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Eddy current problem for a moving medium
with varying properties

Valentina Koliskina, and Inta VVolodko

Abstract—Analytical solution of eddy current problem for a
moving medium is obtained in the present paper. A single-turn
circular coil is located above a conducting two-layer medium. The
upper layer is moving in a horizontal direction with constant
velocity. The lower layer of the medium is fixed. The electrical
conductivity and magnetic permeability of the upper layer are
exponential functions of the vertical coordinate. The solution is
found by the method of Fourier integral transform. The change in
impedance of the coil is obtained in terms of double integral
containing Bessel functions. A particular case of a moving half-space
with varying properties is considered in detail. The solution can be
generalized for the case of a moving multilayer medium.

Keywords—eddy current testing, multilayer medium, electrical
conductivity, magnetic permeability, Fourier transform
EDDY current method is widely used in practice in order to

test properties of electrically conducting materials. The
theory of the method is well-developed in the literature for the
case where a coil with alternating current is located above a
multilayer conducting medium with constant electrical
conductivity and magnetic permeability [1]-[3].

There are examples in engineering where the properties of a
conducting layer (the electrical conductivity or magnetic
permeability) can vary with respect to one spatial coordinate.
Examples include the following applications: (a) analysis of
depletion of aluminium in blades of gas turbines [4] where the
electrical conductivity of the metal alloy changes with respect
to the vertical coordinate and (b) the change of the magnetic
permeability of ferromagnetic metals as a result of surface
hardening [5], [6]. In particular, experimental data in [5]
indicate that the magnetic permeability of ferromagnetic
metals in such cases can be well approximated by an
exponential function of the vertical coordinate.

Two approaches are usually used in the literature in order to
model eddy current problem for a multilayer medium with
varying properties. One method is based on the solution of

eddy current problem for a multilayer medium with constant
properties. In this case variability of electrical conductivity or
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magnetic permeability is represented by a piecewise-constant
function. In other words, the region where the parameters of
the medium change with respect to the vertical coordinate is
divided into a large number of relatively thin layers where the
properties of each layer are assumed to be constant. Such an
approach is used, for example, in [7] where up to 50 layers of
constant conductivity are used in order to model variability of
the electrical conductivity with respect to the vertical
coordinate.

The second approach is based on the assumption that for a
relatively simple model profiles of electrical conductivity
and/or magnetic permeability the solution of the
corresponding boundary value problem can be found in terms
of known special functions (such as Bessel functions and
hypergeometric functions). Examples of analytical solutions
of eddy current problems can be found in the literature for the
following cases: (a) electrical conductivity of a conducting
layer is an exponential function of the vertical coordinate [8]
or is modeled by a hyperbolic tangent function [9]; (b)
magnetic permeability of a conducting layer is an exponential
function of the vertical coordinate [2]. The cases where both
electrical conductivity and magnetic permeability are
exponential functions of the vertical coordinate are considered
in [10]-[12]. In addition, the case where both electrical
conductivity and magnetic permeability of each layer in a
multilayer conducting tube are power functions of the radial
coordinate is investigated in [13].

There are applications where a conducting medium is
moving with respect to the coil. One example is steel
processing at metallurgical plants. Another important example
is the movement of a coin inside a coin validator. Analytical
solutions for the case where one conducting layer of a planar
multilayer medium with constant properties is moving in a
horizontal direction with constant velocity V can be found in
[14], [15]. The change in impedance of a coil is found in [14]
and [15] by the method of a double Fourier transform with
respect to two horizontal coordinates. The case of a moving
half-space with varying properties is considered in [16].

In the present paper we construct an analytical solution for
an eddy current problem where a coil with alternating current
is located above a conducting two-layer medium. The upper
layer is moving in a horizontal direction with constant velocity
V while the lower half-space is fixed. The electrical
conductivity and magnetic permeability of the upper layer are
exponential functions of the vertical coordinate. The problem
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is solved by the method of Fourier integral transform in the
two horizontal directions.

