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1 - INTRODUCTION 

 

The new analytical methods conceived after the 

development of the symbolic packages leads to some 

fundamental changes in the strategies for solving partial 

differential equations. For many practical purposes, few 

particular solutions to a given differential equation are often 

sufficient to solve several boundary value problems of 

special interest. These particular solutions also satisfy other 

auxiliary equations which are easier to solve. These 

equations are known as differential constraints [1],and act as 

restrictions over the general solution. 

If one concerns about practical applications, perhaps the 

most important question about differential constraintsis 

whether is really necessary to find the general solution of a 

given differential equation before applying restrictions, such 

as boundary conditions.In fact, such a “filtering” process 

could be applied before finding the solution, simplifying the 

target equationand improving the computational performance 

of the corresponding source codes. Moreover, when at least 

one solution of a given auxiliary equation is known, it 

becomes possible to replace this variety into the remaining 

equations in order to specify some arbitrary elements 

(parameters or functions). This procedure can be regarded as 

a direct genesis of differential equations, although the 

candidate solution being not simply prescribed, but produced 

in a systematic way. Each exact solution achieved can be 

employed to obtain a new variety via variation of 

parameters, defining an iterative scheme which stops when 

an invariant solution is achieved. 

In certain sense, this procedure constitutes an alternative 

method to obtain symmetries without employing Lie groups. 

From the operational point of view, this procedure presents 

an important advantage over the methods based on Lie 

groups: the method dispenses solving the determinant 

equations, whose solution furnishes the infinitesimals which 

appears as variable coefficients of the corresponding 

generators.   

For physical scenarios where reliable boundary conditions 

can be directly prescribed, the genesis process based on 

variation of parametersmust not be carried out iteratively.In 

this case, the differential constraints can be obtained from 

boundaryconditions or other restrictions arising in the 

problem to be solved. Thus, it becomes possible to find 

invariant solutions bymeans of the differentiation method. 

More specifically, when the expressions for certain high 

order derivatives definedby two or more differential 

equations are compared, new auxiliary equations arises. 

These equations furnish new functional relations between the 

derivatives, which reduces the order of the target equation. 

This process can be effected recursively, and stops when 

some derivatives are eliminated from the resulting 

expressions, yielding a simpler differential equation or even 

an implicit solution.  

Another direct way to find differential constraints consists 

in finding the intersection of the space solutions of two or 

more differential equations which are valid in adjacent 

domains. This procedure is useful in cases where no reliable 

boundary conditions are available.  Since no information 

about the solution is available along the internal boundaries, 

the arbitrary elements eventually arising in the solutions 

could be specified by imposing that thesefunctionsbeing 

smooth at the interfaces. However, when the differential 

constraints are obtained from the own target equations, there 

is no need to imposing continuity conditions over the 

temperature distribution and its derivatives. Hence, no extra 

equations appear in the mathematical model. As will be 

showed in the next section, the proposed formulation 

constitutes a simple way to ensure the regularity of the 

solutions obtained.  

 

2 – BASIC FORMULATION 

 

 The former argument leads to exploit the 

applications of differential constraints in a very 

straightforward way. In order to solve practical problems, it 

is often sufficient to generate a particular solution and 

perform some changes of variables according with the 
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additional mechanisms and effects to be considered. In the 

proposed work adifferential constraintis employed to solve 

aadvection-diffusion problem in a shell-tube heat exchanger. 

The differential equations describing the heat transfer inside 

the ducts, in the tube wall and in the cross flow region (shell) 

are given, respectively, by 

 � ���� � � ��	��
	 � �
 ���

  (1), 

(internal flow)  
 �� �	���	 � � ��	��
	 � �
 ���

 (2)  

(wall) and 

 
 �
 ���� � ��� ���� �� 

 

 ��	��
	 � �
 ���
 � �
	 �	���	 � �	���	
 (3) 

(crossflow around cylinders) 
 

 

In this model, vr,vθ and w are, respectively the components 

of the velocity vector in r, θ and z directions, and a steady 

fully developed flow along the cylindrical duct is assumed. 

