
 

 

  
Abstract—The objective of this paper is to construct combined 

solutions and to show exact solutions of a fifth order model equation 
for steady capillary-gravity waves over a bump with the Bond number 
near 1/3. 
 

Keywords—Bump, Lyapunov’s Center Theorem, Schauder fixed 
point theorem, Steady capillary-gravity wave.  

I. INTRODUCTION 
ROGRESSIVE capillary-gravity waves on an irrotional 
incompressible inviscid fluid of constant density with 

surface tension in a two-dimensional channel of finite depth 
have been studied since nineteen century. Assume that a 
coordinate system moving with the wave at a speed is chosen so 
that in reference to it the wave motion is steady. Let H be the 
depth of water, g the acceleration of gravity, T the coefficient of 
surface tension, and ρ the constant density of the fluid. Then 
there are two nondimensional numbers which are important and 
defined as )/(2 gHcF = , the Froude number, and )/( 2gHT ρτ = , 
the Bond number.  

When F is not close to 1, the linear theory of water waves is 
applicable. But when F approaches to 1, the solutions of 
linearized equations of water waves will grow to infinity 
(Peters and Stoker [12]). Therefore for F close to 1 nonlinear 
effect must be taken into account and thus 1F = is a critical 
value. The first study of a solitary wave on water with surface 
tension is due to Korteweg and DeVries [10] after whom the 
K-dV equation with surface tension effect is named. A 
stationary K-dV equation with Bond number not near1 3 can 
also be formally derived by different approaches. However, 
ifτ is close to 1, the formal derivation of the stationary K-dV 
equation fails. Thus 1 3τ = is also a critical value. 

It becomes apparent that the problems for F near 1 and 
forτ near1 3depend on each other and are difficult because 
they are not only strongly nonlinear, but also very delicate. 
Since the full nonlinear equations for the water waves are too 
complicated to study, it is of interest to study model equations. 
In Hunter and Vanden-Broeck’s work [8], a fifth order ordinary 
differential equation considered as a perturbed stationary K-dV 
 

CHUNG-HSIEN TSAI is with the Department of Information Technology, 
Overseas Chinese University, 407 Taichung, TAIWAN (R.O.C.) (e-mail: 
ctsai@ocu.edu.tw).  

SHY-JEN GUO is with the Department of International Trade, National 
Taichung University of Science and Technology, 404 Taichung, TAIWAN 
(R.O.C.) (corresponding author. e-mail: ch861997@yahoo.com). 

equation was obtained with the assumption that 2
21F F= + є , 

11 3τ τ= + є and єis a small positive parameter. By integrating 
the fifth order ordinary differential equation once and set the 
con-stant of integration to be zero, then the model equation 
becomes 
                              2

2 1
3 12 + 0
2 45xx xxxxF η η τ η η− − =                 (1) 

Equation (1) has been studied extensively by many authors [1-8] 
and several types of solutions have been found, such as 
periodic solutions [1, 5, 6, 7], solitary wave solutions [2-8], 
generalized solitary wave solutions (solitary waves with 
osciallatory tails at infinity) in the parameter 
region 1 0τ < and 2 0F >  [1,8], etc.  

II. DERIVATION OF THE MODEL EQUATION 
We consider the two-dimensional flow of an irrotional 

incompressible inviscid fluid of constant density ρ∗  with surface 
tension T ∗ in a two-dimensional channel of finite depth. A 
rectangular coordinate system( ,x∗ )y∗ is chosen such that the flow 
is bounded above by the free surface ( , )y x tη∗ ∗ ∗ ∗= and below by 
the rigid horizontal bottom with a bump ( )y H x∗ ∗ ∗= − + b . 

The governing equations are: 
In , ( )x H x y η∗ ∗ ∗ ∗ ∗−∞ < < ∞ − + < <b  
                                       0

x x y y
φ φ∗ ∗ ∗ ∗

∗ ∗+ = ,                                (2)  

at the free surface, y η∗ ∗=  

0
t x x y

η φ η φ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗+ − = ,                             (3) 

3
2

2
2 2

2

1 ( ) .
2 2(1 )

x x
t x y

x

T Bg
η

φ φ φ η
ρ η

∗ ∗

∗ ∗

∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
+ + + − =

+
           (4) 

at the bottom, ( )y H b x∗ ∗ ∗= − +  

0
y x x

φ φ∗ ∗ ∗
∗ ∗ ∗− =b                                  (5) 

Where ( , , )x y tφ∗ ∗ ∗ ∗ is the potential function, B∗ is an arbitrary 
constant, and H is the depth when the bump ∗b  is zero. In order 
to investigate long waves and derive asymptoyic solutions, it is 
conventient to introduce the following dimensionless variables: 
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∗

