
 

 

 

Abstract—Data mining is the process of searching through 

databases for interesting relationships that can turn into valuable 

information. The data mining methods have gained much interest 

from diverse sectors due to their great potential on revealing useful 

and actionable relationships. Among many potential applications, we 

focus our research study on the database analysis and design 

application. Functional dependency plays a key role in database 

normalization, which is a systematic process of verifying database 

design to ensure the nonexistence of undesirable characteristics. Bad 

design could incur insertion, update, and deletion anomalies that are 

the major cause of database inconsistency. In this paper, we propose 

a novel technique to discover functional dependencies from the 

database table. The discovered dependencies help the database 

designers covering up inefficiencies inherent in their design. Our 

discovery technique is based on the structure analysis of Bayesian 

network. Most data mining techniques applied to the problem of 

functional dependency discovery are rule learning and association 

mining. Our work is a novel attempt of applying the Bayesian 

network to this area of application. The proposed technique can 

reveal functional dependencies within a reduced search space. 

Therefore, computational complexity is acceptable.  

 

Keywords— Functional dependency discovery, Bayesian 

network, Data mining, Database design, Database normalization.  

I. INTRODUCTION 

ATABASE design methodology normally starts with the 

first step of conceptual schema design in which users‟ 

requirements are modeled as the entity-relationship (ER) 

diagram. The next step of logical design focuses on the 

translation of conceptual schemas into relations or database 

tables. The later step of physical design concerns the 

performance issues such as data types, indexing option, and 

other parameters related to the database management system. 

Conceptual schema and logical designs are two important 

steps regarding correctness and integrity of the database 
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model. Database designers have to be aware of specifying 

thoroughly primary keys of tables and also determining 

extensively relationships between tables. Data normalization 

is a common mechanism employed to support database 

designers to ensure the correctness of their design.  

Normalization transforms unstructured relation into 

separate relations, called normalized ones [9]. The main 

purpose of this separation is to eliminate redundant data and 

reduce data anomaly (i.e., data inconsistency as a result of 

insert, update, and delete operations). There are many 

different levels of normalization (as shown in Figure 1) 

depending on the purpose of database designer. Most database 

applications are designed to be either in the third, or the 

Boyce-Codd normal forms in which their dependency 

relations [3] are sufficient for most organizational 

requirements.  
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Fig. 1 normalization steps [10] 
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The main condition to transform from one normal form to 

the next level is the dependency relationship, which is a 

constraint between two sets of attributes in a relation. 

Functional dependency constrains the determination 

uniqueness from one set of attribute values to the others.  

Experienced database designers are able to elicit this kind 

of dependency information. But in some applications in which 

the business process and operational requirements are 

complex, this task of dependency analysis is tough even for 

the experienced ones. We thus propose to use the data mining 

technique called Bayesian network learning or Bayes net to 

help analyzing the database structure and then report the 

underlying functional dependencies. This work can also 

support the automatic induction of functional dependencies 

from legacy databases that design documents are no longer 

available.  

The rest of this paper is organized as follows. We discuss 

related work regarding the functional dependency discovery 

problem in Section 2. Then propose our methodology in 

Section 3. Running examples appear in Section 4. Finally, the 

last section concludes this paper with the mention of our 

future work. 

II. RELATED WORK 

The main objective of our study is the induction of 

functional dependency relationships from the database 

instances. It has long been the problem of interest among 

database researchers [16], [22], [23], [26], [29], [32], [33] 

because such relationships are abstract in their nature and 

hence can be easily missed out in the database design.  

Silva and Melkanoff [29] was the first team attempting to 

discover functional dependencies (FDs) through the data 

mining technique. The complexity of discovering FDs from 

existing database instances has been studied by Mannila and 

Raiha [22], [23]. Early work on FD discovery handled the 

complexity problem by means of partitioning the set of rows 

according to their attribute values and perform a level-wise 

search for desired solution [15], [17], [26], [33]. The later 

work of Wyss et al. [33] and Atoum et al. [4] applied the 

minimal cover concept on equivalent classes. 