Il. ANALYTICAL SOLUTION FOR THE CASE OF A TWO-LAYER
MEDIUM

Consider a single-turn coil of radius r_ with alternating

current located at a distance h from a two-layer conducting
medium (see Fig. 1).

The upper layer is moving in a horizontal direction with
constant velocity V while the lower half-space is fixed.

/

—

x

Fig. 1. A single-turn coil above a two-layer medium.

The electrical conductivity and magnetic permeability of
region R, are exponential functions of the vertical coordinate
of the form

01(2) = one”, 1(2) = poune’™, €N

where «and gare constants, and ugis the magnetic
constant. The electrical conductivity o, and relative magnetic
permeability u,of region R, are constant.

The problem can be formulated in terms of the vector
potential A which is defined by the relation

B=curl A 2)
where Bis the magnetic induction vector. The vector
potential can be written in the form

A(X,Y,z,t) = A, (X, ¥, 2)e 16, + A, (x,y, 2)e ™ (3)

where @ is the frequency, €, and €, are the unit vectors in

the xand vy directions, respectively. It is assumed that the
external current in the coil has the form
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re _ jotz
1“=1,e @ €, 4)
where €, is the unit vector in the ¢ —direction of the system
of cylindrical polar coordinates (r, ¢, z). Using (3) and (4) we

rewrite the system of Maxwell’s equations in the form (the
displacement current is neglected as it is a usual assumption
for eddy current testing problems)

N 1 du(0A, . OA, ] -
s B D |- jonauteb(B

oA I
~uou(2lolzV = = (21, + 1,8, )

()

The following relationships hold for the components of the
external current:

1€ =—Isinge,, (6)
I €, =1cos¢e,. @)

It is seen from (5)-(7) that equations for A, and A, can be
separated and solved independently. First, we consider the
solution for the xcomponent of the vector potential.
Equations for A,in regions Ry, R;and R,have the form (see

Fig. 1):

AA, = pold(z—h)s(r—r,)sin g, (8)
A ~ OA

PV R LNy ia” ) )
m dz oz X

AAy, +Kk3 Ay, =0, (10)

where the subscripts 0, 1 and 2 in (8)-(10) correspond to
regions Ry, R;and R,,respectively, &(x)is the Dirac delta-
function,

ki =—jou (2)01(2), V = 11 (2)01 (2, K =~ jou,0,.
The boundary conditions are

OA 1 0A
A |z:0: x1 |z:01 6;0 |z 0=~ P Fﬂlz:w (11)
l oA 1 OA
A _ = A o, - X1 _ X2 _ 12
X1 |zf d X1 |zf d A oz |zf /12 oz |zf d,. ( )

where 7z = upne ™.

The following conditions hold at infinity:
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OA,: OA,: i
Xis 8:’ X 5 0as x—> 40, i=012.

Problem (8)-(13) is solved by the successive application of
the Fourier integral transforms as follows:

A (13)

Kxi (A, ¥, 2) = .[Axi (x,y,2)e” *¥dx, i=012,

—00

(14)

'&xi (Ax ;Lyv 7)= I 'Z‘xi (A¢r Y, Z)efj/lyydy, i=012.

—00

(15)

In order to apply transforms (14) and (15) to the right-hand
side of (8) we multiply it by exp(-ji,x)exp(-ji,y)and
integrate the resulting expression with respectto xand y. To

perform integration we transform the double integral to polar
coordinates (r, ). Thus,

RHS = I IyoIcS(z—h)cS(r—rc)singorefj()"xw"mdxdy
o © 2z (16)
:yolﬁ(z—h)jﬁ(r—rc)rdr.[sin p e e gg
0 0

where

A . A
A=A5+22, cosp, ZTX' sing, :7".