∗
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⎫= = = ⎪
⎪= = ⎪
⎬

= ⎪
⎪
⎪= = ⎭b b

                 (6) 

where M is a positive integer to be chosen later. 
In terms of the nondimensional variables (6), (2)-(5) become: 

In , 1 ( )Mx x yβ αη−∞ < < ∞ − + < <b  

0,xx yyβφ φ+ =                                (7) 

At the free surface, αη=y  
2 1 0,t x x yβ η αφ η β φ−+ − =                          (8) 

2 2 1 2( )
2t x y
αβ φ φ β φ η−+ + +  

3
2

2

2 2
,

2(1 )
xx

x

Bβτη
αα βη

− =
+

                            (9) 

at the bottom, 1 ( )My xβ= − + b  

1 0.M
y x xφ β φ+− =b                             (10) 

In (7)-(10), ,α β , andτ are nondimensional parameters 

2
2, ( ) , .A H T

H L gH
α β τ

ρ

∗

∗= = =               (11) 

We seek solutions for periodic water waves of wavelength λ∗ , 
and introduce the dimensionless wavelength 

     ,
L
λλ

∗

=                                       (12) 

The Froude number F is defined as 

1
2 0

.
( ) x

cF dx
gH

λα φ
λ

= = ∫                          (13) 

Since we are interested in small amplitude and shallow-water 
waves withτ near 1

3 , in (7)-(10), we take 

2 ,α β= =є є.                               (14) 

and expand , ,η φ τ , and B as 

2

2
0 1 2

2
0 1 2

21
1 23

2
0 1 2

2
0 1 2

Bx

B B B B

F F F F

η η η η

φ φ φ φ

τ τ τ

⎫= + + +
⎪

= + + + + ⎪
⎪

= + + + ⎬
⎪= + + + ⎪
⎪= + + + ⎭

L

L

L

L

L

є

є є

є є

є є

є є

є є

                       (15) 

Substituting (14) and (15) into (7)-(10), taking M = 4 in (10), 
and expanding at the boundary condition 0y = and 1y = − , we 
obtain in ,x−∞ < < ∞  − <1 y < 0  

2 3
0 1 2 0 1( ( )) (

xx xx xx yy yy
Oφ φ φ φ φ+ + + + +є є є є є  2 3

2 ( )) 0,
yy

Oφ+ + =є є     

               (16) 

at 0y = , 

2 2
0 1( ( ))t t Oη η+ +є є є  

2 3
2 0 1 2

02

( ){( ( ,0, ) ( ))}
x

B B B O x t Oφ+ + +
+ + +

є є єє є
є

 

2 3
0 1 2( ( ))x x x Oη η η+ + +є є є  

1 2 2
0 0 1 0{( ( ,0, ) ( ( )) ( ,0, )y yyx t O x tφ η η φ−− + + +є є є є  

2 2
1 0 1 1( ( ,0, ) ( ( )) ( ,0, )y yyx t O x tφ η η φ+ + + +є є є є

4 2 2 3
2 3( ))  ( ( ,0, ) ( )) ( ( ,0, )y yO x t O x tφ φ+ + + +є є є є  

2 4( )) ( ))}O O+ +є є = 0,                  (17) 

2 2
0 1( ( ,0, ) ( ,0, ) ( ))t tx t x t Oφ φ+ +є є є  

2 32
0 1 2

2

( ) {{
2

B B B O+ + +
+

є є єє
є

 

2
0 0 0 1( ( ,0, ) ( ,0, )) ( ,0, )x xy xx t x t x tφ η φ φ+ + +є є  

2 3 2 1 2
2 0 0 1( ,0, ) ( )}  {( )x y yy yx t Oφ φ φ φ−+ + + + +є є є є є  

2 3 2 2 3
2 0 1 2( )} } ( ( ))y O Oφ η η η+ + + + + +є є є є є  

2 3 2
1 2 0 1 2

1 ( ( ))(
3 xx xx xxOτ τ η η η− + + + + +є є є є є є  

3 10( ))(1 ( ))O O+ +є є  
2 3 4 5 2

0 1 2 3 4
2

( ( )) ,
2

B B B B B O+ + + + +
=

є є є є є
є

    (18) 

at 1y = −  

2
0 1 2( ( , 1, ) ( , 1, ) ( , 1, )y y yx t x t x tφ φ φ− + − + −є є

2 3
3 4 5 0 1 2

3 2

( )( , 1, ) ( ))  ( )y
B B B Ox t Oφ + + +

+ − + −
є є єє є є

є
   

  
0 ( , 1, ) ( ))x xx t Oφ+ − + bє = 0.                   (19) 

From (16) to (19), we have 

1( )O −є : 

0 ( ,0, ) 0.y x tφ =                             (20) 