Researchers in the application area of database reverse 

engineering are also interested in the same objective. Lee and 

Yoo [20] proposed a method to derive a conceptual model 

from object-oriented databases. The final products of their 

method are the object model and the scenario diagram 

describing a sequence of operations. The work of Perez et al. 

[28] emphasized on relational object-oriented conceptual 

schema extraction. Their technique is based on a formal 

method of term rewriting. Rules obtained from term rewriting 

are then generated to represent the correspondences between 

relational and object-oriented elements. 

Researchers that focus their study on a particular issue of 

semantic understanding including Lammari et al. [19] who 

proposed a method to discover inter-relational constraints and 

inheritances embedded in a relational database. Chen et al. [7] 

also based their study on entity-relationship model. They 

proposed to apply association rule mining to discover new 

concepts leading to a proper design of relational database 

schema. They employed the concept of fuzziness to deal with 

uncertainty inherited with the association mining process. The 

work of Pannurat et al. [27] and Alashqur [1] are also in the 

line of association mining technique application to the 

database design. 

Besides functional dependencies, other kinds of database 

relationships are also explored. De Marchi et al. [11] studied 

the problem of inclusion dependencies. Fan et al. [12] 

proposed the idea to capture conditional FDs. Calders et al. [6] 

introduced a notion of roll-up dependency to be applied to the 

OLAP context. Approximate FDs concept has been recently 

applied to different subfield of data mining such as decision 

tree building [18], data redundancy detection [2], and data 

cleaning [8], [24]. 

Our work is different from those in the literature in that our 

method of discovering FDs is based on the analysis of Bayes 

net structure [13], [14], [21], [30]. The work of Mayfield et al. 

[24] also consider applying Bayesian network but for a 

different purpose of correcting missing information. 

Therefore, from the literature review we can state that our 

work is original in this are of problem. 
 

III. PROPOSED METHODOLOGY 

Functional dependencies between attributes of a relation 

express a constraint between two sets of attributes. For 

instance, the constraint X  Y states that the values of 

attributes in a set Y are fully determined by values of 

attributes in a set X. The obvious example is given the social 

security number, there is at most one individual associated 

with that number.  

Discovering such constraints from the database instances 

requires extensive search over each pair of attribute values. 

We propose a methodology of employing Bayesian networks 

learning [5], [25] at this step. Bayesian network or Bayes net 

is a graphical model representing correlations among variables 

in the network structure. Relation attributes correspond to 

variables which appear as nodes in the Bayes net. A Bayes net 

is a directed acyclic graph whose edges represent statistical 

dependencies.  

With the proper search procedure, such as the ICS 

algorithm [31], and the use of conditional dependencies 

associated with each node, we can turn dependence relations 

between variables into causal relationship among nodes in the 

Bayes net. We also apply heuristics on the consideration over 

each conditional dependency table associated with the child 

node to select proper functional dependencies from the Bayes 

net. Our algorithm of FDs discovery, named BayesFD, is 

presented in Figure 2. 
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Input:  a set of database instances 

Output:  functional dependency rules 

Steps: 

/*  Learning Phase */ 

1.  Apply Bayesian learning algorithm to the set of 

database instances to form a network structure 

2.  Identify conditional independency with ICS search 

algorithm [26] and assign direction to the edges 

3.  Output causal Bayes net with additional conditional 

probability table associated with each node 

    /*  FDs Detection Phase */ 

4.  For an effect node (E) linking from a single causal node 

(C) or at most two causal nodes 

5.           Check conditional probability table of the effect 

node 

6.           If  for each value of E there exists distinct value 

of C related to E with probability not less 

than 0.5 (regarding to existing values in the 

database instances), 

              Then add a rule C  E to the FD rule set 

7.           If C contains two nodes (C1 and C2),    

              Then repeat step 6 with C1  E and  

                                                     C2  E 

8.  For an effect node (E) linking from multiple causal 

nodes (Cs)  

9.            Examine each edge linking from each C in Cs  

10.          If the criterion in steps 5-6 is satisfied by each 

and every edge, 

               Then  add a rule Cs  E to the FD rule set 

11. Return the FD rule set as the output  

 
Fig. 2 algorithm BayesFD for discovering functional dependencies 

from the database instances 

 

 

 

 

 

 

IV. RUNNING EXAMPLES AND ANALYSIS RESULTS 

We demonstrate the mechanism of our proposed method via 

the two simple database examples. 

