularly perturbed differential
difference equations with the delay and advance parameters.
To demonstrate the efficiency of the method, we considered
three examples with left end boundary layer and four with right
end boundary layer for different values of 3, n and € . The
approximate solution is compared with the exact solution.
From the results presented in tables; we observed that the
present method approximates the exact solution very well.

Table 1: Numerical Results of Example 1 for e=0.01, N=100
6=0.001, n=0.005 6=0.005=n 6=0.009, n=0.005

X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.4606003 0.4620298 0.4593767 0.4608593 0.4581702 0.4597025
0.04 0.3967817 0.3969578 0.3942694 0.3944706 0.3917536 0.3919752
0.06 0.3951908 0.3950116 0.3923633 0.3921947 0.3895214 0.3893581
0.08 0.4018598 0.4016091 0.3989754 0.3987311 0.3960733 0.3958297
0.10 0.4097450 0.4094820 0.4068559 0.4065984 0.4039479 0.4036901
0.20 0.4524234 0.4521629 0.4495846 0.4493290 0.4467248 0.4464683
0.40 0.5516438 0.5514057 0.5490459 0.5488116 0.5464243 0.5461891
0.60 0.6726243 0.6724306 0.6705107 0.6703200 0.6683748 0.6681828
0.80 0.8201368 0.8200186 0.8188472 0.8187307 0.8175418 0.8174245
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
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Table 2: Numerical Results of Example 1 for e=0.005, n=0.0005, N=100

6=0.0001, =0.0005 6=0.0005=n 6=0.0009, n=0.0005
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.3887189 0.3883907 0.3884719 0.3881406 0.3882209 0.3878904
0.04 0.3854013 0.3848477 0.3851155 0.3845578 0.3848257 0.3842677
0.06 0.3929417 0.3923809 0.3926550 0.3920900 0.3923642 0.3917988
0.08 0.4008259 0.4002658 0.4005396 0.3999753 0.4002493 0.3996845
0.10 0.4088717 0.4083128 0.4085861 0.4080229 0.4082963 0.4077327
0.20 0.4515897 0.4510409 0.4513093 0.4507563 0.4510248 0.4504713
0.40 0.5508814 0.5503792 0.5506247 0.5501186 0.5503643 0.5498578
0.60 0.6720043 0.6715958 0.6717955 0.6713839 0.6715837 0.6711716
0.80 0.8197587 0.8195094 0.8196315 0.8193802 0.8195021 0.8192506
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Table 3: Numerical Results of Example 2 for e=0.01, N=100
6=0.005, n=0.001 6=0.005=n 6=0.005, n=0.009
X Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.4612147 0.4626200 0.4624456 0.4638100 0.4636980 0.4650123
0.04 0.3980323 0.3981982 0.4005193 0.4006724 0.4030082 0.4031376
0.06 0.3965950 0.3964127 0.3993813 0.3992000 0.4021595 0.4019676
0.08 0.4032912 0.4030393 0.4061293 0.4058825 0.4089564 0.4087026
0.10 0.4111782 0.4109147 0.4140196 0.4137619 0.4168488 0.4165850
0.20 0.4538308 0.4535700 0.4566194 0.4563647 0.4593939 0.4591334
0.40 0.5529305 0.5526921 0.5554766 0.5552441 0.5580059 0.5577688
0.60 0.6736697 0.6734761 0.6757361 0.6755477 0.6777859 0.6775938
0.80 0.8207739 0.8206559 0.8220317 0.8219170 0.8232776 0.8231609
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
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Table 4: Numerical Results of Example 2 for €=0.005, N=100

6=0.0005, n=0.0001 6=0.0005=n 6=0.0005, n=0.0009
X Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.3888459 0.3885157 0.3890998 0.3887657 0.3893480 0.3890156
0.04 0.3855476 0.3849926 0.3858402 0.3852821 0.3861268 0.3855714
0.06 0.3930885 0.3925262 0.3933820 0.3928168 0.3936695 0.3931071
0.08 0.4009725 0.4004109 0.4012656 0.4007010 0.4015525 0.4009909
0.10 0.4090181 0.4084576 0.4093105 0.4087471 0.4095968 0.4090364
0.20 0.4517334 0.4511832 0.4520206 0.4514674 0.4523015 0.4517514
0.40 0.5510128 0.5505093 0.5512754 0.5507694 0.5515324 0.5510292
0.60 0.6721113 0.6717017 0.6723247 0.6719133 0.6725337 0.6721245
0.80 0.8198239 0.8195741 0.8199540 0.8197031 0.8200815 0.8198320
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Table 5: Numerical Results of Example 3 for e=0.01, N=100
6=0.001, n=0.005 6=0.005=n 6=0.009, n=0.005
X Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.02 0.1094809 0.1227591 0.1081350 0.1211090 0.1068117 0.1194889
0.04 0.0156566 0.0186041 0.0155188 0.0183522 0.0153938 0.0181171
0.06 0.0062106 0.0066617 0.0063555 0.0067770 0.0065071 0.0069001
0.08 0.0057535 0.0057689 0.0059596 0.0059658 0.0061710 0.0061684
0.10 0.0063126 0.0062567 0.0065448 0.0064836 0.0067823 0.0067158
0.20 0.0110616 0.0109575 0.0114247 0.0113141 0.0117945 0.0116773
0.40 0.0341085 0.0338675 0.0349449 0.0346909 0.0357898 0.0355229
0.60 0.1051741 0.1046780 0.1068863 0.1063678 0.1086025 0.1080617
0.80 0.3243055 0.3235398 0.3269347 0.3261408 0.3295490 0.3287274
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
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Table 6: Numerical Results of Example 3 for e=0.005, N=100
6=0.0001, n=0.0005 6=0.0005=n 6=0.0009, n=0.0005
X Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol. | Numerical Sol. | Exact Sol.