(1)O : 

0 ( , , ) 0,yy x y tφ =                            (21) 

0 0 1 ( ,0, ) 0,x yB x tη φ− =                       (22) 

0 0 0( ,0, ) 0,xB x tφ η+ =                        (23) 

0 ( , 1, ) 0.y x tφ − =                           (24) 

From (21) and by (22) or (24), it follows that 
0 0 00, ( , , ) ( , ).y x y t x tφ φ φ= =                 (25) 

( )O є : 
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0 1( , ) ( , , ) 0,xx yyx t x y tφ φ+ =                     (26) 

0 1 1 0 2 ( ,0, ) 0,x x yB B x tη η φ+ − =                  (27) 

0 1 1 0( ,0, ) ( ,0, )x xB x t B x tφ φ+
2
0 ( ,0, ) 1

1 02 3 0,y x t
xx

φ η η+ + − =      (28) 

1 ( , 1, ) 0.y x tφ − =                             (29) 

From (26) and by (29), we found that 

1 0( , , ) ( , )( 1),y xxx y t x t yφ φ= − +                (30) 

and 
2

1 0 1( , , ) ( , )( ) ( , ),
2x xxx x
yx y t x t y R x tφ φ= − + +              (31) 

From (22), (23), and by (30), we obtain 

0 1,B =                                         (32) 

0 0.xφ η= −                                     (33) 

From (28) and by (25), (31), and (32), it follows that 

1 0 1 1 0
1( ,0, )
3xx xxx x xx t Bφ η η η= − +                    (34) 

1 ( , ).xxR x t=                                  (35) 

2( )O є : 

1 2( , , ) ( , , ) 0,xx yyx y t x y tφ φ+ =                    (36) 

0 0 2 1 1 2 0 0( )t x x x xB B Bη η η φ η+ + + +  

0 1 3 0 at 0,yy y yη φ φ− − = =                         (37) 
2
0 1

0 2 1 1 2 0 2 12 3t x x xxB B ηφ φ φ η η η+ + − + + −   

1 0 0 at 0,xx yτ η− = =                               (38) 

2 ( , 1, ) 0.y x tφ − =                               (39) 

From (36), (39) and by (31), we found that 

2 0 1
1( , ) ( , ) ( , ),
3 xxxx xxR x t x t R x tφ= − −                   (40) 

3 2

2 0( , , ) ( , )( )
6 2 3y xxxx
y y yx y t x tφ φ= + + 2 ( , )( 1),R x t y+ +        (41) 

and 
4 3 2

2 0( , , ) ( , )( )
24 6 6xxxx
y y yx y t x tφ φ= + +    

2

2 3( , )( ) ( , )
2
yR x t y R x t+ + +                       (42) 

From (27) and by (32),(41) 

2 1 1 0( , ) .x xR x t Bη η= +                       (43) 

From (37) and by (30),(32) ,(33), 

2 0 1 1 2 0 0 3( 2 ) ( ,0, )x t x x yB B x tη η η η η φ= − − − − +          (44) 

Differentiating (38) about x and by (33) , (35) , (42) 

2 0 3 1 1 2 0 0( )x t xx xx xR B R Bη η η η= − − + −
1 1 0

1 .
3 xxx xxxη τ η+ +   (45) 

By (34), (35), (40), and (43)  
1 0.=B                                         (46) 

By (44), (45), and (46) 

1 0 2 0 0 0
1 2 2 3
3 xxx t x xBη η η η η= − − +  

1 0 3 3 ( ,0, )xxx xx yR x tτ η φ− + +               (47) 

( )O 3є : 

2 3( , , ) ( , , ) 0,xx yyx y t x y tφ φ+ =                      (48) 

3 0( , 1, ) .y xx t B bφ − =                             (49) 

From(48), (49) and by (42), we obtain 

3 0 2
1 1( , 1, ) ( , ) ( , )
45 3y xxxxxx xxx t x t R x tφ φ− = −  

3 3( , ) ( ,0, )xx yR x t x tφ+ +                    (50) 

By (32), (33), (43), (46), and (50), we have 

0 2 0 0 02 2 3t x xBη η η η+ −
1 0 0

1 .
45xxx xxxxx xτ η η+ − = b         (51) 

The Froude number F is defined and expanded as  

( )F F O= + + +0 1 2
2 3єF є F є  

2 32
0 1 2

02

( )( ( ))
0 x

B B B O O dx
λ

φ
λ

+ + +
= + +∫

є є єє є
є

 

 
0 2 00

( ).xB B dx O
λ
φ

λ
= + + + +∫

2
2 3

1
єєB є є                    (52) 

By (33) and the mean value of periodic solution over a period is 
zero, we found that 

0 00 0
0xdx dx

λ λ
φ η= − =∫ ∫ . 