In order to compute the integral in (16) we use the formula
(see [17]):

gleese = Jo(§)+2i i*3u (&) coske, an

k=1

where J, (&) is the Bessel’s function of the first kind of order
k . Substituting (17) into (16) we obtain

0 27
RHS = 1, 15(z —h)J' S(r—r,)rdr jsin 0.[34(8)
0 0 (18)

+2) " 3 (]cos(p, — o, )do
k=1

The integral with respect to ¢, in (18) is computed using the
formula

2
Isin @, coske, dep, =0, (19)
0
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Tsin sinkg, do, = 2z, 1 k=1 (20)
J Py P 4@, = 0 if k=l
Hence,
RHS = 2 o7 sin ¢, 5(z —h)J. 3, (A)S(r —r)rdr
J (21)

=-2juor sing, J; (Ar)r.6(z—h).

Applying Fourier transforms (14) and (15) to (8) and using
(21) we obtain

d2A,

2 ~ 22 A =y5(z-h),

(22)

where y =-2juga sing,r.J, (Ar,).
Similarly, applying transforms (14) and (15) to (9) and (10)
we obtain

Ay 0Ag o3

- —g?A, =0, 23
072 B 4z U1 A (23)
d2;X2 25

—-g5A,, =0, (24)
dzz 2 ™x2
where
qf =22 —k{ + jAcose,V,
q; = 4" -k;,
K =—jouonone??, (25)
kz2 =—Jougu,o,,
V = piopmo e @V,
The boundary conditions are
= = dA 1 dA
AxOlz:OZAxllz:Or d_zolz:ozz dle |z:0- (26)
= = 1 dA 1 dA
Aglye g= Ay e gy ——2,_ g=——22|,_ 27
xllzf—d x1|zf—d A dz |zf—d 1y dz |zf—d.. ( )

In order to solve equation (22) we consider the following two
sub-regions of Ry : 0 <z <h and z > h. The solutions in

these regions are denoted by 'K\xoo and '&x01' respectively.
Hence,
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d’A =

——0 22 A =0, 0<z<h, (28)
dz

d?Ag o 3

— A" A =0, z>h, (29)
dz

The general solution to (28) can be written in the form

AXOO = Cleiz + Cze_lz . (30)

The bounded solution to (29) is

'&xol =Cye ™ (31)

The functions ;\xoo (ﬂx,ﬂy,z) and ;\Xol(/lx,ﬂy,z) satisfy the

following conditionsat z="h:

AXOO Iz:h = AxOl Iz:h-

dAxOO
dz

dAxOl
dz

|z:h - |z:h: V- (32)

The first condition in (32) represents continuity of the
function 'Z\xo (ﬂx,/‘ty, z) at z=nh. The second condition in

(32) is obtained by integrating (22) with respect to z from
Z=h-¢ to z=h+ ¢ and considering the limit in the
resulting expression as ¢ — +0 .

It follows from (30)-(32) that

:_Le_

2h Y . ah
, C,=C,———e™.
22 3 2

C
! 2

(33)
Using (30), (31) (33) we obtain

A _Celr_ Y gilh-)
AxOO 2 2

A Gt i)
AxOl 2 22

= Ag=Cpe - L eI (34)
AXO 2 22

Solution to (23) can be expressed in terms of Bessel functions

(see [18]):
e

Bz
=2 C4Jv{

e 2
where

)Z
+CgY,
2 2
NBE+4A b

,b=—j o \w+Acose;,V
a+ JHo m( %} )

(a+p)
2

(a+p

2Jb
a+p

2yb
a+p

>u

e

The bounded solution to (24) is
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Ac =Coe ™. (36)

Using boundary conditions (26) and (27) we obtain the system
of equations for the unknowns C,,C,,Csand Cg:

