
 

 

  

Abstract—In this paper, we divide the predator’s life cycle into 

two stages of foliage maturity, namely immature and mature. Both 

types of predators have hunting ability and compete for the same 

prey. Naturally, their consumption rates and growth rates are limited 

by the presence of the prey population. Therefore, a stage–structured 

model with Holling type II response function is proposed. The 

objective of this paper is to investigate the existence of a local Hopf 

bifurcation. Bifurcation diagrams of one–parameter family and two–

parameter family are also expressed into several regions of different 

dynamical behaviors. Finally, numerical simulations are carried out 

in support of the theoretical results.     

 

Keywords—Hopf bifurcation, predator–prey interaction, 

qualitative behavior, stage–structured model.  

I. INTRODUCTION 

nderstanding the predator–prey relationship within 

ecological communities should lead to interaction 

strength and ecosystem stability. One of the most powerful 

tools for this investigation is mathematical modeling. From the 

last century, it has been intensively studied and continuously 

developed in many ecological problems. Among, mathematical 

models, predator–prey models have been widely modified not 

only to various loss–win situations in ecology [1] and in 

epidemiology [2] but also to numerous aspects, in terms of the 

multispecies interactions [3] and the stage–structure in a 

certain population. In recent years, the state–structured models 

have become more popular. Authors in [4]–[6] used the state–

structure in the prey population whereas authors in [7]–[15] 

used the state–structure in the predator population. Besides, 

researchers in [16]–[17] considered the state–structure in both 

prey and predator populations. Previously, the major 

assumption of models with the state–structure in the predator 

population is that only mature predator has the hunting ability 

[7]–[15]. Of course, it is a good example for mammals because 

the immature predator is raised by parents.     
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In general, the following formula was studied as the stage-

structured model in the predator population with the stated 

assumption. 

( ) ( )2,= −ɺx U x F x y , 

( ) ( )1 2 1 1,γ δ= −ɺy F x y T y , 

( ) ( )2 2 1 2δ= −ɺy T y V y , 

where ( )x t , ( )1y t , ( )2y t  denote the densities of prey, 

immature predator, and mature predator at time t  respectively. 

( )U x  is the intrinsic growth rate of prey in the absence of the 

predator population. ( )2,F x y  represents the relationship 

between the prey population and the mature predator 

population. γ  is the reproduction rate. ( )1 1δ T y  describes the 

movement of the immature predator population outside the 

immature class. ( )2 1δ T y  is the conversion of the immature to 

the mature predator.  ( )2V y  represents the intrinsic decrease 

rate of the predator population. For varieties of its application, 

we refer the reader to Wang [9], Xiao and Chen [10], 

Georgescu et al. [11]–[13], Wang et al. [14], and Shi et al. 

[15].  

Unlike the previous model, the parents of various marine 

species abandon their newborn babies; therefore, the newborn 

babies have to capable to support themselves as quickly as 

they can.  Consequently, the marine predator–prey model with 

stage–structure in predator population should be investigated 

differently. 

In the work of Boonrangsiman and Bunwong [18], they 

proposed the following suitable fish population model with the 

hunting ability of the immature predator and applying Holling 

type II as the respond function for both types of the predator 

population. 

( ) 1 1 2 2

1 21 1
= − − −

+ +
ɺ

b xy b xy
x x r ax

m x m x
          (1) 

2 2 2

1 1 1

21
= −

+
ɺ

k b xy
y d y

m x
                (2)

 

1 1 1

2 2 2

11
= −

+
ɺ

k b xy
y d y

m x
                (3) 

where ( )x t , ( )1y t , ( )2y t  represent the biomasses of prey, 

immature predator, and mature predator at time t . All 

parameters are positive. For each type of the predator 
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population, 1,2=i , ib  are the searching rates, im  are the 

products of the searching rate and the handling time, and 
id  

are the mortality rates. r  is the intrinsic growth rate of prey. 