If 0η is a solitary wave solution with the properity that 

0 00 0xdx dxφ η
∞ ∞

= − < ∞∫ ∫ ,                       (53) 

then, with λ = ∞ , the term 

00

1
xdx

λ
φ

λ ∫  

in (52) will be zero. We shall see that all the solitary wave 
solutions discovered in the following chapters will satisfy (53). 

Therefore, we have 

0 0B F= , 
1 1B F= , 

2 2B F= . 

and then (51) becomes 

0 2 0 0 0 1 0 0
12 2 3
45t x x xxx xxxxx xFη η η η τ η η+ − + − = b .       (54) 

Next, we assume 0 0tη = in equation (54), integrate (54) once 
and set the constant of integration to be zero, then we have the 
following model equation 

2
2 0 0 1 0 0

3 12
2 45x xx xxxxF η η τ η η− + − = b .              (55) 

In the following sections, we shall useη for 0η in equation (55), 
that is, 

2
2 1

3 12
2 45xx xxxxF η η τ η η− + − = b .                 (56) 

and disscuss the solutions of the model equation (56). 
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III. PROBLEM FORMULATION 
We follow Zufiria [19] to construct a Hamiltonian associated 

to (56).When 0=b , we rewrite (56) as 
2

1 2
13545 90 0

2xxxx xx Fη τ η η η− − + = .             (57) 

We multiply xη− to (57) and integrate the resulting equation, 
then equation (57) has first integral as 

2 2 2 3
2 1

1 45 4545
2 2 2x x xxx x xH F η η η η τ η η= + − + − ,             (58) 

where H is a constant. Introducing the change of variables 
1 1 1

2 2

45xxx x ,

xx x ,

q , p
q , p

η η τ η
η η

= = − ⎫⎪
⎬= = ⎪⎭

 

then (58) becomes 

( ) 2 2
1 2 1 2 2 1 2

1, =45
2

H q q , p , p F q q+ 2 3
1 2 1 2 1

45 45
2 2

p p p qτ− − − ,   (59) 

and we have 

( ) ( ) ( , )z
dz J H z Az g z f z
dx

μ= ∇ = + ≡ ,                (60) 

where 2
1 2( , )Fμ τ= ∈ R , 

1

2 4

1

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

q
q

z , J
p
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ∈ =
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

−⎝ ⎠⎝ ⎠

R ,              (61) 

and 

1
2135

2 12

0 0 0 1 0
0 0 1 45 0

( ) =
90 0 0 0
0 1 0 0 0

A , g z
F q

τ
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠

.         (62) 

Therefore (59) is a two degree of freedom Hamiltonian with 
two parameters 1τ and 2F . Because different parameters 1 2( , )Fτ in 
(59) give rise to different eigenvalues λ  for the linearized 
system of (60) at the origin, we divide the parameter 
plane 1 2( , )Fτ into following nine cases  

Case 0 1 2( 0 0): =0,0,0,0,Fτ λ= = . 
Case 1 1 2( 0): = , ; , 0,F r wi r wτ λ∈ > ± ± >R . 
Case 2 1 2( 0 0): =0,0, ; 0,F wi wτ λ< = ± > . 
Case 3 2

1 2 1 2( 0 0  (45 ) 360 0): ,F , Fτ τ< < + >  

1 2 1 2, ; 0w i w i w wλ = ± ± > > . 
Case 4 2

1 2 1 2( 0 0  (45 ) 360 0):,F , Fτ τ< < + =  
, ; 0wi wi wλ = ± ± >  

Case 5 2
1 2 1 2( 0, (45 ) 360 0):,F Fτ τ∈ < + <R  
= ; , 0a bi a bλ ± ± >  

Case 6 2
1 2 1 2( 0 0, (45 ) 360 0):,F Fτ τ< + =>  
= , ; 0r r rλ ± ± >  

Case 7 2
1 2 1 2( 0 0, (45 ) 360 0):,F Fτ τ< + >>  

1 2 1 2= , ; 0r r r rλ ± ± > >  
Case 8 1 2( 0 0): =0 0 ; 0,F , , r rτ λ= ± >> . 

