

Abstract—The paper deals with a development of an embedded

Voice communication server within the scope of BESIP project
(Bright Embedded Solution for IP Telephony) which brings a
modular architecture with additional functionality such as speech
quality monitoring and security of IP telephony. The monitoring
includes a speech quality assessment in simplified computational E-
model and we have implemented our proposal into BESIP as an
optional component. The security module exploits a standard
approach to the intrusion detection and protection which consists of
several well-known tools. In addition to the modules mentioned
above, we come up with an idea of unified configuration of
individual components based on NETCONF protocol . In order to be
able to implement the idea into OpenWRT, we hade to integrate the
complex support of NETCONF configuration protocol. Our
modifications of OpenWRT regarding NETCONF were accepted by
OpenWRT community and have been included in OpenWRT/Trunk
branch. The BESIP consists of four modules, their features are
described in the paper as well as the entire concept.

Keywords— BESIP, NETCONF protocol, OpenWRT, SIP
server, Speech quality, VoIP security.

I. INTRODUCTION

HE project BESIP (Bright Embedded Solution for IP
Telephony) was formally launched in mid-2011. Our

intent was focused on development a modular architecture of
voice communication server with additional functionalities
such as speech quality monitoring and protection from selected
security threats. BESIP offers the prepared solution with
integrated key components, the entire system is distributed as
an image or individual packages can be installed from SVN.
The users do not care about dependencies, they just configure
VoIP system which works. Every software solution includes
own configuration and management. BESIP aims to be
scalable solution with security and unified configuration in
mind [1].

M. Voznak is an associate professor with Dpt. of Telecommunications,

Technical University of Ostrava and he is also a researcher with Dpt. of
Multimedia in CESNET (association of Czech universities and Czech
Academy of Sciences), Zikova 4, 160 00 Prague 6, Czech Republic
(corresponding author provides phone: +420- 603565965; e-mail: voznak@
ieee.org).

J. Slachta is a a M.S. student with Dpt. of Telecommunications, Technical
University of Ostrava and he is also a researcher with Dpt. of Multimedia in
CESNET, Czech Republic (e-mail: jiri.slachta@gmail.com).

L. Macura is with Institute of Information Technology, Silesian University
in Opava and he is also a researcher with Dpt. of Multimedia in CESNET,
Czech Republic (e-mail: lukas.macura@cesnet.cz).

II. STATE OF THE ART

First, we discussed existing projects which we could adopt
and modified for our purposes, we took into account
following open-source tools and applications:

• OpenWRT for good scalability and simple embedding;
• Kamailio for reliability and high availability [3];
• Asterisk and Kamailio as B2BUA (Back-to-Back User

Agent) and SIP Proxy [2];
• YUMA as NETCONF server [4];
• OpenWRT UCI as configuration backend;
• SNORT with combination SNORT_SAM and IPtables

as an intrusion detection and protection system [5].

 Several open-source applications were adopted and
implemented into developed modules, however within the
implementation many modifications were required, especially
in the core module with OpenWRT due to complicated porting
of applications into OpenWRT buildroot. Our patches were
verified and accepted by OpenWRT community. The speech
quality monitoring tool was developed from scratch and
implemented in Java. BESIP can run on low-end devices with
32MB RAM at least and supports OpenWRT MIPS
architecture.

The most important step which had to be done, was
choosing right software distribution/platform. There was an
idea to modify Debian distribution, this is probably the easiest
way for developers. Debian includes many ports and packages
which are available for many software services but Debian is
not suitable for embedding. A modification of Debian, in order
to be easily embedded into small device with read-only flash,
is really a difficult task and the expected results of such work
can not lead to a source distribution.
 Next solution was adopting some low-level distribution for
embedding. There are several possibilities like FreeWrt,
OpenWrt, DebWrt etc. After discussion and projects
observations, OpenWrt was selected as primary platform.
There are many packages included and packages which are not
included and can be added into applications tree. Even if it is
not easy procedure for some kind of packages (especially for
packages without configure script), we decided for this way.
OpenWrt is well-know for great support, ticket system,
relatively well documentation and cooperation with
community of developers.