/4

C, —ﬂe_lh =C4Jv(zo)+C5Yv(Zo) (37)
C .
- 4C, L :_A(E‘]V(ZO)_I—\/EJV(ZO)j
2 M \ 2
Ce (p . (38)
ﬂ—s(EYV(Zo)JF\/BYv(Zo)j
m
.l (a+p)d A (a+p)d
Cee ™ =Che 2J,|z0e 2 |+Cse 2V, |zpe 2
(39)
i (a+p)d i
ﬁJv[zoe 2 ]
2
Ca (ap) arpp )|
p +4be 2 J'{zoe 2 J
C_quefqzd = e 2
Ho m ﬁ ,M
EYV Zoe 2
+Cs (as ) (as )
+be 2 Y;[zoe 2 J
' (40)
where z, = 2vb .
a+pf
Solving (37)-(40) we obtain
S
Cs = yume ™" 2, (41)
D
S
Cy=—ppme ™" %, (42)
D
AL ALy
Co=Cie 2 “3,(z)+Ce 2 "V, (z) (43)
(p-a)d
Zﬂﬂm[Dleﬂz\/Be 2 Daj
C,=Le 1- =
21 Vi a)d
D,(D,D, ++bD, )+ 4,Wbe 2 (D,D,++bD, )
(44)
where
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p (pa)d
Slzigﬂzeﬁd —ﬂmQZJJv(Zl)+ﬂ2\/Ee > 3(a)

(B-a)d

(DGD3+JBD4 )

D, =3, (20, (21)-3, @, (20). Ds =2 e ~ iy,

D, = 3120V, (21)-3, 221, (20). D = gt +2.

p (p-a)d
Szz(Eﬂzeﬁd _ﬂmQZJYv(Zl)JFﬂZ\/Be 2 Y, (@)

The induced vector potential in region Ry is

A (A 2y, 2) =Cpe ™, (45)
where C, is given by (44).
Applying the inverse Fourier transform of the form

Ai(xy,2)

© o0

=4—71r2 I .[Xx(/lx,ﬂy, 2)expli(ox+ 4,y A, da,

—00 —00

(46)

to (45) we obtain
A:(%d (X, Y, Z) =

= [ 4 r
7 0

2 ©
x [Csing, 13,00 +2)” *3, (an) cosk(p, ~ o )d,
0 k=1

(47)
where

(p-a)d
21| DD — b 2 Dy

c=1-

(p-a)d

DS(D6D1+\/BD2 )+,u2\/5e

(D6D3+\/BD4 )

Similarly, the y—component of the induced vector potential
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is given by
AT (%, y,2) =

= 4i Jre a1 J. Jl(ﬂrc )e%(ﬁh)d)b
i 0

2 0
x [Ceosp,[3,(n) +23 j*3, () coskip; — ¢, )ldg;.
0 k=1
(48)

The induced change in impedance of the coil is given by the
formula

zn = JI—“’ AT (x v, 2)dl, (49)
L
where L is the contour of the coil, and
A (%Y, 2) = A (X, ¥, )8, + AYY (X, ¥, 2)8,. (50)
Substituting (47), (48) and (50) into (49) we obtain
) . © 2z
zind _ —% or? j 32(ar, e 2da j Cdg,. (51)
0 0
Formula (51) can be rewritten in the form
z - v, 1yZ,
where
.0 ~ 2 .
z :—%J.Jf(u)e‘z“hduj’Cd(pl (52)
0 0
and
C-1- 2uuy, (DsDy — D7 D3)

Bs (DgDy ++— j6D,) + Dy (B Dy +y— jbD,)
Dy =35 (20)Y5 (21) - 35 (21)Y; (o),
D, =35 (Z0)Ys (21) - 35 ()Y (20),
Dy =35 (20)Y5 (21) - 35 (2)Y (Zo),

Dy =35 (80)Y; (21) - 35 (2:)Y; (3),
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Ds—ﬁ —,UmQ2n D¢ =Uup +

Nlh)

(p-ayd
D7—,U2 —Jbe 2,

b=v5’:12+/aUCOS§0/1, Oy =T\ O MR O
p =13 totinomV, %—VU +J5z’ 52—51
VA% +4u? .

&:—,\1

a+p

H207

ﬂmam

Formula (52) is used to compute the change in impedance for
the following values of the parameters of the problem:

G=1,4=1,n=005d =0.05,x, =5, 1, =1,

H2%2 g5
HmO

The results are shown in Fig. 2.

Fig. 2. The change in impedance computed by formula (52) for three
values of p =5,10and 15 (from bottom to top). The points on each

graph correspond to different values of 5‘1 =1,2,...,10 (from right to
left).

Note that the solution for the problem of a moving plate can
be obtained from (51) in the case o, =0.