We rewrite (56) as follows, 
2

1 2
345 90 45( ( )) ) ,
2xxxx xx F x fη τ η η η− − = − + ≡b       (63) 

IV.  PROBLEM SOLUTION 

A. Combined solutions for  Case 1 
In this section, we shall construct a combined solution for 

equation (63) in Case 1. We construct this half-periodic and 
half-solitary-wave solution as follows : On interval 1( , )x−∞ , we let 
b(x) = 0 and use Lyapunov’s Center Theorem to show that a 
periodic solution ( )P xη  exists initiating at 1x x= to the left. 
On 1 2[ , ]x x , we shall use Schauder fixed point theorem to prove there 
exist a bounded solution ( )C xη for equation (9) subject to initial 
values 1( ( ),P xη  1( ),P xη′ 1( ),P xη′′ 1( ))P xη′′′  at 1x x= . On 2( , )x ∞ , we 
also let b(x) = 0 and show that equation (9) with initial values 
at 2x x= has a solution ( )R xη , which decay to zero exponentially at 
positive infinity by using a theorem from [6]. Then we combine 

( ), ( )P Cx xη η  and ( )R xη to have a solution of equation (63). Since 
the proof of existence of bounded solutions ( )C xη  
and ( )R xη on 1 2[ , ]x x and 2( , )x ∞ are the same as in [13], in the 
following, we shall focus on the existence of ( )P xη on interval 

1( , )x−∞ . First, we state Lyapunov’s Center Theorem : 

Theorem 1 Assume that a system with a non-degenerate integral has 
an equilibrium point with exponents ,wi±  3, , mλ λL where 0iw ≠ is 
pure imaginary. If j iwλ is never an integer for 3, ,j = L m, then 
there exists a one-parameter family of periodic orbits emanating from 
the equilibrum point. Moreover, when approaching the equilibrum 
point along the family, the periods tend to2 wπ . 

When b(x) = 0, equation (56) possesses a Hamiltonian (59) 
H and an equilibrium at the origin. In Case 1, the engenvalues 
of the linearized systems of (63) are wi± and r±  where         

1( (45w τ= − −
1 1
2 22

1 2((45 ) 360 ) ) 2) 0Fτ + >  

and 

        0)2/)360)45((45(( 2
1

2
1

2
2

11 >++= Fr ττ .  

Thus, by Theorem, there exists a periodic motion of period 
close to 2 wπ in the nonlinear system of differential equations with 
the Hamiltonian H. Since the amplitude of the periodic motions are 
small and depends on initial conditions, we can write the periodic 
solutions in the form [11] 

2( ; ) ( )Ax
Pz x e a O= +є є є                   (64) 

where є is a small parameter, A is the same as in (8), and a is a 
fixed nonzero vector such that (0; )Pz є є  a→ when 0→є . We 
rewrite (64) in eigenvector coordinates as 
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                                      2ˆˆ ( ; ) ( )x
Pz x e aΛ= +є є є                  (65) 

where 1 1ˆˆ ( ; ) ; , , ( , , , )Pz x P z x a P a diag wi wi r r− −= = Λ = − −Pє ( є) , 
and P is a 4 4× matrix with the column vectors 

1 2 3, , ,ξ ξ ξ and 4ξ corresponding to the unit eigenvectors of 
eigenvalues , ,wi wi r− − and r. We see that â must be in the 
form 1 2ˆ ˆ( , ,0,0)a a , otherwise (65) will not be periodic. 

Therefore, vector a ∈ 4R lies in the two dimensional eigenspace 
1 2{ , }aS ξ ξ=  where 2ξ is the conjugate of 1ξ . 

On interval 1( , )x−∞ , by Theorem and the discussion above, 
there is a one-parameter family of periodic solutions in the form 
(65) with initial values 1( ; )Pz x є having the properties that 

1( ; )Pz x є є  1Axe a→ as 0→є and 4.aa S R∈ I The solution Rη  
on ),( 2 ∞x can be found by Theorem as in [13]. As in [13], the 
bounded solution ( )C xη on ),( 21 xx is obtained by Schauder 
fixed point theorem and it is required that the initial values 
at 1x x= and the bump b both must be sufficiently small. Now, 
we write the first component of 1( ; ; )Pz x x∗є  as 1( ; ; )P x xη ∗є to 
obtain the solution of (9) on 1( , )x−∞ .As in [13], we combine 

1( ; ; )P x xη ∗є , );( 1xxCη , and 2( ; )R x Tη to be a solution of 
equation (63) in Case 1, which is periodic on interval 1( , )x−∞  
and decays to zero exponentially at positive infinity on interval 

),( 2 ∞x . 

B. Combined solutions for Case 3 
In this section, we would like to discuss the solutions of equation 
(63) for the parameters 1 2, Fτ  corresponding to Case 3. As in 
previous sections, the idea is to investgate the solutions of 
equation (63) on three different intervals 1 1 2( , ),[ , ]x x x−∞ , 
and 2( , )x ∞ .On 1 2[ , ]x x , we shall prove there exists bounded 
solutions of equation (63) with initial values at 1x x= by Schauder 
fixed point theorem. On intervals 1( , )x−∞  and 2( , )x ∞ , we let b(x) 
= 0 and show that equation (63) has periodic or bounded solutions. 
Then these solutions can be combined to become a C4 solution of 
equation (63). 