For simplicity, it is also supposed that the distance between 

baffles is small enough to ensure that the thermal effects due 

to the small axial component of the velocity field in the shell 

side are negligible. In the tube side a parabolic velocity 

profile for w with a global maximum at the z axis (r=0) is 

prescribed: 

 � � �� � ����   (4) 

A -Solution for the region 0 < r <Ri 

 

Instead of solving each equation before connecting the 

corresponding solutions along the respective interfaces, it is 

more convenient to connect the own differential equations at 

these boundaries. Imposing simultaneously equations (1) and 

(2) over the internal surface (r=Ri), the first differential 

constraint is obtained: 

 � ���� � �� �	���	 at  R � R� (5) 

 

 

Here ri is the internal radius. The former result, which 

arises because the right hand sides of (1) and (2) are equal, 

generates a boundary condition which couples the 

corresponding solutions at r=Ri. Once this differential 

constraint is valid for all z, it can be solved in order to obtain 

a local prescription for the temperature along the interface: 
 � � � � ����� �at  R � R� (6) 
 

Herea and b are arbitrary parameters. This first kind 

boundary condition can be readily converted into a candidate 

solution through variation of parameters. The resulting 

variety, whose validity is extended to the entire inner region, 

may be defined as 
 � � � �! � � �!�" 
!�   (7) 
 

 

Replacing (7) in (1) and regrouping terms it results 
 

� #1� ���� � ������%
� # �� � ����!�&�
� '1� ���� � ������(% �" 
!� � 

� #�� �&�� � 2 ���� �&�� � � ��&���% *�" 
!� 

�� � +�"�
,� � 0   (8) 

 

Once a, b and c does not depend upon z, all the 

expressions between brackets must be null, producing a 

system of highly decoupled equations: 
 �
 �.�
 � �	.�
	 � 0     (9) 

  �� � ����!�&�� ��
 �/�
 � �	/�
	
 � 0(10) 

 

 /
 �"�
 � 2 �/�
 �"�
 � � �	"�
	 � 0  (11) 

 

 �"�
 � 0      (12) 

 

 

From equation (12) it turns out that c is a parameter 

(c=c0), a result which also identically satisfies (11). The 

general solution of (9) is obtained directly by integration: 
 � � �� � ��01�   (13) 
 

Therefore, (10) is the only remaining equation, which 

admits the following Gaussian-like solution: 
 � � ���.2
	

   (14) 
 

It occurs because successive differentiations generate, via 

chain rule, polynomial coefficients multiplying the 

exponential. Indeed, substituting (14) in (10) and dividing by 

the exponential term, an algebraic equation is produced:  
 ��3 &��� � 4 � ���!�� � &��� � 4 � ��5 

=0     (15) 
 

 

Once the coefficients of the polynomial in r must be equal 

tozero,   
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�� � "6768�     (16) 

 

and 
 &� � 4 � 7276	    (17) 

 

Therefore, the temperature distribution is a particular 

solution of (1) which contains only five arbitrary parameters: 
 � � �� � ��01� � ����2�6
	98��2�6	�

(18) 
 

 

In this equation a1 must vanishto prevent a singularity at 

r=0. In order to determine the parameters in (39) it becomes 

convenient to start by applying an asymptotic restriction as a 

first kind boundary condition: 
 lim�=> � � �?@   (19) 

 

Here Tio denotes the inlet temperature of the outer fluid. 

Once the exponential must tend to zero at large distances, it 

comes out 
 �� � �?@    (20) 
 

Applying now the inlet condition 
 T 0,0! � �??    (21) 

 

which prescribes the temperature at the inlet (z=0) of the 

centerline (r=0) for the inner fluid, it yields 
 �� � �?? � �?@    (22) 
 

The remaining parameters are specified by restrictions 

about the flow. The first is an extension of the classical no 

slip condition at the wall: 
 � � �7  �C  � � D?    (23) 
 

Here, ww denotes the velocity near the wall. This 

restriction furnishes 
 �� � �7 � ��DE2   (24) 

The second restriction states that the volumetric flow rate 

crossing each transversal section of the tube, defined by 
 F � G 2H�� I�J�    (25) 

 

isequal to the corresponding plug flow value, namely 
 F � HD�K>   (26) 

 

This restriction specifies the last free parameter in the 

model: 
 �� � 7�L�MNJO	    (27) 

 

Hence, the temperature distribution in the region 

0<r<Ribecomes 

 � � �?@ � 

 

 �?? � �?@!� 	 P��PN!QO	 P��	PN!�L
	9 R�S P��	PN!

 

    (28) 
 

An analytical expression for the velocity at the wall is 

deduced in section E. 
 

