
 

 

  
Abstract—Analytical solution of eddy current problem for a 

moving medium is obtained in the present paper. A single-turn 
circular coil is located above a conducting two-layer medium. The 
upper layer is moving in a horizontal direction with constant 
velocity. The lower layer of the medium is fixed. The electrical 
conductivity and magnetic permeability of the upper layer are 
exponential functions of the vertical coordinate. The solution is 
found by the method of Fourier integral transform. The change in 
impedance of the coil is obtained in terms of double integral 
containing Bessel functions. A particular case of a moving half-space 
with varying properties is considered in detail. The solution can be 
generalized for the case of a moving multilayer medium.  
 

Keywords—eddy current testing, multilayer medium, electrical 
conductivity, magnetic permeability, Fourier transform 

I. INTRODUCTION 
DDY current method is widely used in practice in order to 
test properties of electrically conducting materials. The 

theory of the method is well-developed in the literature for the 
case where a coil with alternating current is located above a 
multilayer conducting medium with constant electrical 
conductivity and magnetic permeability [1]-[3].  

There are examples in engineering where the properties of a 
conducting layer (the electrical conductivity or magnetic 
permeability) can vary with respect to one spatial coordinate. 
Examples include the following applications: (a) analysis of 
depletion of aluminium in blades of gas turbines [4] where the 
electrical conductivity of the metal alloy changes with respect 
to the vertical coordinate and (b) the change of the magnetic 
permeability of ferromagnetic metals as a result of surface 
hardening [5], [6]. In particular, experimental data in [5] 
indicate that the magnetic permeability of ferromagnetic 
metals in such cases can be well approximated by an 
exponential function of the vertical coordinate.  

Two approaches are usually used in the literature in order to 
model eddy current problem for a multilayer medium with 
varying properties. One method is based on the solution of 
eddy current problem for a multilayer medium with constant 
properties. In this case variability of electrical conductivity or 
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magnetic permeability is represented by a piecewise-constant 
function. In other words, the region where the parameters of 
the medium change with respect to the vertical coordinate is 
divided into a large number of relatively thin layers where the 
properties of each layer are assumed to be constant. Such an 
approach is used, for example, in [7] where up to 50 layers of 
constant conductivity are used in order to model variability of 
the electrical conductivity with respect to the vertical 
coordinate.  

The second approach is based on the assumption that for a 
relatively simple model profiles of electrical conductivity 
and/or magnetic permeability the solution of the 
corresponding boundary value problem can be found in terms 
of known special functions (such as Bessel functions and 
hypergeometric functions). Examples of analytical solutions 
of eddy current problems can be found in the literature for the 
following cases: (a) electrical conductivity of a conducting 
layer is an exponential function of the vertical coordinate [8] 
or is modeled by a hyperbolic tangent function [9]; (b) 
magnetic permeability of a conducting layer is an exponential 
function of the vertical coordinate [2]. The cases where both 
electrical conductivity and magnetic permeability are 
exponential functions of the vertical coordinate are considered 
in [10]-[12]. In addition, the case where both electrical 
conductivity and magnetic permeability of each layer in a 
multilayer conducting tube are power functions of the radial 
coordinate is investigated in [13].  

There are applications where a conducting medium is 
moving with respect to the coil. One example is steel 
processing at metallurgical plants. Another important example 
is the movement of a coin inside a coin validator. Analytical 
solutions for the case where one conducting layer of a planar 
multilayer medium with constant properties is moving in a 
horizontal direction with constant velocity V can be found in 
[14], [15]. The change in impedance of a coil is found in [14] 
and [15] by the method of a double Fourier transform with 
respect to two horizontal coordinates. The case of a moving 
half-space with varying properties is considered in [16]. 

In the present paper we construct an analytical solution for 
an eddy current problem where a coil with alternating current 
is located above a conducting two-layer medium. The upper 
layer is moving in a horizontal direction with constant velocity 
V while the lower half-space is fixed. The electrical 
conductivity and magnetic permeability of the upper layer are 
exponential functions of the vertical coordinate. The problem 
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is solved by the method of Fourier integral transform in the 
two horizontal directions.   

II. ANALYTICAL SOLUTION FOR THE CASE OF A TWO-LAYER 
MEDIUM 

Consider a single-turn coil of radius cr with alternating 

current located at a distance h from a two-layer conducting 
medium  (see Fig. 1).  

The upper layer is moving in a horizontal direction with 
constant velocity V while the lower half-space is fixed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A single-turn coil above a two-layer medium.  
 
The electrical conductivity and magnetic permeability of 

region 1R are exponential functions of the vertical coordinate 
of the form 
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where α and β are constants, and 0µ is the magnetic 
constant.  The electrical conductivity 2σ and relative magnetic 
permeability 2µ of region 2R are constant.  