From Section III, we know that the eigenvalues of the 
linearized systems of equation (63) in Case 3 are two pairs of 
pure imaginaries, 1w i± and 2w i± , with 1 2 0w w> > . 
When 1 2w w is irrational, Theorem 1 (Lyapunov’s Center 
Theorem) can be used to construct periodic solutions on intervals 

1( , )x−∞ and 2( , )x ∞ . There exist two one-parameter families of 
periodic orbits emanating from the fixed point 0z = . If we let 

1w w= in Theorem 1, then the periods of this one-parameter 
periodic family tend to 12 wπ when the fixed point is 
approached along the family. We call this family as 
short-period family since 1 2w w> . If we let 2w w= in Theorem 
1, then the periods of this one-parameter periodic family tend to 

22 wπ when the fixed point is approached along the family. We 
call this family as long-period family. 

We write the short-period family of periodic solutions in the 
form 

1 1

2( ; ) ( )Ax
w wz x e a O= +є є є                       (66) 

where є is a small parameter, A is the same as in (86), and
1wa is 

a fixed nonzero vector such that 
1
(0; )wz є є  

1wa→ when 0→є . 
We rewrite (66) in eigenvector coordinates as 

1 1

2ˆˆ ( ; ) ( )x
w wz x e a OΛ= +є є є                          (67) 

where
1 1 1

1 1ˆˆ ( ; ) ( ; ), , (w w wz x P z x a P a diag− −= = Λ = −є є

1 1 2 2, , , )w i w i w i w i− , and P is a 4 4× matrix with the column 
vectors 1 2 3, ,ξ ξ ξ , and 4ξ corresponding to the unit eigenvectors 
of eigenvalues 1 1 2, , ,w i w i w i− −  and 2w i respectively. We see 
that 

1
ˆwa must be in the form

11 12
ˆ ˆ( , ,0,0)w wa a since the periods 

tend to 12 wπ when we approach the fixed point zero along the 
family. Therefore, vector

1

4
wa R∈ lies in the two dimensional 

eigenspace { }
1 1 2,wS ξ ξ= where 2ξ is the conjugate of 1ξ .Thus, 

on intevral 1( , )x−∞ , we have periodic solutions (67) in 
short-period family with initial values

1 1( ; )wz x є  having the 
properties that 

1 1( ; )wz x →є є 1

2

Ax
we a as 0→є and 

2 2

4
w wa S R∈ I On intevral 2( , )x ∞ , we also obtain periodic 

solutions (67) in short-period family with initial 
values

2 2( ; )wz x є having the properties that 
2

1 12( ; ) Ax
w wz x e a→є є as 0→є and

1 1

4.w wa S R∈ I  
By the same arguments as above on periodic solutions of 

short-period family, we have periodic solutions 

2 2

2( ; ) ( )Ax
w wz x e a O= +є є є in long-period family on 

intevral 1( , )x−∞ with initial values 
2 1( ; )wz x є having the 

properties that
2 1( ; )wz x є є  1

2

Ax
we a→  as 0→є  and 

2 2

4
w w Ra S∈ I  where

2wS = 3 4{ , }ξ ξ and 4ξ is the conjugate of 3ξ . 
On intevral 2( , )x ∞ , we also have periodic solutions 

2
( ; )wz x є in 

long-period family with initial values 
2 2( ; )wz x є  having the 

properties that 2

2 22( ; ) Ax
w wz x e a→є є  as 0→є  and 

2 2

4
w w Ra S∈ I . 
As in [19], the bounded solution ( )C xη on 1 2[ , ]x x is obtained 

by Schauder fixed point theorem and it is required that the 
initial values at x = x1 and the bump b both must be sufficiently 
small such that MY and Mb satisfy (98) and (100) in [19]. These 
requirements could be met by choosing a small bump b and 
sufficiently smallє , say ∗є . Now, we write the first component 
of

1 1( ; ; )wz x x∗є1 or
2 1( ; ; )wz x x∗є2

as 1( ; ; )L Lx xη є to be the solution of 
(63) on 1( , )x−∞ . In [15], we showed that the zero solution is 
stable for Case 3, thus bounded 2( ; ; )R Rx xη є on 
interval 2( , )x ∞ can be obtained if ),(''),('),(( 222 xxx ccc ηηη  

))(''' 2xcη  is small and this could be done as disscussed in [13]. 
As in [13], we combine 1( ; ; ),L Lx xη є  1( ; ),C x xη  and 

2( ; ; )R Rx xη є  to obtain a solution of equation (63) in Case 3 
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with 1 2w w irrational, which is periodic on interval 1( , )x−∞ and 
bounded on 1[ , ]x ∞ . 