 

Example 1. The database instances are given as shown in 

Table I. 

TABLE I 

EXAMPLE DATABASE 1 

A B C D 

a1 b1 c1 d1 

a1 b2 c1 d2 

a2 b2 c2 d2 

a2 b3 c2 d3 

a3 b3 c2 d4 

 

Learning Phase (steps 1-3) 

Perform causal Bayesian learning (illustration of Bayesian 

learning is given in Appendix) to the database instances in 

Table I to obtain the network structure as illustrated in Figure 

3. 

 

 

                          B                           A 

 

 

 

                          D 

 

                                                      C 

                                          

 

Fig. 3 Bayesian network structure of database 1 

 

There are two effect nodes in Bayes net of Figure 3, that 

are, node D and node C. Both of them have two causal nodes. 

Therefore, the FDs detection phase follows the steps 4-7. 

 

FDs Detection Phase (steps 4-7) 

Check conditional probability tables for each causal edge, 

that is, AB  D and AD  C. Details of conditional 

probability values in each relation are shown in Tables II and 

III (combinations of attribute values that do not exist in the 

database table have been removed). Both dependency 

relationships are hold. But they are composed of two causal 

nodes. We thus have to check other four dependencies:     

AD, BD, AC, and DC. The only dependency that 

holds is AC, and its conditional probability table is shown 

in Table IV. 
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TABLE II 

CONDITIONAL PROBABILITY FOR DEPENDENCY AB  D 

 D=d1 D=d2 D=d3 D=d4 

A=a1, B=b1 0.5 0.167 0.167 0.167 

A=a1, B=b2 0.167 0.5 0.167 0.167 

A=a2, B=b2 0.167 0.5 0.167 0.167 

A=a2, B=b3 0.167 0.167 0.5 0.167 

A=a3, B=b3 0.167 0.167 0.167 0.5 

TABLE III 

CONDITIONAL PROBABILITY FOR DEPENDENCY AD  C 

 C=c1 C=c2 

A=a1, D=d1 0.75 0.25 

A=a1, D=d2 0.75 0.25 

A=a2, D=d2 0.25 0.75 

A=a2, D=d3 0.25 0.75 

A=a3, D=d4 0.25 0.75 

TABLE IV 

CONDITIONAL PROBABILITY FOR DEPENDENCY A  C 

 C=c1 C=c2 

 A=a1 0.833 0.167 

 A=a2 0.167 0.833 

 A=a3 0.25 0.75 

 

 

Therefore, we can conclude that with the given database as 

shown in Table I, the three discovered functional 

dependencies are: 

AB  D,  

AD  C, and  

A  C. 

 

 

Example 2. The customer database instances are given as 

shown in Table V. 

TABLE V 

CUSTOMER DATABASE 

A1 A2 A3 A4 A5 A6 A7 

1 c1 Kitty 21000 Honda 31 Dang 

1 c8 Kitty 21000 Toyota 41 Dum 

1 c6 Kitty 21000 Nissan 51 Ple 

2 c2 Somsak 20111 Mitsubishi 41 Dum 

2 c5 Somsak 20111 Toyota 31 Dang 

3 c4 Siri 19999 Toyota 31 Dang 

 

 

Learning Phase (steps 1-3) 

Perform causal Bayesian learning to the database instances 

in Table V to obtain the network structure as illustrated in 

Figure 4. 