  
The problem can be formulated in terms of the vector 

potential A
r

which is defined by the relation 
 

AB
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curl=                                                                              (2) 
 

where B
r

is the magnetic induction vector. The vector 
potential can be written in the form 
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where ω is the frequency, xe

r
 and ye

r are the unit vectors in 

the x and y directions, respectively. It is assumed that the 
external current in the coil has the form 
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where ϕe

r
is the unit vector in the −ϕ direction of the system 

of cylindrical polar coordinates ).,,( zr ϕ  Using (3) and (4) we 
rewrite the system of Maxwell’s equations in the form (the 
displacement current is neglected as it is a usual assumption 
for eddy current testing problems) 
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The following relationships hold for the components of the 
external current: 
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It is seen from (5)-(7) that equations for xA  and yA can be 

separated and solved independently. First, we consider the 
solution for the x component of the vector potential. 
Equations for xA in regions 10 , RR and 2R have the form (see 
Fig. 1): 
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where the subscripts 0, 1 and 2 in (8)-(10) correspond to 
regions 10 , RR and ,2R respectively, )(xδ is the Dirac delta-
function, 
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The boundary conditions are  
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where .~

1
d

me βµµ −=  
 
The following conditions hold at infinity: 
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 Problem (8)-(13) is solved by the successive application of 
the Fourier integral transforms as follows: 
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In order to apply transforms (14) and (15) to the right-hand 
side of (8) we multiply it by )exp()exp( yjxj yx λλ −− and 

integrate the resulting expression with respect to x and y . To 
perform integration we transform the double integral to polar 
coordinates ).,( ϕr  Thus, 
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where  
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In order to compute the integral in (16) we use the formula 
(see [17]): 
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where )(ξkJ is the Bessel’s function of the first kind of order 
k . Substituting (17) into (16) we obtain 
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The integral with respect to rϕ in (18) is computed using the 
formula  
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Applying Fourier transforms (14) and (15) to (8) and using 
(21) we obtain 
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Similarly, applying transforms (14) and (15) to (9) and (10) 
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The boundary conditions are 
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In order to solve equation (22) we consider the following two 
sub-regions of :0R hz <<0  and hz > . The solutions in 

these regions are denoted by 00

~~
xA and 01

~~
xA , respectively.  

Hence, 
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The general solution to (28) can be written in the form 
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The bounded solution to (29) is 
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The first condition in (32) represents continuity of the 

function ( )zA yxx ,,
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0 λλ  at hz = . The second condition in 

(32) is obtained by integrating (22) with respect to z from 
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Using (30), (31) (33) we obtain 
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Solution to (23) can be expressed in terms of Bessel functions 
(see [18]): 
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The bounded solution to (24) is 
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Using boundary conditions (26) and (27) we obtain the system 
of equations for the unknowns 542 ,, CCC and 6C : 
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The induced vector potential in region 0R is 
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where 2C is given by (44). 
   Applying the inverse Fourier transform of the form  
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to (45) we obtain 
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Similarly, the −y component of the induced vector potential 

is given by  
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The induced change in impedance of the coil is given by the 
formula 
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Substituting (47), (48) and (50) into (49) we obtain 
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Formula (51) can be rewritten in the form 
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Formula (52) is used to compute the change in impedance for 
the following values of the parameters of the problem:  
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The results are shown in Fig. 2. 
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Fig. 2. The change in impedance computed by formula (52) for three 
values of 10,5ˆ =ρ and 15 (from bottom to top). The points on each 

graph correspond to different values of 10,...,2,11̂ =δ (from right to 
left). 

 
Note that the solution for the problem of a moving plate can 
be obtained from (51) in the case .02 =σ  
 
 

III. ANALYTICAL SOLUTION FOR THE CASE OF A MOVING  
HALF-SPACE 

Consider a particular case of the problem solved in the 
previous section. Suppose that a single-turn coil with radius 

cr is located at distance h above a conducting half-space 
moving in the −x  direction with constant velocity V (see Fig. 
3).  
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Fig. 3. A single-turn coil above a moving half-space. 
  
The electrical conductivity 1σ and magnetic permeability 

1µ of region 1R are given by (1). The −x component of the 
vector potential satisfies the system of equations (8) and (9) in 
regions 0R and ,1R respectively, with boundary conditions 
(11). In addition, conditions (13) for 1,0=i are imposed at 
infinity. The problem is solved by the method of Fourier 
transforms (14) and (15). Solution in region 0R in the 
transformed space is given by (34). Bounded solution to (23) 
in the transformed space is  
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where .
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Arbitrary constants 2C and 4C in (34) and (52) are obtained 
from (26). In particular, 2C has the form 
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where .2
0 βα +

=
bz  

    The −x component of the induced vector potential has the 
form (45), where 2C is given by (53). Applying the inverse 
Fourier transform of the form (46) to (45) we obtain 
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Similarly, the induced component of the vector potential in the 

−y direction is 
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Substituting (54), (55) and (50) into (49) we obtain the 
induced change in impedance  
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Formula (56) can be rewritten in the form 
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and the dimensionless parameters are defined as follows  
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Formula (58) is used to compute the change in impedance of a 
single-turn coil due to the presence of a conducting half-space 
for the following values of the parameters of the problem: 

.5,05.0ˆ,2ˆ,0ˆ ==== mh µβα  The results of the 
calculations are shown in Fig. 4.  
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Fig. 4. The change in impedance computed by formula (58) for three 
values of 10,5ˆ =ρ and 15 (from top to bottom). The points on each 

graph correspond to different values of 10,...,2,11̂ =δ (from left to 
right). 

IV. CONCLUSIONS 
Method of Fourier integral transform in the x and y directions 
is used in the present paper in order to construct analytical 
solution of eddy current problem where a coil with alternating 
current is located above a conducting two-layer medium. The 
upper layer is moving in the x direction with constant velocity 
V . The electrical conductivity and magnetic permeability of 
the upper layer are exponential functions of the vertical 
coordinate. The lower half-space has constant properties and 
is fixed. The change in impedance of the coil is obtained in 
the form of a double integral containing Bessel functions. In 
addition, the change in impedance of a coil located above a 
moving half-space with varying properties is also computed in 
closed form. Results of numerical computations are presented.  
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    The solution can be generalized for the case where an upper 
layer of a multilayer conducting medium is moving in the 
horizontal direction.  
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