Development of Advanced Concept of Voice
Communication Server on Embedded Platform

M. Voznak, J. Slachta and L. Macura

T

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 103

III. PROPOSED ARCHITECTURE AND TECHNOLOGY USED

The BESIP architecture is depicted in Fig. 1, it is created
entirely from open-source parts. This was main presumption
for project management and developing. There are four
basic modules: Core, Security, Monitoring and PBX. Core
is divided into following parts:

• OpenWRT as build platform;
• NETCONF for administration of entire system, YUMA

implementation was adopted;
• Web GUI for user-friendly configuration;
• SUBVERSION as revision control system providing a

support and better orientation for developers, it is not
a part of the released BESIP image.

Monitoring module

PBX module

SVN

OpenWrt NETCONF

Web GUI

IPtables

SNORT SNORTSam

Zabbix

Tshark
Quality

monitor

PBX GUI

Asterisk/Kamailio

CORE

Security module

Fig. 1 BESIP architecture

The security module is based on SNORT, SNORTSam and

IPtables [6]. In addition to this, the Kamailio rate limit and
pike module is used for defending attacks. The monitoring
module exploits a tshark package and our java code which
interprets its results and gives information about particular
speech quality. The Zabbix agent is used to report basic states
of entire system and finally the PBX module is made from
Kamailio in conjunction with Asterisk.

As for the distribution, not only individual packages are
available for download but the whole image for particular HW
used for testing of pre-released distributions such as HW
depicted in Fig. 2 can also be downloaded [7].

Fig. 2 Suitable HW platform containing x86 Intel Atom 1.6GHz,

RAM 1GB/677MHz and 16GB SSD.

IV. CORE MODULE

The long term goal of this project is to make the BESIP
configuration independent on clients. Today, many systems are
configurable using web, ssh or telnet and each of them offers
its own semantics and configuration file. BESIP project aims
to change this situation, using NETCONF as defined
communication and management protocol, configuration
independent syntax will be available on all modules. At first
stage of project, applications and libraries had been ported,
afterwards we focused on implementation of NETCONF, UCI,
PBX, Security and monitoring modules.

A. NETCONF
The NETCONF protocol exploits a specified mechanism for

exchanging the configuration data among an administrator and
network devices. This protocol allows the device to send and
receive configuration data through XML documents using the
RPC paradigm [8]. These XML documents are handed over
the RPC calls, the RPC request is initiated by a client that
requests the configuration data or a command to be performed
on the server. While these requests are being performed, the
client is blocked until he receives the RPC reply from
NETCONF server [4], [8]. The responses consist of a
configuration that is complete or a partial. Another reply is a
message informing us if a command was successfully
performed on the server or not. This communication is
transferred over a transport protocol which has to be secured
and to allow an authentication and authorization. Most
probable and secure way, how to communicate with the
NETCONF server, is to use SSH2 protocol (RPC calls over
SSH subsystem).

See Fig. 3 to understand configuration data flow which has
been defined in BESIP. The structure of configuration data on
NETCONF server in YUMA package (netconfd) is specified
by the YANG module which defines the semantics and syntax
of a management feature [10], [11]. It provides complex data
structures which allow design any data structures that will meet
the requirements of developers.

An application or a

module intercepts

incoming notification

and writes config into

configuration files.

netconfd

configuration

database

/etc/config/..

UCI

write config

connect

create subscription

notification
sysConfigChange

get-config

data

NETCONF client

Operations
(<get>,<get-config>,<edit-config>

Fig. 3 NETCONF usage

 The configuration data are stored securely on the
NETCONF server and all requests and responses must comply

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 104

with firmly defined structure, specified by YANG modules.
Next, global database of all the configurable parameters is
required and it is ensured by NETCONF server. The
configuration parameters are inserted by the user and stored in
the NETCONF server. Consequently, the stored configuration
data are available through simple queries. It makes the device
quickly configurable, therefore a backup or a restore of
configuration can be simply and quickly performed. Yuma is a
package which provides tools for the network management, we
ported successfully YUMA into OpenWRT. It consists of a
NETCONF client yangcli, NETCONF server netconfd,
validation tools yangdiff and yangdump and netconf-
subsystem, which allows us to communicate with NETCONF
server through a SSH2 subsystem. OpenWRT uses UCI as
configuration backend, it is a group of configuration files
which can be read or modified by common UCI API. We
decided to provide a glue between NETCONF and UCI.