 

B - Solution for the region Ri< r < R0 

 

In the region Ri<r< R0 the solution is obtaining after 

replacing (7) in (2), which generates the same expressions 

for a and c. The differential equation defining b, given by 
 �
 �/�
 � �	/�
	 � &��� � 0    (29) 

 

is the Bessel equation,whose solution is 
 � � ��T� &��! � ��U� &��!  (30) 
 

Therefore, the temperature distribution in this region is 

defined as 
 � � �� � 3��T� &��! � ��U� &��!5�"6� 

    (31) 
 

 

 

C - Solution for the region r > R0 

 

For the external regionanother differential constraint must 

be obtained. Imposing simultaneously (2) and (3) at r = R0it 

yields 
 VWJ6

���� �� � �J6	
�	���	
   (32) 

 

In this equation, the radial component of the velocity field 

vanishes due to the non-penetration boundary condition. This 

differential constraint also imposes an exponential behavior 

for the temperature along the angular variable. Solving (32), 

it results 
 � � � � ��XWQ6� �

   (33) 
 

where a and b are parameters. Hence, the solution model for 

this region is obtained by imposing simultaneously (31) and 

(33) at r = R0. In this case the simplest candidate solution for 

genesis is given by: 
 � � � �! � � �!�"2�9"6�

  (34) 

 

This model yet considered that the arbitrary elements in 

the argument of the exponential function are constants, a 

restriction which would naturally appear even if these 

elements were previously prescribed as arbitrary functions of 
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r.Substituting (34) in (3) it produces the same model for a, 

given by (9), and the following auxiliary equation for b: 

� '1� ���� � ������( � 

�� &�� � �"2	
	 � VW"2
 
 � � 0   (35) 

 

This solution for b also depends on the model adopted for 

vq(r). For simplicity, a linear dependence on r is chosen: 
 �� � Y��      (36) 
 

Although the resulting equation do not admits exact 

solutions in Gaussian form, this model constitutes a very 

accurate approximate one. In fact, replacing 
 � � ���/2
	

    (37) 
 

 

in (56), the following set of algebraic equations is obtained: 
 � ��&�� � 0      (38) 
 � ����� � 0    (39) 
 &�Y� � 4 � &��� &�� � 0  (40) 
 

In practice, typical values for a are about 10-6, while the 

magnitude of b1 and c1 are 10-3 and b0 ranges from 10 to 

100, so equations (38) and (39) may be considered yet 

satisfied. Indeed, the typical magnitude of the left hand side 

of these equations are less than 10-9so equation (40) may be 

solved for k1, yielding 
 Y� �� �4 � "6	 "2
   (41) 

 

while (38) and (39) are taken as identities. The 

corresponding velocity profile and temperature distribution 

for this region are then given, respectively, by 
 �� �� �4 � "6	 "2
 �   (42) 

and 
 � � �� � ��01� � �0�/2
	9"2�9"6�(43) 
 

D- Estimating heat dissipation, area and mass flow rate 

 

The arbitrary parameters in (31) and (33) are specified in 

terms of the original data input when the solutions are 

compared at the interfaces. Once (28) and (31) are identical 

at r = Ri, at least two parameters can be explicitly defined: 

a1=0 and 
 &� � L��JO	MN    (44) 

 

Hence, in equation (31) b1=0, in order to prevent 

imaginary terms generated by Y0 for negative arguments. 

The solution in the wall region then reduces to 

 

� � �� � ��T� Z L��JO	MN �[ � �	�QO	PN�
(45) 

 

In equation (43) the asymptotic condition yet applied to 

the internal region remains validsince the reference 

temperatures being substituted by the corresponding values 

of the external fluid. Therefore,  

 �� � �\@    (46) 

 

and 
 �� � �]^L�]O_`_a    .(47) 

 

Herent is the number of rows of the tube bank, nc is the 

number of times the flow pass the bundleand the 

firstsubscript denotes the external fluid. Hence, equation (43) 

becomes 
 

� � �\� � �]^L�]O_`_a �/2
	9"2�9 �	�QO	PN�
.(48) 

 

Notice that equation (48) is valid around a single row of 

tubes, so the remaining parametersare determined 

numerically. Each temperature profile obtained downstream 

is prescribed as an inlet boundary condition for the next row. 