C. Combined solutions in Case 4 for large x 
In this section, we would like to discuss the solutions of 
equation (63) for the parameters 1 2, Fτ corresponding to Case 4. 
As in previous sections, we shall show the existence of 
solutions of equation (63) on three different 
intervals 1 1 2( , ),[ , ]x x x−∞ , and 2( , )x ∞ . Then combine these 
solutions to become a 4C solution of equation (63). 

First we show there exist peroidic solutions of equation (63) 
with b(x) = 0 by a theorem from Meyer [11]. In [11], Meyer 
discussed the bifurcation occurring in restricted 3-body 
problem. The Hamiltonian he concerned depends on a 
parameter μ and has the properties that the eigenvalues of the 
associated linearized operator are (I) 2 2,iw iw± ±  if 0μ >  where 

1 2 1 2, ,w w w w∈ ≠R , and 1 2 0w w ≠ . (e.g., In Case 3) (II) ,iw iw± ±  
if 0μ = where w∈ R and 0w ≠ , with two two-dimensional 
Jordan blocks. (e.g., In Case 4)(III) a ib± ± if 0μ <  
where ,a b ∈ R and 0ab ≠ .(e.g., In Case 5). Meyer transforms 
the perturbed Hamiltonian to Sokol’skii’s normal form 

1 2 1 3( ) ( )H w a bμ δ μ= Γ + Γ + Γ + Γ +  

2 2
1 1 3 3

1 ( 2 ) ,
2

c d eΓ + Γ Γ + Γ +L          (68) 

where 
1 2 4 1 3 2 1 2 3 3 4( ), , .i z z z z z z z zΓ = − Γ = Γ =    (69) 

With higher-order terms in H are functions of 1 2,Γ Γ and 3Γ only. 
Then he proved the following results. 

Theorem 3 Consider a Hamiltonian of the form (68) 
with 0,  1,  0,  0.w b eδ≠ = ± ≠ ≠ Assume 0.eδ >  There exist two 
Lyapunov families of periodic orbits emanating from the origin 
when bδ μ is small and positive. These families persist 
when 0μ = as two distinct families of periodic orbits emanating 
from the origin. As bδ μ becomes negative, the two families 
detach from the origin as a single family and recede from the 
origin. 

Theorem 3 can be used to show a Hamiltonian Holf biurcation 
near Case 4 since the Hamiltonian system (59) has the same 
properties as Meyer [11] discussed if we assume 

2
2 1

45
8

F τ μ= − + , 

with 1 0τ < and the parameter 0μ ≈ . After transforming (59) to 
Sokol’skii’s normal form (68), we have 

1
2

1 2 8

45 90 38475( ) ,    1,    ,    .
2 32

w b e
w w

τ δ
δ

= − = − = = −  

Since 0eδ > , we have the same results as Theorem 1 described. 
When 0μ > is small and we are in the region Case 3 but near 
Case 4, there are two Lyapunov periodic families emanating 
from the origin. These families persist when 0μ = as two 
distinct families of periodic orbits emanating from the origin. 
As 0μ < is small and we are in the region Case 5 but near Case 4, 

the two families detach from the origin as a single family and 
recede from the origin. 

The periodic solutions derived by Theorem 1 with 0μ =  
which corresponds to Case 4 can be used as ( )L xη in 
interval 1( , ]x−∞ . The existence of ( )C xη  on 1, 2[ ]x x can also be 
proved by the same arguments in [13]. On interval 2( , ]x ∞ , since 
the zero solution of equation (63) with ( ) 0x =b is almost stable, 
bounded ( )R xη for large x is obtained provided that 

2 2 2( ( ) ( ), ( )R C Rx x xη η η′= = 2 2( ), ( )C Rx xη η′ ′′ = 2( ),C xη′′  2 2( ) ( ))R Cx xη η′′′ ′′′=  
is small and this could be done as we disscussed in [16].  

As in [13], we match ( ), ( )L Cx xη η , and ( )R xη  at 1x x=  
and 2x x= to obtain a solution of equation (63) in Case 4 which 
is periodic on interval 1( , )x−∞ and bounded on 1,[ )x ∞ for large x. 