1k  is the conversion rate of the immature predator into the 

mature predator while 2k  is the reproduction rate of the 

mature predator. In theoretical results, they established the 

uniformly boundedness, the existence of positive equilibrium 

point, the local stability and the permanent of system (1)–(3). 

In numerical results, after changing the value of parameter 
1d , 

they plotted maximum and minimum values of the biomasses 

on prey, immature predator  and mature predator, respectively. 

Moreover, the local Hopf bifurcations were numerically 

discovered, unlike the work of Ajraldi and Venturino [19]. The 

aim of this paper is to analyze the condition of the existence of 

a local Hopf bifurcation for Boonrangsiman’ model. 

 The organization of this paper is as follows. Theoretical 

results including all possible eigenvalues of characteristic 

equation and the existence criteria of local Hopf bifurcation 

are analyzed in section II. The bifurcation diagrams of one–

parameter family are illustrated in section III while the 

bifurcation diagrams of two–parameter family are considered 

in section IV. The conclusion is provided in the final section.   

II. THEORITICAL RESULTS 

In this section, we first review the useful Lemmas and 

Theorems which were proven in [18].  

 

Lemma 1 Suppose 

( ) 3 1 2

1 2

2 1

: , , R : 0 ,0 ,
y yr

x y y x x M
a k k

+

 
Ω = ∈ ≤ ≤ ≤ + + ≤ 

 
 

where ( ) := /M r r aη η+  and { }1 20 min ,d dη< ≤ . Then all 

solutions of system (1)–(3) starting in 3R+  are uniformly 

bounded and Ω  is the region of attraction. 

 

Lemma 2 Suppose 2 2

1 2:H a d d arB r A= + −  where 
 

1 2 1 2 1 2 1 2:A b b k k d d m m= −  and 1 2 1 1 2 2:B d d m d d m= + .  Then we 

have the following: 

1) The trivial equilibrium point ( )0 0,0,0N  always exists. 

2) The  predator–free equilibrium point ( )1 / ,0,0N r a  

always exists. 

3) If the inequality 0H <  holds then the coexistence 

equilibrium point ( )2 1 2, ,N x y y  exists, where 

2

1 24

2

B B d d A
x

A

+ +
= , 

( ) ( ) ( )
( )

2 1 2

1

1 2 2 1 2 1

1 1

1

d r ax m x m x
y

b d m x b b k x

− + +
=

+ +
, and 

( ) ( )
( )

1 1 2

2

1 2 2 1 2 1

1

1

b k x r ax m x
y

b d m x b b k x

− +
=

+ +
. 

 

Theorem 1 The Jacobian matrix of  system (1)–(3) is given by 

( )

( )

1 2
11

1 2

2 2 2 2 2
1 2 12

22

1 1 1 1 1
22

11

1 1

( , , )
11

11

b x b x
J

m x m x

b k y b k x
J x y y d

m xm x

k b y b k x
d

m xm x

 
 − −
 + +
 
 = −
 ++
 
 

− ++ 

 

where 
( ) ( )

1 1 2 2

11 2 2

1 2

: 2
1 1

b y b y
J r ax

m x m x
= − − −

+ +
.  

Suppose 

1 11 1 2: J d dα = − + + , 

( )2 11 1 2 1 2: J d d D Dα = − + + + , 

( ) ( )
1 1 2 1 2 1 2 2

3 1 2 2 12 2

1 2

:
1 1

α = + + +
+ +

b d d y b d d y
d D d D

m x m x
, 

where 
( )( )

1 1 1

1

1 2

 
:

1 1
=

+ +

b d y
D

m x m x
, 

( ) ( )
2 2 2

2

1 2

 
:

1 1
=

+ +

b d y
D

m x m x
,

 

then we obtain the following 

1) The equilibrium point ( )0 0,0,0N is always unstable. 

2) The predator–free equilibrium point ( )1
/ ,0,0N r a  is 

locally asymptotically stable if 0H >  and unstable if 

0H < . 

3) The coexistence equilibrium point ( )2 1 2, ,N x y y , if it 

exists, is locally asymptotically stable if 
1 0α >  and 

1 2 3α α α> . 