The first numerical value to be prescribed upstream comes 

from the own energy balance: 
 b\&\ �\@ � �\?! � b?&? �?? � �?@! (49) 
 

Taking into account that theoutlet temperature of the 

internal fluid is usually prescribed, there are two unknown 

elements in (49): the mass flux and the outlet temperature of 

the external fluid. Consequently, is more convenient to 

prescribe the mass flux and then estimatingthe outlet 

temperature: 
 �\@ � �\? � cO"Oc]"]  �?? � �?@!  .(50) 

 

The heat transferred by each interface of a single tube, 

defined as 
 d � �2HY? G � ���
e� I*at� � DE (51) 

 

can be obtained from equation (28),which contains only 

known parameters:: 
 

d � 2HY?D?� MN�  �?? � �?@! #�L 	�SQO	PN � 1% 

    (52) 
 

In these equations, L is the tube length and ki is the 

thermal conductivity of the internal fluid. The total heat flux 

transferred by the tube bank, given by 
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F � 2HfY?D?� MN�  �?? � �?@! #�L 	�SQO	PN � 1% 

    (53) 

 

where N is the number of tubes, must be consistent with the 

right hand side of (49): 
 F � b?&? �?? � �?@!   (54) 

 

Hence, N is defined by 

 f � �cO"O �OOL�O^!
�ghOJO	MN �OOL�O^!i\� 	�SQO	PNL�j

  

   (55) 
 

Equations (28),(49), (52) and (55) can be employed to 

define a direct method to perform heat exchangers design in 

three steps: 
 

• In order to determine the length of the heat 

exchanger, it becomes necessary to solve a system 

containing equation (52) and any constraint which 

accounts for costs minimization. If there is no extra 

constraint to impose, the outlet temperature of the 

inner fluid must be prescribed over equation (28), 

which is solved for z. 

 

• The mass flow rate or the outlet temperature of the 

water can be determined using equation (49). A 

typical prescription establishes the maximum flow 

rate, whose numerical value depends essentially 

upon the upper bound for the pressure drop [3,4]. 

 

• Finally, the number of tubes (and so the total area) 

is obtained from (55). 

 

This scheme can be simplified to a single step calculation 

if the free stream velocity in the tube side is written as 
 K> � ckgJO	l    (56) 

 

in equation (53). In this case, the heat transferred is 

expressed as a function of the number of tubes in the bank 

and the respective tube length.  

Once defined the desired parameters it is possible to check 

the temperature distribution in all the regions either to 

establish operational conditions or to verify the need for 

extra passes.  

Although the analytical character of the solutions obtained 

allows formulating flexiblecodesapplicable to a wide class of 

problems involving design and simulation, the accuracy of 

the solutions must be improved in order to account for 

turbulence, which affects the velocity near the wall and the 

thermal diffusion coefficient.  
 

 

E - Estimating the velocity near the wall 

 

In order to define Ww an extra boundary condition is 

applied over the velocity profile:  

 m � n �7��  (57) 

 

For the parabolic profile defined by (4) this restriction 

furnishes a definition for Ww as a function of the shear stress 

at the wall: 

 K7 � K> � JOo8p  (58) 

 

The shear stress is estimated using the following empirical 

relation [2]: 
 m � 0.0296 D���.� t K>�

 (59) 

 

In this equation, the Reynolds number based on the axial 

coordinate is given by 

 D�� � kMNO�p  (60) 

 

F -Correcting the thermal diffusivity  

 

The proposed model do not considers the effects of 

turbulence over the thermal diffusivity. Taking into account 

that the diffusion coefficient is defined in microscopic scale 

as [3] 
 D � v	

�o    (61) 

 

where l is the mean free path and τ the average time delay 

between two successive collisions, it becomes possible to 

deduce a dimensionless amplification factor in the form 
 f � xyz{|z}~�yx�{������ ��y���   (62) 

 

in order to obtain a definition for the turbulent heat 

diffusivity: 
 � � f D�������� ������   (63) 
 

The amplification factor can be obtained bydefining the 

mean free path and the mean velocity for two different 

scales. For the macroscopic scale, the mean free path is 

about Ri and the corresponding velocity is approximately 

W∞.In molecular scale these values need not to be defined, 

because the momentum diffusion coefficient for the 

Brownian motion is the own kinematic viscosity. Hence, the 

turbulent diffusion is defined as 
 D � v	

�o � v� vo � JO� W>   (64) 

 

Therefore, the dimensionless factor is the Reynolds number 

based on a mean free path about a half of the internal tube 

radius.  