NETCONF protocol is applied for BESIP configuration, the
advantage of this approach lies especially in:

• exact definition of data model;
• possibility to call any function through a remote

procedure call;
• possibility of data model editation in YANG;
• independance on client;

A RFC draft of YANG data model for interface

configuration is applied for verification of basic proposed
functionalities [11]. It enables to set up IP parameters of
general network interfaces in any system and forms
fundamentals for a development of individual YANG modules
which have to be defined for UCI configurations. We combine
several applications and packages for overall functionality of
NETCONF. The library libnetconf [12], which has been
developed in CESNET as an open-source project since 2009,
is a key part of our implementation.

B. OpenWRT
The NETCONF protocol exploits a specified mechanism for

OpenWrt is a platform for embedded equipments and the
primary goal is to provide a suitable environment for small
routers with minimum requirements on processor, flash and
RAM. Any ported application into OpenWRT has to comply
with mentioned requirements above and its code is rigorously
checked by openWRT community before is accepted. We
adopted OpenWrt as a platform for creation of images with
clear functionalities and versioning, our generated images can
be used as a firmware for various devices, as a disk image for
KVM or VMWARE. Although the implementation is mostly
problematic due to a cross compilation, the image generation
for embedded equipment is very well parameterized and we
exploit this fact in our autobuild script supporting following
targets:

• asuswl_500gp-brcm47xx-backfire;
• asuswl_500gp-brcm47xx-trunk;
• besiphw1-x86-backfire;
• besiphw1-x86-trunk;
• tplink1043nd-ar71xx-backfire;
• tplink1043nd-ar71xx-trunk.

Each of these targets represents a set of variables defining
parameters for an image generation of particular hardware.

C. Unified Configuration Interface
Diversity of configuration interfaces is a remarkable feature

of most applications and libraries based on GNU/Linux
kernels. Each application or tool is mostly configured in
different way, this issue, how to configure more applications in
one configuration tool, is solved in OpenWRT.

Unified Configuration Interface is configuration interface
(UCI) in OpenWRT, all packages supporting this way of
configuration are able to read configuration data form UCI and
create their configuration files from these data. The advantage
lies in independance of individual implementation, UCI
provides interlayer between user and application which brings
a simplification of configuration for users and unified API for
applications.

We adopted UCI as primary database of applications‘
configuration data. The UCI only defines a format of
configuration directives and access to them but no their exact
content or relation each other. It depends on user and typically,
if users modify a name of network interface, the next libraries
fail until the modification is performed in all locations where is
necessary.

NETCONF server

YIN/YANG

Configuration UCI

model

NETCONF

configuration

database

UCI

/etc/config/...

CLI

NC handler

NC client

UCI mapping to

YANG 1:1

/etc/init.d/service

UCI config parser

for additional

services

/etc/...

Fig. 4 Concept of NETCONF and UCI interoperability in
OpenWRT

In contrast to UCI, the NETCONF and YANG embody

exactly defined features. Each configuration directive has to be
defined and described in YANG model. The relations among
modules and options are described in YANG as well and UCI
ensures only checking of data syntax. Our aim is to define and
develop YANG models for individual UCI configurations,
next to this to specify all dependencies and to determine
ranges of possible values, e.g. in configuration of firewall we

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 105

are able to force that the name of network interface
corresponds to the name of module „interfaces“.

Important advantage of our approach is the fact, that the
verification is performed before data processing by
application, this way the complex procedures in applications
are detached from input data verification. Data are validated at
level of NETCONF and end-user can set only parameters and
values which are defined within YANG schema, the situation
is depicted in Fig. 4.

Our approach solves two significant issues, the first one is
an imperfection and variability of current UCI documentation,
nowadays an edited WIKI but in future YANG definitions
enabling an automatic generation of web content, the second
issue is a large number of scripts ensuring parsing and a
formation of configurations from universal UCI files. The
YANG model exactly defines configuration structure which
enables detach substantial part of code from current
applications. If users change UCI file, the content will be
automatically validated within YANG schema and users
notified on failures.