 

 

                                                                             A6                                      

                  A1                             

                                                            A7 

       A4 

                                             A2 

   

       A3 

                               A5 

 
Fig. 4 Bayesian network structure of customer database 

 

There are five effect nodes in Bayes net of Figure 4, that 

are, nodes A2, A3, A4, A5, and A7. Nodes A3, A4, and A7 

have a single causal node, and A2 has two causal nodes. Thus, 

the FDs detection phase follows the steps 4-7, whereas the 

node A5 has to follow steps 8-10 because it has multiple 

causal nodes. 

 

FDs Detection Phase (steps 4-7) 

Single causal nodes (A3, A4, and A7)  are easy to examine 

the dependencies as shown in Tables VI-VIII. 

TABLE VI 

CONDITIONAL PROBABILITY FOR DEPENDENCY A4  A3 

 A3=Kitty A3=Somsak A3=Siri 

A4=21000 0.778 0.111 0.111 

A4=20111 0.143 0.714 0.143 

A4=1999 0.2 0.2 0.6 

TABLE VII 

CONDITIONAL PROBABILITY FOR DEPENDENCY A1  A4 

 A4=21000 A4=21000 A4=21000 

A1=1 0.778 0.111 0.111 

A1=2 0.143 0.714 0.143 

A1=3 0.2 0.2 0.6 

TABLE VIII 

CONDITIONAL PROBABILITY FOR DEPENDENCY A6  A7 

 A7=Dang A7=Dum A7=Ple 

A6=31 0.778 0.111 0.111 

A6=41 0.143 0.714 0.143 

A6=51 0.2 0.2 0.6 
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It can be noticed from the conditional probability tables that 

the three dependencies A4A3, A1A4, and A6A7 hold. 

The node A2 has two causal nodes: A1 and A7. The 

conditional probability of A1A7  A2 is given in Table IX. It 

can be seen that all probability values are less than 0.5. 

Therefore, the dependency A1A7  A2 does not hold, so do 

the dependencies A1  A2 and A7  A2. 

TABLE IX 

CONDITIONAL PROBABILITY FOR DEPENDENCY A1A7  A2 

 
A2=c1 A2=c2 A2=c4 A2=c5 A2=c6 A2=c8 

A1=1, 

A7=Dang 

0.375 0.125 0.125 0.125 0.125 0.125 

A1=1, 

A7=Dum 

0.125 0.125 0.125 0.125 0.125 0.375 

A1=1, 

A7=Ple 

0.125 0.125 0.125 0.125 0.375 0.125 

A1=2, 

A7=Dang 

0.125 0.125 0.125 0.375 0.125 0.125 

A1=2, 

A7=Dum 

0.125 0.375 0.125 0.125 0.125 0.125 

A1=3, 

A7=Dang 

0.125 0.125 0.375 0.125 0.125 0.125 

 

 

The last examination is the dependency with multiple 

causal nodes A1A2A3A4A7  A5. The steps 8-10 have to be 

applied. We then split the dependency relation into five cases: 

A1 A5, A2 A5, A3 A5, A4 A5, and A7 A5. 

Conditional probabilities of the five cases are shown 

altogether in Table X. It is obviously seen that the only 

relation that holds is A2 A5. 

The discovered functional dependencies of database 2 are 

as follows: 

A4A3,  

A1A4,  

A6A7, and  

A2A5. 
 

 

 

 

 

 

 

 

 

TABLE X 

CONDITIONAL PROBABILITY FOR DEPENDENCY A1  A5, A2  A5, 

A3  A5, A4  A5, A7  A5 

 A5= 

Honda 

A5= 

Toyota 

A5= 

Nissan 

A5= 

Mitsubishi 

A1=1 0.3 0.3 0.3 0.1 

A1=2 0.125 0.375 0.125 0.375 

A1=3 0.167 0.5 0.167 0.167 

 

A2=c1 0.5 0.167 0.167 0.167 

A2=c2 0.167 0.167 0.167 0.5 

A2=c4 0.167 0.5 0.167 0.167 

A2=c5 0.167 0.5 0.167 0.167 

A2=c6 0.167 0.167 0.5 0.167 

A2=c8 0.167 0.5 0.167 0.167 

 