Notice that the dimensionless factor should be defined 

locally, once the viscosity varies with temperature. Besides, 

the own definition of the Reynolds number could be 

extended in order to account for microscopic effects [4]. 
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These improvements are still out of the scope of this work, 

but the model yet produces reasonableresults, as will be 

showed in the next section.  
 

 

3- RESULTS AND DISCUSSION 

 

 A practical application of the proposed method is 

now presented [2].Water is heatedfrom 38
o
C to 54

o
C in the 

ducts of a shell-tube heat exchanger. The external fluid is 

also water, which enters the shell at 93
o
C. The mass flow 

rates for the tube and shell sides are, respectively, 3.8 kg/s 

and 1.9 kg/s and. the numerical values for the physical 

properties are showed in table 1. 
 

Table 1 – Physical properties of water 

K (W/moC) ρ (Kg/m3) ν (m2/s) C (J/KgoC) 

0,5 1000 10-6 4200 

 

These values correspond to a thermal diffusivity about 10-

6 m2/s, which is corrected by the dimensionless 

amplification factor presented in section 2.6. The internal 

tube radius is 0,0095m, and the thermal conductivity of the 

interface (considering made of steel) is 16W/m
o
C.Table 2 

shows the heat transferred per second from the shell side as a 

function of number of tubes and the corresponding length.  
 

Table 2 – Power transferred (W) 
L(m) N = 10 N = 20 N = 30 N = 40 N = 50 

2.0 58019 111474 160025 203715 242737 

2.2 63661 121921 174417 221238 262648 

2.4 69276 132261 188568 238348 281950 

2.6 74867 142495 202487 255062 300672 

2.8 80434 152627 216180 271396 318838 

3.0 85976 162660 229655 287364 336475 

 

The experimental data available for 36 tubes with length 

about 2.9 m is q = 264 kW, which is consistent with the 

results obtained. 

The calculations were executed in a low performance 

microcomputer (AMD Sempron 1.8GHz, with 512Mb 

RAM), using MapleV. The total processing time demanded 

to run the mws code (including symbolical manipulations) is 

less than5s.It is important to stress that the proposed 

formulation dispenses the previous information required by 

LMTD schemes [5-7] to carry out an iterative process, such 

as the global heat transfer coefficient and the outlet 

temperatures of the fluids. 

Notice that the global heat transfer coefficient cannot be 

considered asa data input in this problem, since convective 

coefficients are unknown. Besides, these coefficients vary 

along the interfaces, because it depends upon the temperature 

distribution at the boundaries. Therefore, the proposed 

approach is more realistic than the schemes usually adopted 

to estimate the thermal energy dissipated by the shell. Once 

the temperature distribution is not known along internal 

interfaces, it makes no sense to prescribe boundary 

conditions or even define convection coefficients at these 

regions.  

The connectivity conditions are applied at boundaries not 

only to avoid iterative schemes, but also to prevent an error 

which often appears in undergraduate texts: employing weak 

solutions whose first derivatives are discontinuous at the 

interfaces.  This prescription, which is more commonly 

employed in one dimensional diffusion models for 

inhomogeneous media, clearly violates the target equation, at 

the interfaces, provided that the normal second order 

derivative is a Dirac delta function.  
 

4 - CONCLUSIONS 

 

The most important information about themethodcan be 

summarized as follows.  
 

I. Advection-diffusion equations can be solved by 

genesis, using differential constraints to obtain a 

model for the solution instead of performing a trial 

and error process based on arbitrary prescriptions. 

The differential constraints can be constructed from 

boundary conditions or other restrictions to be 

prescribed, as well as from the own differential 

equations. 

 

II. These constraints often constitute first order PDEs 

which allows reducing the order of the target 

equation or even eliminate some derivatives respect 

to spatial variables. This simplification provides a 

considerable reduction in the corresponding 

computational code.   

 

III. When the differential constraints are obtained from 

the owntarget equations, it becomes possible to 

ensure the regularity of the corresponding solutions 

without imposing connectivity conditions at the 

interfaces. Therefore, the computational code 

becomes even simpler. In addition, differential 

constraints produced from differential equations are 

more reliable than those originated from boundary 

conditions.  

 

IV. The formulation based on genesis furnishes exact 

solutions and closed form approximations, 

demanding a time processing about few seconds to 

be obtained in symbolical packages.  

 

V. From these solutions, a straightforward method for 

heat exchangers design is proposed.This method 

dispenses a priori estimation for the global heat 

transfer coefficient or even knowledge about inlet 

and outlet temperatures, such as in the LMTD 

schemes. 