UCI enables a description of configurations in OpenWRT
and implementation can be realized by means: script shell
function, C library libuci or UCI command line. The most of
packages have in use the script shell functions to load options
and consequently to generate configuration files for individual
packages.

V. PBX MODULE

The PBX module is key part of the BESIP project. It
operates as SIP proxy or SIP B2BUA, depending on
configuration, and ensures a call routing. Asterisk is used for
call manipulation and for the PBX functions. Kamailio is used
for the proxying SIP requests, the traffic normalization and for
the security [6]. There are always two factors when developing
VoIP solution, the first one is high availability and reliability,
the second one is an issue of advanced functions. Many
developers try to find a compromise, we have implemented
both and our BESIP is able to adapt to the users requirements.
More complex system can handle many PBX functions such as
a call recording or an interactive voice response but due to the
bigger complexity, it is more susceptible to fault. On the
opposite side, pure SIP proxy is easier software which can
perform call routing, more fault tolerant but it is more difficult
to use the advanced PBX functions [13], [14].

The BESIP offers users an option to choose how system will
work. From this reason, the BESIP includes both Kamailio and
Asterisk. Today, only one of these engines can be configured
but in future, both engines will work together and will be
configured by common NETCONF server. Kamailio will route
requests even if Asterisk will be out of order, only advanced
PBX functions will be unavailable in such situation.

A. Asterisk GUI
Asterisk-GUI is very flexible web solution of Asterisk
management. Even if it is not NETCONF based Asterisk-GUI
was added to the first BESIP release. The reason was that at
this time, there was not completed an interoperability between
NETCONF and Asterisk. It is available in the next release and

the implementation involved very complex task. The users can
decide to use easy Asterisk-GUI for PBX setup at initial
version of BESIP. Nevertheless in future version we would
like to remove the Asterisk-GUI package from BESIP image
and the configuration will be accessible only through new
developed NETCONF based management. During
implementation, we solved several technical issues concerning
Asterisk-GUI in OpenWRT environment and finally we made
a decision on disuse Asterisk-GUI in BESIP roadmap. The last
release still links this GUI on the BESIP main page [7].

B. Kamailio and UCI
SIP Proxy Kamailio configuration is well-known due to high
complexity, our effort was focused on simplification the
configuration in BESIP. The original Kamailio configuration
is a script which is initiated with every SIP request. A
rewriting of all configuration file into UCI is not possible
nevertheless in recent version of Kamailio is enabled a
conditional compilation of the code and a definition of global
variables. It significantly simplifies situation in case of
configuration modification therefore we decided to divide
Kamailio script file into several logical parts. Global definition
of variables is carried out at beginning of running script and
afterwards the remaining part of configuration is loaded. We
are able to set in UCI the basic Kamailio directives, such as
option whether BESIP works as REGISTRAR server, if
supports authentication, NAT, if is used as Media or RTP
Proxy, etc. Our init script ensures proper distribution of
parameters form UCI into Kamailio configuration, the example
is listed below:

config globals
option scrdebug 1
#option kamdebug 1
option dburi "sqlite:/var/sqlite.db"
option auth 1
option ldap 1
option ldap-auth 1
option ratelimit 1
option tls 1
option antiflood 1
config tls
option cert "/etc/kamailio/kam.crt"
option key "/etc/kamailio/kam.pem"
#!ifdef WITH_AUTH
loadmodule "auth.so"
loadmodule "auth_db.so"
#!endif

C. Accounting

In many systems, an accounting is divided into two separate
parts. The individual calls are processed and a call detail
record (CDR) is generated to every performed call, these
CDRs are stored in text file or a repository. The next part of
the accounting is an application which enables to perform
statistics over stored data, it means to search and display in
accordance with requested criteria. This is a conventional
scenario, classical approach of many accounting applications

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 106

and highly reliable because the PBX function is not affected
by accounting and even if there is problem with accounting
software, PBX still operates properly.

However there is one big disadvantage, during a call setup,
the PBX knows nothing about call price and cannot provide an
authorization which is well-known from pre-paid services
offered by mobile operators. Having this information, we are
able to perform more checks and operations at the call setup
level. For example, we can look up into user credit and do not
permit a call if the credit is depleted or low. Similar to this, we
can authorize every call against a threshold, such as maximal
price per minute/trunk/global. These thresholds can be pre-set
or dynamically changed according to the actual user credit.
Having this information, the PBX will be safer and resistant
against attacks aimed at an exploitation of the PBX [5], [6]
and [15].