 Obviously, there are only two equilibrium points while the 

predator–free equilibrium point is stable. As it begins to lose 

its stability, the coexistence equilibrium point starts to appear 

in the system. For further analysis, the possibility of 

occurrence of a local Hopf bifurcation is explored. In fact, it 

requires two conditions. One is the presence of an equilibrium 

point with a pair of purely imaginary eigenvalues for a 

particular value of the bifurcation parameter and another one is 

the change in its stability for a variation of the bifurcation 

parameter. Here, we will focus on the coexistence equilibrium 

point only.   
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Lemma 3 Suppose 

3:
2

q
M D= − + , 3:

2

q
N D= − −  , 

2 3

:
4 27

q p
D = + , 

2

1

2:
3

p
α

α= − , and 
3

1 1 2

3

2
:

27 3
q

α α α
α= − + . 

If 0D >  then the eigenvalues of the Jacobian matrix evaluated 

at the coexistence equilibrium point ( )2 1 2
, ,N x y y  are as 

follows: 

1) If 12

3
M N

α
+ > −  then there are one real eigenvalue and 

two complex eigenvalues with negative real parts. 

2) If  12

3
M N

α
+ = −  then there are one real eigenvalue and 

two complex eigenvalues with purely imaginary parts. 

3) If  12

3
M N

α
+ < −  then there are one real eigenvalue and 

two complex eigenvalues with positive real parts. 

 

Proof The characteristic equation generated by the Jacobian 

matrix of system (1)–(3) evaluated at an equilibrium point 

( )1 2, ,N x y y  can be written in the form: 

3 2

1 2 3 0λ α λ α λ α+ + + = .            (4) 

where 
 1 11 1 2:α = − + +J d d , 

( )2 11 1 2 1 2:α = − + + +J d d D D ,  

( ) ( )
1 1 2 1 2 1 2 2

3 1 2 2 12 2

1 2

:
1 1

α = + + +
+ +

b d d y b d d y
d D d D

m x m x
.

 
( )( )

1 1 1

1

1 2

 
:

1 1
=

+ +

b d y
D

m x m x
, 

( ) ( )
2 2 2

2

1 2

 
:

1 1
=

+ +

b d y
D

m x m x
,

 

( ) ( )
1 1 2 2

11 2 2

1 2

: 2
1 1

= − − −
+ +

b y b y
J r ax

m x m x
.

 

Performing the change of variable, we let 
1 / 3λ α= −z . 

Then (4) becomes  

     
 

3 0z p qλ+ + = .              (5) 

where 
2

1

2:
3

p
α

α= − , and 
3

1 1 2

3

2
:

27 3
q

α α α
α= − + . 

 Again we transform ( )/ 3= −z r p r . Consequently, (5) can 

be written as follows   

      ( )2
3 3 31

0
27

r qr p+ − = .           (6) 

Hence, 3

2

q
r D= − ± . Next, we apply finding 3

th
 root in a 

complex number to obtain the roots of r . Hence 
3

p
MN = − . 

Therefore, three eigenvalues of (4) are 

1

1
3

M N
α

λ = + − ,               

 

 

2 1

2
3

M N
α

λ µ µ= + − , and            

2 1

3
3

M N
α

λ µ µ= + − ,   

where 
1 3

2 2
iµ = − + .  More detail can be seen in [20]. 

 From [21], we can conclude that if  0D >  then 
1λ  is a real 

eigenvalue of (4) while 2,3λ  are complex eigenvalues which 

can be written as follows 

  1

1
3

M N
α

λ = + − ,                    (7) 

( ) ( )1

2,3

1 3

2 3 2
M N M N i

α
λ  

= − + + ± −  
.       (8) 

  Obviously, the coexistence equilibrium point ( )2 1 2, ,N x y y  

is locally asymptotically stable if 
1 / 3M N α+ <  and 

12 / 3M N α+ > − because of one negative real eigenvalue and 

two complex eigenvalues with negative real parts. In addition, 

the coexistence equilibrium point ( )2 1 2, ,N x y y  is unstable if 

1 / 3M N α+ >  or 
12 / 3M N α+ < − . The real parts of two 

complex eigenvalues become zeros when 
12 / 3M N α+ = − . 