I11. ANALYTICAL SOLUTION FOR THE CASE OF A MOVING
HALF-SPACE

Consider a particular case of the problem solved in the
previous section. Suppose that a single-turn coil with radius
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r.is located at distance habove a conducting half-space

moving in the x— direction with constant velocity V (see Fig.
3).

G

.

Fig. 3. A single-turn coil above a moving half-space.

The electrical conductivity o;and magnetic permeability
4y of region R, are given by (1). The x—component of the
vector potential satisfies the system of equations (8) and (9) in
regions Ryand Ry, respectively, with boundary conditions
(11). In addition, conditions (13) for i=0,1are imposed at
infinity. The problem is solved by the method of Fourier
transforms (14) and (15). Solution in region Ryin the

transformed space is given by (34). Bounded solution to (23)
in the transformed space is

(a+ﬁ) J

(52)

Arbitrary constants C, and C, in (34) and (52) are obtained
from (26). In particular, C, has the form

e ('g_ﬂﬂmj‘]v(zo)Jr\/BJ;(zo)

5 [ a0 )

: (53)

where z, :&.
a+pf
The x-—component of the induced vector potential has the
form (45), where C, is given by (53). Applying the inverse

Fourier transform of the form (46) to (45) we obtain
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A (x,,2)

1. T _i(z+h)
=——/Ijlr J,(Ar.)e da
A J cﬂO! 1( c) (54)

Jolar)

27

x | Dsin > de,,

JOsin0 % o3, (r)cosko; —o,) 1%
k=1

where

[ﬁ—ﬂymjav(zmﬁa;(zo)

[fwm]uzowﬁa;(zo)'

D=

Similarly, the induced component of the vector potential in the
y — direction is
A (%, Y, 2)

:i jir, 4o j 3,(Ar,)e 4@ g, (55)
0

2z ‘]O(ﬂ“r)

x J-DCOS§0,1 +ZZ jk\]k(ﬂr)cos k((ﬂl —@r

do,
! )
k=1

Substituting (54), (55) and (50) into (49) we obtain the
induced change in impedance

7 —%wrfyo [320r e dz
0

o 5=t 1, 20) 53, ) )
X do,
o 5t 1, as) B3, )
Formula (56) can be rewritten in the form
where
Issue 8, Volume 6, 2012

(58)

zﬂ[’}—uymjaxzo)#_jﬁa;(zo)
o[§+uum]ao<zow—_16a;<zo>

and the dimensionless parameters are defined as follows

VB2 +4u?
G+ p

8 =T\ OU MOy P =Toplo OV

Formula (58) is used to compute the change in impedance of a
single-turn coil due to the presence of a conducting half-space
for the following values of the parameters of the problem:

& =0, B=2, h=0.05, Uyn =5 The results of the
calculations are shown in Fig. 4.

do,

= ,b=62+pucose,,

0.3 0405 06 07
~

0.8+

0.6

0.4+

0.2+

Fig. 4. The change in impedance computed by formula (58) for three
values of p =5,10and 15 (from top to bottom). The points on each

graph correspond to different values of 31 =1.2,...,10 (from left to
right).

IV. CONCLUSIONS
Method of Fourier integral transform in the x and y directions

is used in the present paper in order to construct analytical
solution of eddy current problem where a coil with alternating
current is located above a conducting two-layer medium. The
upper layer is moving in the x direction with constant velocity
V . The electrical conductivity and magnetic permeability of
the upper layer are exponential functions of the vertical
coordinate. The lower half-space has constant properties and
is fixed. The change in impedance of the coil is obtained in
the form of a double integral containing Bessel functions. In
addition, the change in impedance of a coil located above a
moving half-space with varying properties is also computed in
closed form. Results of numerical computations are presented.
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The solution can be generalized for the case where an upper ~ [18] A.D. Polyanin, and V.F. Zaitsev, Handbook of exact solutions for
|ayer of a multilayer Conducting medium is moving in the ordinary differential equations.  Boca Raton: Chapman&Hall/CRC,
. . . 2003.
horizontal direction.
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