VI. SECURITY MODULE

Security module is very important part of BESIP and all the
time, it was considered to make the developed system as
secure as possible. Next to this, entire system has to be fault-
tolerant, monitored and protected from attacks. It means that if
the device is under attack, only attacker has to be blocked, not
entire system or other users. If there is some security incident,
BESIP immediately solves the situation and notifies this event
in detailed report to the administrator.

Attacks against the embedded systems are more dangerous
due to their relatively lower performance which makes the
attacks more efficient. We chose an IPS system, consisting of
three applications.

A. Snort

The core of the entire IPS solution is IDS system Snort
which detects malicious activity in the network . The detection
is based on signatures or detection of anomalies. The whole
IDS system is modular, consisting of the following
components:

• Packet decoder – Captures packets from network
interfaces, prepare them to pre–processing.

• Pre–processor – Prepares or modifies packets before
the processing (packet defragmentation, URI
decoding, reassembling TCP streams, . . .).

• Detection engine – Responsible for attack detection.
• Logging and alerting system – Depending on detection

engine, the packet may be used to log activity or
generate an alert.

• Output modules – Or plugins, for adding another
features.

B. SnortSam
This application operates on the client–server model. It

allows Snort to dynamically intervene into IPtables rules. To
ensure its proper operation, we need to first patch our Snort
installation with a SnortSam plugin.

 The client communicates with the Snort’s sensor, sends
commands to the server (when incident has been detected).

The server listens on port 898, applying information from
clients to IPtables rules. SnortSam messages are transferred as
encrypted, based on preshared passwords which must be same
on server and on client A whitelist of non–blockable IP
addresses is also available.

 The detected traffic is then blocked for some time. Once
the attack is over and timed out, the blocked IP is allowed to
communicate again. Thus, only malicious traffic that poses a
threat to our server is blocked.

C. IPtables

An open–source firewall for Linux–based operation
systems. It is used to block malicious traffic on a server. In our
case, running at the same physical device as a VoIP server.

D. Features of Implementation

The attack are recognized and processed by SNORT rules,
the source IP address is automatically sent into firewall by
SNORTSam and the intruder’s IP is blocked. This is very
flexible, reliable and effective implementation. Dropping
attack based on IP directly in the Linux kernel is much more
efficient than to check messages on the application level. Only
first messages are going to SNORT filter. When SNORT
identifies a suspicious traffic, next messages from the same IP
are blocked. In next BESIP releases, we are going to to
implement ipqbdb mechanism which will be even more self-
defending. It is based on IP denoting.
 If more soft faults appear from some IP, it is blocked at the
IPTABLES level, this approach can effectively block
incorrectly configured clients and servers. For example, if
client sends REGISTER with proper credentials, it is not
obviously security attack but the client attempt to register
again and again, with every registration requires computing
sources at SIP REGISTRAR server. Such attempts can be
denoted and blocked for a time interval. Security precautions
against these attacks include Snort rules tracking the number
of messages sent to the SIP server from a particular source
address. The blocking rules were similar in most cases, like
this Snort rule for blocking unwanted register flood.

alert udp $EXTERNAL_NET any ->

$SIP_PROXY $SIP_PORT (msg:"SIP
DoS attempt(registerflood)"; content:"REGISTER sip";
detection_filter:track by_src, count 50, seconds 5;
classtype:misc-attack; sid:1000001; rev:1; fwsam:src,
10min;)

Administrators can use Zabbix or NAGIOS agent inside
BESIP to gather all information directly into their monitoring
system. The monitoring is very important part of the security
module and BESIP team was already focused on the issue in
early design [1].

Partially, BESIP is resistant to some kind of DoS attacks. It
depends on hardware used. If hardware is strong enough to
detect some security incidents on application level, the source
IP is immediately dropped. But for weak hardware it can be
serious problem. In such case, it is better to stop DoS attacks

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 107

before it reaches BESIP. For example, SNORT on a dedicated
machine will be much more flexible than if is an integral part
of VoIP system. Therefore, we recommend to use an external
IPS system to make VoIP service robust and secure.
Nevertheless BESIP includes own IPS/IDS system.