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.02 0.0178655 0.0195213 0.0178369 0.0194850 0.0178084 0.0194490

0.04 0.0041111 0.0039867 0.0041262 0.0040009 0.0041414 0.0040150

0.06 0.0043845 0.0041877 0.0044024 0.0042050 0.0044205 0.0042223

0.08 0.0049182 0.0047005 0.0049379 0.0047195 0.0049578 0.0047387

0.10 0.0055205 0.0052813 0.0055422 0.0053023 0.0055640 0.0053233

0.20 0.0098372 0.0094574 0.0098715 0.0094907 0.0099061 0.0095241

0.40 0.0312358 0.0303269 0.0313175 0.0304071 0.0313998 0.0304873

0.60 0.0991824 0.0972491 0.0993555 0.0974203 0.0995293 0.0975916

0.80 0.3149324 0.3118478 0.3152070 0.3121222 0.3154826 0.3123965

1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
Table 7: Numerical Results of Example 4 for e=0.01, N=100

6=0.001, n=0.005 4=0.005=n 6=0.009, n=0.005
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.8201371 0.8200187 0.8188482 0.8187308 0.8175434 0.8174245
0.40 0.6726251 0.6724306 0.6705123 0.6703200 0.6683772 0.6681829
0.60 0.5516449 0.5514057 0.5490478 0.5488117 0.5464274 0.5461891
0.80 0.4524246 0.4521630 0.4495868 0.4493290 0.4467281 0.4464684
0.90 0.4096702 0.4093998 0.4067760 0.4065081 0.4038625 0.4035918
0.92 0.4012797 0.4009919 0.3983587 0.3980641 0.3954176 0.3951149
0.94 0.3907402 0.3903787 0.3876992 0.3872665 0.3846339 0.3841594
0.96 0.3626873 0.3621779 0.3590897 0.3580557 0.3554546 0.3541659
0.98 0.1994671 0.2009362 0.1941174 0.1917881 0.1887210 0.1847184
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
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Table 8: Numerical Results of Example 4 for €=0.005, N=100

6=0.0001, =0.0005 6=0.0005=n 6=0.0009, n=0.0005
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.8197590 0.8195095 0.8196320 0.8193802 0.8195019 0.8192506
0.40 0.6720049 0.6715958 0.6717966 0.6713839 0.6715834 0.6711717
0.60 0.5508822 0.5503792 0.5506259 0.5501186 0.5503638 0.5498578
0.80 0.4515907 0.4510410 0.4513105 0.4507563 0.4510241 0.4504714
0.90 0.4088726 0.4083128 0.4085873 0.4080229 0.4082956 0.4077327
0.92 0.4008266 0.4002657 0.4005406 0.3999752 0.4002483 0.3996845
0.94 0.3929316 0.3923772 0.3926452 0.3920862 0.3923523 0.3917950
0.96 0.3847817 0.3846442 0.3844923 0.3843529 0.3841966 0.3840614
0.98 0.3534923 0.3770636 0.3531339 0.3767721 0.3527690 0.3764803
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
Table 9: Numerical Results of Example 5 for €=0.01, N=100
6=0.005, n=0.001 6=0.005=n 6=0.005, n=0.009
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.8207732 0.8206559 0.8220346 0.8219171 0.8232757 0.8231609
0.40 0.6736687 0.6734761 0.6757410 0.6755477 0.6777827 0.6775939
0.60 0.5529291 0.5526921 0.5554826 0.5552442 0.5580020 0.5577688
0.80 0.4538293 0.4535700 0.4566260 0.4563647 0.4593894 0.4591334
0.90 0.4111035 0.4108346 0.4139587 0.4136878 0.4167818 0.4165221
0.92 0.4027260 0.4024331 0.4056069 0.4053128 0.4084550 0.4082114
0.94 0.3922449 0.3918253 0.3952396 0.3948204 0.3981973 0.3981311
0.96 0.3644656 0.3634869 0.3679978 0.3670035 0.3714807 0.3731723
0.98 0.2021188 0.1999686 0.2073903 0.2049766 0.2126045 0.2309708
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
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Table 10: Numerical Results of Example 5 for €=0.005, N=100