 

Step for determining a local Hopf bifurcation 

Step 1: Find 
1α , M , and N  as the function of the interesting 

bifurcation parameter, c . 

Step 2: Solve the equation  
12 / 3α+ = −M N  for a critical 

value ( *c ) of the interesting bifurcation parameter. 

This condition implies the occurrence of a pair of 

purely imaginary eigenvalues.  

Step 3: Choose a critical value that also satisfies the inequality 

0H < , the existence criterion of the coexistence 

equilibrium point ( )2 1 2, ,N x y y . 

Step 4: Verify the transversality condition by differentiating 

the real part of two complex eigenvalues with respect 

to the interesting bifurcation parameter and substituting 

a critical value, i.e.,  

 ( )2,3

*

Re λ

=c c

d

dc
.            (9) 

Step 5: Determine the occurrence of a local Hopf bifurcation 

by considering the sign of (9). 

If (9) is equal to zero then a local Hopf bifurcation 

does not occur. 

If (9) is nonzero then a local Hopf bifurcation 

occurs. In addition, if (9) is positive, the system 

behavior changes from equilibrium state to oscillatory. 

In contrast, if (9) is negative then the system behavior 

changes from oscillatory to equilibrium state.  
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III. ONE–PARAMETER FAMILY 

In this section, numerical simulations are carried out to 

illustrate the theoretical results with the same set of parameter 

values, 3=r , 2.3=a ,
 1 0.95=b ,

 2 1.5=b ,
 1 1=m , and 

2 1.8=m . The initial condition, used in this work, is ( )1,1,1 . 

 

Case 1 1k –bifurcation parameter  

 The additional values of parameters are 
2 1=k ,

 1 0.3=d , 

and 2 0.4=d . Here, 1k  is treated as a bifurcation parameter. 

Following the five–step procedure outlined in the previous 

section, we obtain the following results. 

1) Two critical values of 1k  are  

*

1 2.02306=k  and **

1 133.636=k . 

2) The coexistence equilibrium point  ( )2 1 2, ,N x y y   

exists for both critical values since 21.0486 0= − <H  

for *

1k  and 1708.98 0= − <H  for **

1k . 

3) The transversality condition at each critical value is  

shown as follows  

( )
*

1 1

2,3

1

Re
0.06789

λ

=

=
k k

d

dk
  and 

   
( )

**
1 1

2,3

1

Re
0.00012

λ

=

= −
k k

d

dk
. 

 As a conclusion, the local Hopf bifurcation occurs twice. 

Firstly, the coexistence equilibrium point loses its stability as 

1k  increases from 1 to 3 and the system undergoes a local 

Hopf bifurcation at 
1 2.02306=k  as shown in Fig. 1(a). 

Secondary, the coexistence equilibrium point becomes stable 

as 
1k  increases from 132 to 135 and the system undergoes a 

local Hopf bifurcation at 
1 133.636=k  as displayed in Fig. 

1(b). 

 We also plot various dynamical behaviors of the solution 

depending on the values of the parameter 
1k . The chosen 

value of 
1k , less than **

1k , can be associated with either a non–

oscillatory solution in Fig. 2(a) or a damped oscillatory 

behavior in Fig. 2(b). Next, 
1 2.3=k , greater than **

1k , is 

chosen to satisfy the condition under which a limit cycle will 

occur as shown in Fig. 2(c). 

 

Case 2 
1d –bifurcation parameter  

 The interesting bifurcation parameter is 
1d . 

Case 2A   

 In this case, the additional values of parameter are 1 1=k , 

2 3=k , and 
2 0.4=d . Again following five–step procedure 

and, then, we obtain the following results 

1) Three critical values of 
1d  are the following   

*

1 0.0672456=d , **

1 0.413786=d , and ***

1 16.2152=d . 