Fig. 5 Attack effectivity based on REGISTER flood

Fig. 6 Attack efficiency based on INVITE flood.

 The features of our security module were verified in test-
bed and results are depicted in Fig. 5 and 6. The CPU load was
monitored during trivial SIP attacks. The line SSI (Snort,
SnortSam, IPtables) represents the response in case of active
security module in BESIP whereas next dependencies were
measured without SSI. There were emulated only two types of
DoS attacks, namely REGISTER flood and INVITE flood. In
order to generate these attacks, we used sipp generator and in
case of INVITE also inviteflood tool. The dependencies in
both figures clearly prove the ability of security module to
mitigate the performed attacks.

VII. MONITORING MODULE

The overall solution of the monitoring system consists of
several different open source components and also of the part
that was directly developed for this purpose to meet the
defined requirements.

A. Used Computational Model
This sub-chapter deals with the application of the

computational E-model, simplified for the purpose of
implementation.

The computational model consists of various mathematical
operations over all parameters of the transmission system [16],

[17]. The computation itself can be split into several elements
and is expressed by the following equation (1):

o s d e effR R I I I A−= − − − + (1)

R0 represents the signal-to-noise ratio and includes all types of
noise, such noises caused by the device’s electrical circuit and
noises arisen on the wiring. IS comprises all possible
impairments combinations that appear more or less
simultaneously with a useful voice signal. Factor Id represents
all impairments which are caused by different combinations of
delays. Ie-eff comprises impairments caused by using a
particular voice codec, occurrence of packet loss and its
resistance against losses. Specific impairment factor values for
codec operation under random packet-loss have formerly been
treated using tabulated, packet-loss dependent Ie values. Now,
the packet-loss robustness Factor Bpl is defined as a codec-
specific value. The packet-loss dependent effective equipment
impairment factor Ie-eff is derived using the codec-specific
value for the equipment impairment factor at zero packet-loss
Ie and the packet-loss robustness factor Bpl, both listed in
Appendix I of ITU-T G.113 for several codecs [18]. With the
packet-loss probability Ppl, Ie-eff is calculated using the
equation (2).

()95 pl
e eff e e

pl
pl

P
I I I

P
B

BurstR

− = + − ⋅
+

 (2)

 BurstR is the so-called burst ratio, defined as ratio between
“Average length of observed bursts in an arrival sequence“ and
“Average length of bursts expected for the network under
random loss“.

The simplified E-model takes into account only effects from
codec, packet loss (random packet loss) and end-to-end delay.
Fig. 7 illustrates the situation which corresponds to relation
(4).

 Fig. 7 E-model in simplified version

 As for the codec, it is simply identified at the receiving side.
The same applies to the delay. We applied a linear regression
to results gained in AT&T laboratories [19] and derived
relation (3) which provides accurate results, with regression
quality r=0.99 ranging from 0 to 400 ms.

d

0.0267 T T 175ms
I

0.1194 T 15.876 175ms T 400ms

⋅ <
= ⋅ − ≤ ≤

 (3)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 108

 Parameters R0, IS and A are replaced by constants, with their
values stated in recommendation ITU-T G.107. The original
relation (1) has been modified as follows (4):

94.7688 1.4136 0d e effR I I −= − − − + (4)

 Parameter e effI − is computed in relation (2). Where the

packet loss distribution is unknown, the value of the packet
loss is assumed as random and BurstR = 1 and it results in the
following simplification. Parameter Ie is fully taken over from
recommendation ITU-T G.113 where its values for the most
used codecs are listed [18].
 Finally, the computed R-factor is converted to MOS value.
For this purpose, relation (5) was adopted [20]. MOS values >
100 can be achieved only provided a wide-band codec is used.