A3=Kitty 0.3 0.3 0.3 0.1 

A3=Somsak 0.125 0.375 0.125 0.375 

A3=Siri 0.167 0.5 0.167 0.167 

 

A4=21000 0.3 0.3 0.3 0.1 

A4=20111 0.125 0.375 0.125 0.375 

A4=1999 0.167 0.5 0.167 0.167 

 

A7=Dang 0.3 0.3 0.3 0.1 

A7=Dum 0.125 0.375 0.125 0.375 

A7=Ple 0.167 0.5 0.167 0.167 

 

 

V. CONCLUSION 

The design of a complete database starts from the high-level 

conceptual design to capture detail requirements of the 

enterprise. Common tool normally used to represent these 

requirements is the entity-relationship, or ER, diagram and the 

product of this design phase is a conceptual schema. 

Typically, the schema at this level needs some adjustments 

based on the procedure known as normalization in order to 

reach a proper database design. Then, the database 

implementation moves to the lower abstraction level of logical 

design in which logical schema is constructed in a form of 

relations, or database tables.  

In this paper, we propose a method to discover functional 

dependencies inherent in the conceptual schema from the 

database relation containing data instances. The discovering 

technique is based on the structure analysis of learned Bayes 
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net. Heuristics are also applied on the relationship selection 

over the network structure.  

The results from the proposed method are the same as the 

design schema obtained from the database designer. We plan 

to improve our methodology to discover a conceptual schema 

up to the level of multi-relations. 

 

APPENDIX 

The material in this section explains steps in data 

preparation and parameter setting to learn Bayesian network 

structure with the WEKA software (available at http:// 

www.cs.waikato.ac.nz/ml/weka/). The customer database as 

shown in Table V has to be transformed into the arff format. 

The transform data are as follows: 

 
@relation CustomerDatabase 

@attribute A1 {1, 2, 3} 

@attribute A2 {c1, c2, c4, c5, c6, c8} 

@attribute A3 {kitty, somsak, siri} 

@attribute A4 {21000, 20111, 1999} 

@attribute A5 {honda, toyota, nissan, mitsubishi} 

@attribute A6 {31, 41, 51} 

@attribute A7 {dang, dum, ple } 

@data 

1, c1, kitty, 21000, honda, 31, dang 

1, c8, kitty, 21000, toyota, 41, dum 

1, c6, kitty, 21000, nissan, 51, ple 

2, c2, somsak, 20111, mitsubishi, 41, dum 

2, c5, somsak, 20111, toyota, 31, dang 

3, c4, siri, 1999, toyota, 31, dang 

 

After invoking WEKA and select the explorer task, the 

above dataset can be read into the system. On the classify tab, 

select the „BayesNet‟ algorithm (as shown in Figure A1) for 

learning the Bayesian structure. 

 

 
Fig. A1 choose the BayesNet classifier algorithm 

The default setting of the BayesNet algorithm is 

inappropriate for learning the cause and effect structure, as 

required by this specific functional dependency application. 

We thus has to set the right parameter by clicking at the frame 

in which the name BayesNet appears (as pointed by the arrow 

in Figure A2). A small window will be popped up. Then click 

the „searchAlgorithm‟ option to choose the ICS search 

algorithm, and then click the OK button. 

 
 

 

 
Fig. A2 set the „searchAlgorithm‟ parameter 

 

The Bayesian network structure can be visualized by right 

clicking at the algorithm name below the „Result list‟ panel 

(as shown in Figure A3). Then choose „Visualize graph.‟ A 

new pop-up window will appear as shown in Figure A4. 
  

 
Fig. A3 select „Visualize graph‟ to view the Bayesian network  

Click in this area for parameter setting 

Right click here 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 7, 2013 60



 

 

 

 

Fig. A4 a Bayesian network structure for customer database 

 

 

 

Fig. A5 a conditional probability associated with each node 

 

Each node in the Bayesian network is associated with the 

conditional probability table. This table does not automatically 

display in the network structure, but it can be viewed by 

clicking at the node. The example of conditional probability 

table associated with node A7 is shown in Figure A5. 
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