2) The coexistence equilibrium point ( )2 1 2, ,N x y y  exists  

for  *

1d  and **

1d  only  since  

37.3773 0= − <H   for  *

1d , 

  

 

31.7204 0= − <H   for  **

1d , and  

226.222 0= >H   for  ***

1d . 

 

3) The transversality condition at each critical value is  

shown as follows 

 

( )
*

1 1

2,3

1

Re
0.656343

λ

=

=
d d

d

dd
 and 

 

( )
**

1 1

2,3

1

Re
0.27823

λ

=

= −
d d

d

dd
. 

 Consequently, the local Hopf bifurcation occurs twice. As 

1d  increases and passes through the critical value 

*

1 0.0672456=d  then the coexistence equilibrium point loses 

its stability and the system undergoes a local Hopf bifurcation. 

Later on the coexistence equilibrium point becomes stable as 

1d  increases from 0.3 to 0.5 and the system undergoes a local 

Hopf bifurcation at 
1 0.413786=d  as represented in Fig. 3(a). 

 

1 2 3 4
k1

0.5

1.0

1.5

2.0

2.5
y2

 

(a) Critical value 
*

1 2.02306=k . 

133.2 133.4 133.6 133.8 134.0
k1

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

y2

 

(b) Critical value 
**

1 133.636=k . 

 

Fig. 1 Maximum and minimum values of the biomass of

mature predator around the critical values as 
1k  changes.  
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Case 2B  

 In this case, the additional parameter which are 1 1=k , 

2 3=k , and 
2 0.8=d . After repeating the five–step procedure, 

we obtain a single critical value 
1

* 17.8556=d . However, the 

coexistence equilibrium point ( )2 1 2
, ,N x y y  does not exist 

since 544.473 0= >H . Hence, the local Hopf bifurcation 

does not occur as displayed in Fig. 3(b).  

IV. TWO–PARAMETER FAMILY 

In this section, we perform the bifurcation diagram with two 

bifurcation parameters to investigate the different system 

behavior in each region. The parameter space is delineated by 

the graphs of the following equations,  
2 2

1 2: 0= + − =H a d d arB r A ,          (10) 

12

3

α
+ = −M N ,               (11) 

2 3

: 0
4 27

= + =
q p

D ,              (12) 

with the same fixed values of parameters 3=r , 2.3=a ,
 

1 0.95=b ,
 2 1.5=b ,

 1 1=m , and 
2 1.8=m . 

 

 

0 20 40 60 80 100

0.6

0.7

0.8

0.9

1.0

1.1

1.2

time t
 

(a) 1 0.5=k . 

 

0 50 100 150 200

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

time t
 

(b)  
1 1.5=k . 

 

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

time t
 

(c) 1 2.3=k . 

Fig. 2 The time series of the solution to system (1)–(3) with 

(a)
1 0.5=k , (b)

1 1.5=k , and (c)
1 2.3=k . The symbols for the 

curves in this figure are ( ) :− x , ( ) 1-- : y  and  ( ) 2:⋅ y . 

 

0.5 1.0 1.5 2.0 2.5
d1

0.2

0.4

0.6

0.8

1.0

1.2

y2

 
(a) 2 0.4=d . 

0.5 1.0 1.5 2.0 2.5
d1

0.2

0.4

0.6

0.8
y2

 
(b) 

2 0.8=d . 

 

Fig. 3 Maximum and minimum values of the biomass of 

mature predator as 1d  changes with (a) 2 0.4=d  and 

(b)
2 0.8=d . 
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Case 1 ( )1 2,k k –bifurcation parameter  

 In this case, the additional values of parameter are 1 0.3=d  

and 
2 0.4=d . We demonstrate the ( )1 2,k k  parameter space in 

Fig. 4. 

In Region I, 0>H . Consequently, the coexistence 

equilibrium point ( )2 1 2, ,N x y y  does not exist. Also, the 

solution converges to the predator–free equilibrium point 

( )1 / , 0,0N r a . 