1MOS =

for 6.5R <
61 0.035 (60) (100) 7 10MOS R R R R −= + ⋅ + ⋅ − ⋅ − ⋅ ⋅

for 6.5 100R≤ ≤

4.5MOS =

for 100R > (5)

B. Implementation
System structure is depicted in Fig. 8. The system itself

consists of three logical components, which are – web
interface that serves the administrators (Web GUI), part of the
script (Scripts) that controls the obtaining the information
necessary to compute the speech quality in the simplified E-
model. Last component is part of the Quality Monitor, which
contains the logic for calculation itself and performs
processing of data obtained by scripts. In the overview
SQLite3 database, which is used to store the results.

The developed application offers the comfort of
management in a web application, the developed interface
aggregates required functions. Web interface is the main part
of user interaction with a monitoring tool. Monitoring tool is
turned off in the default configuration and can be enabled
using the intuitive main interface of BESIP any time . This part
of the monitoring tools is also used as a mean to display the
measured and computed results. Structure of the presented
data is as follows: Time, Source IP, Destination IP, MOS and
used Codec. An example of user interface is shown in Fig. 9.

The web interface is written entirely in PHP scripting
language in order to enable starting or stopping the monitoring
system through the OpenWRT shell as it depends on shell
applications such as tshark (a small terminal-based network
analyzer). Scripts are launched through the web interface of
the monitoring tool enabling the monitoring itself. In practice,
this means starting the network traffic capture with the tshark
tool with the RTP filter activated. The usage of the RTP filter
makes working with RTP streams much easier as these streams

contain some important statistical data (packet loss, jitter) and
other important information (source/destination IP, codec)
necessary to calculate the speech quality in the E-model.

Web GUI

Quality Monitor

Scripts

... ...

RTP Packets

SQLite DB

Fig. 8 Overview of the logical structure of VQM

The status indicator is located at the top of the GUI and
indicates whether the monitoring is activated in BESIP
(Monitoring is running…)or is currently turned off.

Fig. 9 Sample of web GUI of monitoring speech quality

VIII. CONCLUSION

The contribution of our work is entire BESIP concept and its
implementation. As we have mentioned, BESIP consists of
several components which are distributed under GPL as an
open-source solution. A few of them have been fully adopted
such as the components in Security and PBX modules, some of
them modified, concerning the CORE module and finally we
have developed own tool for Speech quality assessment. The
contribution of our work is not only few hundreds of hours
spent on the development, on the coding BESIP system, we
bring a new idea of the unified configuration management,
with unified CLI syntax which enables to configure different
systems, Asterisk and Kamailio in our case. We perceive that

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 109

we need to solve a lot of issues, Individual packages are
working and after several pre-releases, the version 1.0 was
released in November 2011, the current version 1.2 is on-line
available [7]. BESIP is distributed as a functional image for
x86 platform but is possible to run it on Vmware or KVM.
Configuration is available through web-browser or SSH client.
Today, there is a trunk version in SVN which is actively
developed and individual improvements are included in next
subversions. After testing, version 2.0 will be released in mid-
2013, new release 2.0 will be based completely on NETCONF
with one API to configure entire system. Next to this, CLI
syntax is developed and will be connected to NETCONF. CLI
will be independent of internal software so if some internal
software is modified, there will be no change in configuration.
Even more, CLI and NETCONF configuration will be
independent on hardware and version. To export configuration
from one box and to import it to the next one will be simple
task. Users will modify only one configuration file to manage
entire box. After this step, all internals of configuration will be
hidden as was mentioned in introduction. Entire BESIP
management and development is available at [21] and Binary
images from nightly autobild can be downloaded from [7].

ACKNOWLEDGMENT

This work has been supported by the Ministry of Education of
the Czech Republic within the project LM2010005.

REFERENCES

[1] L. Macura, M. Voznak, K. Tomala, J. Slachta, “Embedded
Multiplatform SIP Server Solution,“ in Proc. 35th International
Conference on Telecommunication and Signal Processing, Prague,
2012, pp. 263-266.

[2] M. Voznak, L. Kapicak, J. Zdralek, P. Nevlud and J. Plucar,
"Multimedia services in Asterisk based on VoiceXML, " International
Journal of Mathematical Models and Methods in Applied Sciences,
Volume 5, Issue 5, 2011, pp. 857-865.

[3] M. Voznak, L. Macura, "Kamailio syntax generator and configuration
file parser, " in Proc. 15th WSEAS International Conference on
Computers, Corfu, 2011, pp. 308-312.