 

VI. The most serious limitation of the proposed method 

relies on the fact that the variations of viscosity with 

temperature were neglected, and thus eventually 

may produce unrealistic results [8]. 
 

In order to overcome this limitation, our work is now 

focused in obtaining an explicit solution which considers the 

variation of the kinematic viscosity with temperature. In this 

case there are at least two ways to avoid implicit solutions. 

The first is based on two-level recursive definitions where 

the argument of an empirical expression for the viscosity as a 

function of temperature is employed. In this model, the 
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argument of this function is the own temperature 

distribution, so the viscosity becomes a known function of 

the own coordinates. The second is a perturbation scheme 

based on low order Taylor expansions ofhigh level 

recurrence relations, which will be applied in cases where 

the first formulation fails. 

There is also a more rigorous model to formulate, in order 

to take into account the variable viscosity. This model 

describes the heat transfer phenomena in micro scale. This 

heat transfer model is a Boltzmann-type equation whose 

integral scattering is replaced by a nonlinear term. Although 

conceptually complex, this approach can be converted in a 

viable analytical method by applying differential constraints 

and Bäcklund transformations. The foundations of the 

proposed formulation, which are yet being developed, are 

briefly described as follows. 

 

A –A possible model in micro scale 

 

Although the formulation based on differential constraints 

being a straightforward strategy for solving partial 

differential equations, the ideas behind this simple method 

are by no means trivial. Some of these ideas may give raise 

to new unexpected applications in fluid mechanics and 

quantum field theory. This feature can be readily understood 

when some connections between differential constraints and 

other methods employed for solving PDEs are established.  

The proposed method is closely related to other interesting 

subjects in the field of differential equations, such as 

Bäcklund transformations and Lie group analysis. Indeed, 

this formulation can be considered as an attempt to avoid the 

factorizationrequired to obtain Bäcklund transformations, a 

task which is not completely systematic. This situation is 

analogous to find the Lax pair in the inverse scattering 

methods: there are no algorithmfor finding two differential 

operators whose commutator is the own operator which 

applied over the unknown function defines the target 

equation.In this case, the differential constraints obtained 

from third kind boundary conditions allow reducing the 

order of the target equation, dispensing the factorization 

process. 

On the other hand, the method can be regarded as a way to 

increase the dimension of the Lie group of a given 

differential equation. Notice that the number of symmetries 

admitted by the target equation increases whenapplying 

differential constraints, provided that the space of solutions 

is reduced to a subset which obeys the corresponding 

boundary conditions. Therefore, applying differential 

constraints is equivalent to add new generators to the 

symmetry group admitted by the target equation.  

The former conclusion has a very interesting consequence. 

In most practical cases, where there is only one reliable 

boundary condition available to apply over the variety which 

defines the solution obtained, this restriction is often not 

sufficient to specify its arbitrary elements. However, once 

the target equation changes after using the differential 

constraint, a new symmetry group arises after solving the 

corresponding determinant equations. After finding the new 

generators, it becomes possible to obtain other elements of 

the Lie group by means of commutators or Jacobi’s identity. 

In this case, new natural boundary conditions emerge, and so 

new differential constraints can be also obtained via 

Noether´s theorem. This recursive process stops when the 

new group results closed respect to the commutator and 

Jacobi’s identity, or when the differential constraints remain 

invariant. 

The former conclusionsinduce to step forward in a specific 

direction. If one considers that Bäcklund transformations 

perform a mapping between two apparently uncorrelated 

models, such as purely diffusive transport and nonlinear 

advection-diffusion (Burgers-type) equations, another 

fundamental conclusion arises: it is possible to reduce 

nonlinear partial differential equations to purely diffusive 

models using mappings and differential constraints? In order 

to answer this question, it becomes necessary to consider the 

nature of the most common nonlinearities which arises in 

quantum field models and advection-diffusion equations, 

such as Navier-Stokes and Helmholtz.   

When one search for a specific Lagrangian to describe a 

given physical phenomena, such as scattering or chemical 

reactions, the resulting Euler-Lagrange equation contains 

polynomial nonlinearities which defines the interaction 

between particles.  

An analogous situation occurs in macroscopic scale, when 

one defines material derivatives in order to account for 

advection terms in transport equations. In this case, when the 

chain rule is employed to define the velocity field, the 

parameterization of a path followed by each molecule of the 

corresponding fluid is implicitly assumed. 