In Region II0 and II
0
, 0<H  and 

12 / 3α+ > −M N . The 

coexistence equilibrium point ( )2 1 2
, ,N x y y  exists and is 

asymptotically stable. The difference between two regions is 

that the coexistence equilibrium point ( )2 1 2, ,N x y y  in Region 

II0 generates one real eigenvalue and a pair of complex 

eigenvalues since 0>D  while the coexistence equilibrium 

point ( )2 1 2, ,N x y y  in Region II0 generates three real 

eigenvalues since 0<D . 

In Region III, 0<H  and 12 / 3α+ < −M N . Thus, the 

coexistence equilibrium point ( )2 1 2, ,N x y y  exists and it 

unstable since the complex eigenvalues have positive real 

parts. 

Obviously, if the value of parameter 2k  
is fixed, for 

example 
2 1=k . The stability of the coexistence equilibrium 

point ( )2 1 2
, ,N x y y  changes from stable to unstable as 

1k  

increases and passes through the critical value *

1 2.02306=k . 

Similar to Case 1, the illustration is shown in Fig. 1(a). 

 

 

 
(a) 2 0.5=d . 

 
(b) 

2 0.8=d . 

 
(c) 2 5=d . 

Fig. 5 The ( )1 2,k k  parameter space. The symbols for the 

curves in this figure are as follows ( ) : 0=H , ( )-- : 0=D , 

and ( ) 1
: 2 / 3α⋅ ⋅ + = −M N . 

 

 

 
Fig. 4 The ( )1 2

,k k  parameter space. The symbols for the 

curves in this figure are as follows ( ) : 0=H , ( )-- : 0=D , 

and ( ) 1: 2 /3α⋅ ⋅ + = −M N . 
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 ( )1 2,k k  parameter spaces with 
2d = 0.5, 0.8, and 

2d =  5 

are displayed in Fig. 5 when the effect of parameter 2d  is also 

taken into account. Obviously, the higher value of parameter 

2d , the larger area of Region I and the smaller area of Region 

III. 

 

Case 2 ( )1 2,d d –bifurcation parameter  

In this case, we then investigate parameters 
1d  and 

2d  as 

the bifurcation parameters. In Fig. 6(a), we plot the ( )1 2,d d  

parameter space with the additional values of parameter 
1 1=k  

and 2 3=k .  Region I, II, and III in this case have the same 

description as that in Case 1. 

If the value of parameter 2d  is fixed, for example, 
2

0.4=d  

or 
2 0.8=d . The corresponding bifurcation diagrams are 

illustrated in Case 2A and Case 2B, respectively.  

Furthermore, more ( )1 2,d d  parameter spaces with 2 9=k  

and 
2 25=k  are shown in Figs. 6(b)–6(c). In Region II

0
, the 

coexistence equilibrium point ( )2 1 2, ,N x y y  has complex 

eigenvalues with negative real parts while, in Region II0, the 

coexistence equilibrium point ( )2 1 2, ,N x y y  has three real 

eigenvalues. As a conclusion, the solution in Region II
0
 has 

damped oscillatory behavior while the solution in Region II0 

has non–oscillatory behavior. Obviously, the higher value of 

parameter 2d , the larger area of Region III and the smaller 

area of Region I. 

 

V. CONCLUSION 

This model is an approximation to the realistic behavior of 

marine food web where each organism is considered to be in 

different trophic levels such as primary producers, primary 

consumers, secondary consumers, and so on. Of course, all 

populations are assumed to be homogenous and the spatial 

dependence is ignored. Particularly, the predator’s life cycle is 

taken into account and divided into immature and mature 

stages. Both types of the predator population have ability to 

attack prey. In nature, marine animals cannot consume 

indefinitely with abundant resources. Therefore, their uptake 

rate is described by the Holling type II functional response. 

Obviously, the recruitment rate and the mortality of the 

immature and the mature predator have affected the dynamical 

behavior of this predator–prey system. It has been theoretically 

and numerically shown that a local Hopf bifurcation is 

possible. Therefore, this population dynamics permits a limit 

cycle behavior.  
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