[4] R. Enns et al.,"Network Configuration Protocol (NETCONF)," IETF
RFC 6241, 2011.

[5] M. Voznak, F. Rezac, "Threats to voice over IP communications
systems, " WSEAS Transactions on Computers, Volume 9, Issue 11,
November 2010, pp. 1348-1358.

[6] M. Voznak, J. Safarik, "DoS attacks targeting SIP server and
improvements of robustness," International Journal of Mathematics
and Computers in Simulation, Volume 6, Issue 1, 2012, pp. 177-184.

[7] Source code of BESIP Project, LipTel Team, 2011. Available:
http://liptel.vsb.cz/mirror/besip/nightly

[8] G. Cutuli, E. Mumolo, M. Tessarotto, "An XML-based virtual machine
for distributed computing in a For/Join framework, " In Proc. 24th Int.
Conf. Information Technology Interface, 2002, Cavtat, Croatia, pp.
471-477.

[9] S. Chisholm, H. Trevino, "NETCONF Event Notifications," IETF RFC
5277, 2008.

[10] M. Scott, M. Bjorklund, "YANG Module for NETCONF Monitoring, "
IETF RFC 6022, 2010.

[11] M. Bjorklund, "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)," IETF RFC 6020, 2010.

[12] Libnetconf, NETCONF library in C. Available:
http://code.google.com/p/libnetconf

[13] M. Voznak, "Advanced implementation of IP telephony at Czech
universities, " WSEAS Transactions on Communications, Volume 9,
Issue 10, October 2010, pp. 679-693.

[14] R. Chochelinski, I. Baronak, "Private Telecommunication Network
Based on NGN " in Proc. 32nd International Conference on
Telecommunications and Signal Processing, Dunakiliti, 2009, pp. 162-
167.

[15] H. M. El-Bakry, N. Mastorakis, "A real-time intrusion detection
algorithm for network security," WSEAS Transactions on
Communications, Volume 7, Issue 12, 2008, pp. 1222-1228.

[16] Estrada, L., Torres, D., Toral, H., “Analytical description of a
parameter-based optimization of the quality of service for VoIP
communications, “ WSEAS Transactions on Communications, Volume
8, Issue 9, 2009, Pages 1042-1052.

[17] M. Voznak, "E-model modification for case of cascade codecs
arrangement," International Journal of Mathematical Models and
Methods in Applied Sciences, Volume 5, Issue 8, 2011, pp. 1439-1447.

[18] Transmission impairments due to speech processing, ITU-T
Recommendation G.113, Geneva, 11/2007.

[19] G. Cole, H. Rosenbluth, “Voice over IP performance monitoring, “
ACM SIGCOMM Computer Communication, New York, 2001.

[20] The E-model: A computational model for use in transmission planning,
ITU-T Recommendation G.107, Geneva, 04/2009.

[21] Management of BESIP Project, LipTel Team, 2011. Available:
https://homeproj.cesnet.cz/projects/besip/wiki

Miroslav Voznak is an Associate Professor with
Dpt. of Telecommunications, Technical University
of Ostrava. He is also a researcher with Dpt. of
Multimedia in CESNET (association of Czech
universities and Czech Academy of Sciences). He
received his M.S. and Ph.D. degrees in
telecommunications, dissertation thesis “Voice
traffic optimization with regard to speech quality
in network with VoIP technology” from the
Technical University of Ostrava, in 1995 and

2002, respectively. Topics of his research interests are Next Generation
Networks, IP telephony, speech quality and network security. He was
involved in several FP EU projects.

Jiri Slachta is a M.S. student with Department of
Telecommunications at Faculty of Electrical
Engineering and Computer Science, VSB-
Technical University of Ostrava. His professional
activities are focused on Embedded systems,
Networks and Application development for mobile
systems. He is also a researcher with Dpt. of
Multimedia in CESNET, Czech Republic

Lukas Macura is a Ph.D. student with Dpt. of
Telecommunications at Faculty of Electrical
Engineering and Computer Science, VSB-
Technical University of Ostrava. He is also
administrator of SIP infrastructure within CESNET
where he is employed as a researcher with Dpt. of
Multimedia, CESNET, Czech Republic.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 7, 2013 110