In both cases the medium is ultimately considered as 

composed by particles which are supposed to preserve their 

own identities along time.  

This assumption must not be taken so seriously for 

scattering processes and chemical reactions. Roughly 

speaking, in scattering processes there are no indicia that the 

particles emerging from a given scattering medium are really 

the ones whichwere in the incident beam. The scattering 

amplitudes and angles induce to conclude that particles 

behave much more as interference patterns between fields 

than as independent massive objects.  

In the second case, when a given chemical reaction occurs, 

the conclusion seems to be essentially the same. The changes 

in the electronic cloud in a given molecule due to the field 

produced by its neighbors(inductive effect) are associated 

with Eigen functions related to a new energy spectrum, such 

as occurs in the Zeeman effect. Naturally, the production of a 

fine structure, which characterizes the new spectrum, is a 

direct consequence of the changes in the interaction 

potential, which depends upon the total wave function. But 

this is exactly the effect expected when new atoms are added 

to a given molecule, which produces a new bound state. 

Thus, it becomes necessary totake into account the radiation 

interacting with the molecules in order to compose a realistic 

total wave function(otherwise it isnot possible to investigate 

the consequences of the inductive effect over the reaction 

mechanism). 

Once the potential depends on the total wave function and 

its derivatives, the corresponding interaction term may be 
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considered as an advectionnonlinear one. Once this vector 

field can also be expressed as a material derivative, any 

particle arising from the field would be more adequately 

described by a N-soliton model. 

Consequently, the concepts of fermion and boson seem to 

be much more an arbitrary way to distinguish particles and 

fields than a consistent form of thinking about statistical 

physics. Moreover, this point of view often induces to 

choose some specific variables as “natural candidates” for 

unknown functions to a given problem.  

This choice seems to be the origin of the nonlinearities 

appearing in macroscopic and microscopic models. These 

nonlinear terms would not necessarily appear in some 

alternative formulations where the unknown functions were 

chosen in order to suppress the material derivatives. For 

instance, the Helmholtz equation can be viewed as an 

advection diffusion model where the solid interfaces acts as 

“sources of vorticity” distributed along the flow. If the 

kinetic energy were chosen as the unknown variable instead 

of the vorticity function, the interfaces would be considered 

as sinks, so the physical interpretation of the corresponding 

scenario would be essentially equivalent. Nevertheless, from 

the operational point of view, the last interpretation is 

advantageous, because advection terms are not expected to 

arise in a hydrodynamic model based on kinetic energy. 

Consequently, the resulting equation should be easily 

converted into a linear model whose solutions are mapped 

into ones of the original problem by applying nonlinear 

operators. 

Aside from considerations about symmetries and 

conservation laws, the only practical limitation of this 

approach is that it ever produces only particular solutions of 

the original problem. However, this is not a serious 

limitation, once the subspace of solutions can be easily 

generalized using symmetries admitted by the own target 

equation.  

In future workswe step forward by showing that the 

Bäcklund-type transformations are more than a mapping 

procedure. Behind these transformations arises a systematic 

way to obtain new dependent variables which furnishes a 

useful point of view for simplifying the way of reasoning 

about modeling and solving nonlinear problems in Physics 

and Engineering. 

In this new point of view the differential constraints play a 

crucial role. These auxiliary differential equations are 

directly related to certain nontrivial conservation laws. These 

conservation laws naturally arise when the concept of point 

particles whose interactions are mediated by bosons is 

replaced by interacting complex fields.  

In this picture, the fermionicandbosoniccharacteris, in 

some sense, a projection of a more comprehensive behavior 

of a local field, and becomes merely a consequence of a 

mapping induced by operators. 

This point of view allows treating heat transfer problems 

in a completely different way: by solving an auxiliary 

problem involving only radiation scattering, without using 

the Boltzmann equation in its original form.  

Once the ultimate heat transfer mechanism is in fact 

photon emission and absorption, the only technical difficulty 

in solving Boltzmann-type equations, e. g., solving the SN 

equations produced by discretization of the scattering kernel, 

can be finally surmounted. The scattering integral can be 

eliminated from the Boltzmann equation by applying a 

differential operator whose fixed point is the scattering cross 

section. Once the cross section depends on the scattering 

potential, and consequently on the wave function, the 

Boltzmann equation can be mapped into a nonlinear PDE 

term which defines a new local model for heat conduction 

problems.  
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