6=0.0005, n=0.0001 4=0.0005=1 6=0.0005, n=0.0009
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.8198244 0.8195741 0.8199533 0.8197032 0.8207421 0.8206241
0.40 0.6721120 0.6717017 0.6723235 0.6719133 0.6736173 0.6734240
0.60 0.5510136 0.5505093 0.5512739 0.5507694 0.5528658 0.5526280
0.80 0.4517343 0.4511832 0.4520189 0.4514674 0.4537601 0.4534999
0.90 0.4090191 0.4084576 0.4093089 0.4087471 0.4110329 0.4107640
0.92 0.4009733 0.4004109 0.4012638 0.4007010 0.4026548 0.4023689
0.94 0.3930786 0.3925226 0.3933697 0.3928132 0.3921708 0.3918114
0.96 0.3849301 0.3847897 0.3852240 0.3850807 0.3643779 0.3638624
0.98 0.3536752 0.3772092 0.3540379 0.3775004 0.2019874 0.2033520
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
Table 11: Numerical Results of Example 6 for e=0.01, N=100
6=0.005, n=0.001 6=0.005=n 6=0.005, n=0.009
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.5562779 0.5557454 0.5587557 0.5582183 0.5612090 0.5606658
0.40 0.3094450 0.3088530 0.3122078 0.3116077 0.3149554 0.3143461
0.60 0.1721374 0.1716436 0.1744479 0.1739451 0.1767556 0.1762431
0.80 0.0957562 0.0953902 0.0974737 0.0970993 0.0991968 0.0988135
0.90 0.0713902 0.0710767 0.0728351 0.0724996 0.0742875 0.0739417
0.92 0.0671167 0.0667839 0.0685213 0.0680689 0.0699333 0.0694517
0.94 0.0615982 0.0611406 0.0630215 0.0616699 0.0644498 0.0628982
0.96 0.0442006 0.0435159 0.0459409 0.0382505 0.0476774 0.0382895
0.98 -0.0720914 -0.0679831 -0.0690684 -0.1199952 -0.0660603 -0.1315051
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000
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Table 12: Numerical Results of Example 6 for €=0.005, N=100
6=0.0005, n=0.0001 6=0.0005=n 6=0.0005, n=0.0009
X Numerical Sol. Exact Sol. Numerical Sol. Exact Sol. Numerical Sol. Exact Sol.
0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.5548313 0.5533746 0.5550852 0.5536292 0.5553393 0.5538834
0.40 0.3078378 0.3062235 0.3081196 0.3065052 0.3084018 0.3067868
0.60 0.1707981 0.1694563 0.1710326 0.1696902 0.1712677 0.1699241
0.80 0.0947641 0.0937728 0.0949377 0.0939454 0.0951117 0.0941181
0.90 0.0705869 0.0697568 0.0707324 0.0699013 0.0708783 0.0700458
0.92 0.0665488 0.0657489 0.0666889 0.0658881 0.0668295 0.0660274
0.94 0.0627372 0.0619713 0.0628723 0.0621053 0.0630077 0.0622395
0.96 0.0588723 0.0584107 0.0590040 0.0585397 0.0591361 0.0586689
0.98 0.0385971 0.0550547 0.0387736 0.0551789 0.0389502 0.0553031
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.0000000

Table 13: Numerical Results of Example 7 for e=0.01, N=100

X 6=0.00, n=0.00 6=0.005, n=0.001 $=0.005=n 6=0.005, n=0.009
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.8832572 0.8832309 0.8832549 0.8832780
0.40 0.7518808 0.7517785 0.7518653 0.7519513
0.60 0.6265452 0.6263362 0.6265016 0.6266667
0.80 0.5204743 0.5201598 0.5203944 0.5206292
0.90 0.4766997 0.4763406 0.4766020 0.4768638
0.92 0.4687217 0.4683546 0.4686207 0.4688871
0.94 0.4610007 0.4606259 0.4608964 0.4611673
0.96 0.4533263 0.4529480 0.4532202 0.4534931
0.98 0.4268595 0.4266440 0.4268158 0.4269973
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000
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Table 14: Numerical Results of Example 6 for €=0.005, N=100

X 6=0.00, n=0.00 6=0.0005, n=0.0001 6=0.0005=n 6=0.0005, n=0.0009
0.00 1.0000000 1.0000000 1.0000000 1.0000000
0.20 0.8834323 0.8834295 0.8834320 0.8834342
0.40 0.7520655 0.7520551 0.7520639 0.7520724
0.60 0.6266463 0.6266254 0.6266420 0.6266583
0.80 0.5204805 0.5204489 0.5204723 0.5204955
0.90 0.4766710 0.4766349 0.4766611 0.4766871
0.92 0.4686872 0.4686504 0.4686770 0.4687034
0.94 0.4609482 0.4609106 0.4609376 0.4609645
0.96 0.4527357 0.4526978 0.4527250 0.4527518
0.98 0.4115886 0.4115608 0.4115804 0.4115995
1.00 -1.0000000 -1.0000000 -1.0000000 -1.0000000
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