D. Exact solutions  

We rewrite (63) as follows, 
     bFxxxxxx 45

2
1359045 2

21 −=+−− ηηητη                (70) 

In this section, we would like to discuss solutions of the 
model equation (70) in the form 

)(cos)(sec)( DxCBxhAx mn +=η ,                      (71) 

where RDCBA ∈,,, and Nnm ∈, . (71) could be expressed as 
the solutions that we are interested in, such as periodic 
solutions, solitary wave solutions, and generalized solitary 
wave solutions. To construct soultions in the form (71), we 
substitute (71) in (70) to obtain 

))}(sec

)(cos
2

135)}(sec

)3)(2)(1()(

sec)45)22(
2)(1()(sec

2
135)(sec)90

45{()}(cos
2

135)(cos)90

45()(cos

)45)22(
2)(1()(cos

)3)(2)(1({{
45
1)(

4

4

22
1

2

22

2
2

22
1

442

2
2

22
1

442

2
1

2

24

4

Bxh

DxACBxh

ABnnnnBx

hABnn
BnnBxh

ABxhAF

nBnBDx

CDxCF

mDmDDx

CDmm
DmmDx

CDmmmmxb

n

mn

n

n

n

m

m

m

m

+

++++

−++

+−

+−

−+

+−

++

++−

−−

−−−−=

+

+

−

−

τ

τ

τ

τ

,         (72) 

then (70) has solutions in the form (71) if (72) holds. 
 

In Tsai [13-19], we only proved the existence of solutions 
for each of the nine cases but did not provide explicit form for 
the soultions. With the special non-compact bump (72) in each 
of the nine cases, we shall see that equation (70) has periodic 
solutions if 0=A and 0≠CD , solitary wave solutions if 0=C  
and 0≠AB , and generalized solitary wave solutions if 

0≠ABCD , 
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 In the following, we shall discuss the solutions we 
mentioned above. 
 

(I) )(sec)( BxhAx n=η  
 

It is clear that (70) has solitary wave solutions 
)(sec)( BxhAx n=η when 0=C in bump (71), i.e.  

)})}(sec
)3)(2)(1()(

sec)45)22(
2)(1()(sec

2
135)(sec)90

45{{(
45
1)(

4

4

22
1

2

22

2
2

22
1

44

Bxh
ABnnnnBx
hABnn

BnnBxh

ABxhAF

nBnBxb

n

n

n

n

+

+

++++

−++

+−

+−

−−=

τ

τ

,          (73) 

which is in a solitary-wave shape. Is it possible that 0)( =xb in 
(73)? When 4=n and let 0)( =xb , that is, let the cofficients of 

4)(sec Bxh , 6)(sec Bxh , and 8)(sec Bxh vanish, then we have 
2

1)169/1575( τ−=A , 2/13/45 1τ=B , and 2
12 )169/810( τ−=F   

with 01 >τ . This means that (70) with 0)( =xb has an explicit 
solitary wave solution 

)
13

45
2
1(sec

169
1575)( 142

1 xhx ττη −=  

When 2
12 )169/810( τ−=F  with 01 >τ . 

 
(II) )(cos)( DxCx m=η  

It is clear that (70) has periodic solutions 
)(cos)( DxCx m=η when 0=A in bump (71), i.e.  

24

4

2)(1()(cos

)3)(2)(1({{
45
1)(

DmmDx

CDmmmmxb

m −−

−−−−=

−

 

 2
1

2 )45)22( CDmm τ++−
 22

1
442 45()(cos mDmDDxm τ++−  

2
2 2

135)(cos)90 CDxCF m +−  

          )}}(cos2 Dxm ,                    (74) 
which is also periodic. The period of (74) is D/2π when 

1>m and the amplitude is |)0(| b which increases as 
D increases, that is , as the period of )(xη decreases. 
 

(III) )(cos)(sec)( DxCBxhAx mn +=η  
 

In this situation, we require that the amplitude C of the 
periodic part is much smaller than the amplitude A of the 
solitary part in order to have a generalized solitary wave. 

V. NUMERICAL EXPERIMENT 
In this section, we shall give combined solutions 

numerically of equation (63) by using classical fourth-order 
Runge-Kutta method.  

 
 
 

 
Figure 1: A combined solution of equation (63) obtained by using 

classical fourth-order Runge-Kutta method for Case 1 with compact 
bump ))1/(1exp(10)( 219 −= − xxb  on interval )1,1(− . 

 

 
 

 

 
 
 
 
 
 

Figure 2: A combined solution of equation (63) obtained by using 
classical fourth-order Runge-Kutta method for Case 3 with ,11 −=τ  

12 −=F , and compact bump ))1/(1exp(10)( 22 −= − xxb  on interval 
)1,1(− . 

 

 
Figure 3: A combined solution of equation (63) obtained by using 

classical fourth-order Runge-Kutta method for Case 3 with ,11 −=τ  
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8/452 −=F , and compact bump ))1/(1exp(10)( 25 −= − xxb  on 
interval )1,1(− . 

VI. CONCLUSION 
We constructed combined solutions of model equation (63) 

for a sufficiently smooth compact bump b(x) and has a compact 
support on the inteval [x1, x2] with b(x1) = b(x2) = 0.  

We also showed the exact solutions of a fifth order model 
equation (70) for steady capillary-gravity waves over a 
non-compact bump with the Bond number near 1/3. 
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