
 

 

  
Abstract— In this article, Evolutionary Algorithms (EAs) are used 

for multi-objective Pareto optimal design of Group Method of Data 
Handling (GMDH)-type neural networks that have been deployed for 
fatigue life modeling of unidirectional GRP composites using some 
input-output experimental data. Multi-objective EAs (non–dominated 
sorting genetic algorithm, NSGA-II) with a diversity preserving 
mechanism are used for Pareto optimization of such GMDH-type 
neural networks. The important conflicting objectives of GMDH-type 
neural networks that are considered in this work are, namely, 
Training Error (TE), Prediction Error (PE) and number of neurons 
(N) of such neural network. Different pairs of these objective 
functions are selected for 2-objective optimization processes. 
Therefore, optimal Pareto fronts of such models are obtained in each 
case which exhibit the trade-off between the corresponding pair of 
conflicting objectives and thus provide different non-dominated 
optimal choices of GMDH-type neural networks models for fatigue 
life of unidirectional GRP composites. Moreover, all the three 
objectives are considered in a 3-objective optimization process which 
consequently lead to some more non-dominated choices of GMDH-
type models representing the trade-off among the training error, 
prediction error, and number of neurons (complexity of network), 
simultaneously. The overlay graphs of these Pareto fronts also expose 
that the 3-objective results include those of the 2-objective results and 
also provide more optimal choices for the multi-objective design of 
GMDH-type neural networks in terms of minimum training error, 
minimum prediction error and minimum complexity. 
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I. INTRODUCTION 

Primary structural elements made of Glass-fiber Reinforced 

Plastics, GRP, are increasingly used in a number of civil 
applications such as bridge decks, space frames, wind turbine 
rotor blades, leisure boats etc. Some of these structures are 
often subject to vibrations and other fluctuating loads, which 
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cause fatigue degradation of the material. Fatigue is known to 
be responsible for the majority of failures of structural 
components. For homogeneous materials like metals and 
alloys, fatigue design methodologies are generally based on 
self-similar growth of a single dominant crack which 
eventually causes ultimate failure. The fatigue mechanisms in 
composite materials are more complex and involve a 
multitude of spatially distributed and interacting mechanisms. 
Fatigue damage in unidirectional (UD) composites based on 
the physics and the mechanism of cracking in three regions of 
matrix (I), matrix–fiber interface (II), and fiber (III) have been 
illustrated in Figure 1. 

 
Fig. 1 three regions of cracking mechanism in unidirectional 

composites  
 

In the absence of a well-defined failure criterion that can be 
used to predict fatigue failure, extensive tests must be carried 
out for different fiber orientation angles and loading 
conditions. The issue of fatigue life prediction of fiber-
reinforced composite materials has been investigated from a 
number of viewpoints. Proposed methodologies have either 
been based on damage modeling or on some kind of 
mathematical relationship [1]. Although some work was done 
using ANN in the study of fatigue, less work was done when 
the fatigue was related to composite materials. The use of 
ANN to predict fatigue strength of APC-2 graphite-PEEK 
composites was addressed in the work by Aymerich and Serra 
[2]. Carbon fiber and glass fiber-reinforced composites have 
been used by Lee et al. [3] to evaluate the performance of 
ANN in predicting fatigue failure of laminates under various 
stress ratios. The use of ANN to predict the fatigue life of 
glass fiber/epoxy lamina with arrange of fiber orientation 
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angles under various loading conditions was considered by Al-
Assaf and El Kadi [1, 4]. 

The main components of soft computing, namely, fuzzy 
logic, neural network, and evolutionary algorithms have 
shown great ability in solving complex non-linear system 
identification and control problems. Many research efforts 
have been expended to use of evolutionary methods as 
effective tools for system identification [5-10]. Among these 
methodologies, GMDH algorithm is a self-organizing 
approach by which gradually complicated models are 
generated based on the evaluation of their performances on a 
set of multi-input-single-output data pairs. The GMDH was 
first developed by Ivakhnenko [11] as a multivariate analysis 
method for complex systems modeling and identification. The 
main idea of GMDH is to build an analytical function in a 
feedforward network based on a quadratic node transfer 
function [12] whose coefficients are obtained using regression 
technique. In fact, real GMDH algorithm in which model 
coefficients are estimated by means of the least square method 
has been classified into complete induction and incomplete 
induction, which represent the combinatorial (COMBI) and 
multilayered iterative algorithms (MIA), respectively [13]. In 
recent years, however, the use of such self-organizing 
networks leads to successful application of the GMDH-type 
algorithm in a broad range of areas in engineering, science, 
and economics [11-17]. 

There have been many efforts in recent years to deploy 
population-based stochastic search algorithms such as 
evolutionary methods to design artificial neural networks since 
such evolutionary algorithms are particularly useful for 
dealing with complex problems having large search spaces 
with many local optima [7, 13]. Recently, genetic algorithms 
have been used in a feedforward GMDH-type neural network 
for each neuron searching its optimal set of connection with 
the preceding layer [14, 18]. In the former reference, authors 
have proposed a hybrid genetic algorithm for a simplified 
GMDH-type neural network in which the connection of 
neurons are restricted to adjacent layers. However, such 
restriction has been removed by recent works of some of 
authors in [19] led to a generalized-structure GMDH-type 
neural networks (GS-GMDH) which exhibited better 
performance in terms of both modeling errors and network's 
complexity in comparisons with those of other design methods 
[17]. All these methods devised previously have been based 
on single objective optimization process in which either 
training error or prediction error selected to be minimized with 
no control of other objectives. In order to obtain more robust 
models of such complex fatigue process, it is required to 
consider all the conflicting objectives, namely, training error 
(TE), prediction error (PE) and number of neuron (N) 
(representing the complexity of the models) be minimized 
simultaneously in the sense of multi-objective Pareto 
optimization process. 

In Multi-objective optimization problems (MOPs), there are 
several objective or cost functions (a vector of objectives) to 
be optimized (minimized or maximized) simultaneously. 
These objectives often conflict with each other so that 
improving one of them will deteriorate another. Therefore, 
there is no single optimal solution as the best with respect to 
all the objective functions. Instead, there is a set of optimal 

solutions, known as Pareto optimal solutions or Pareto front 
[20-26] for multi-objective optimization problems. In this 
paper, EAs used to evolutionary design the generalized 
structure GMDH-type (GS-GMDH) neural networks in which 
the connectivity configuration in such networks is not limited 
to adjacent layers for modeling and prediction of fatigue life in 
UD GRP composites. In this way, multi-objective EAs (non–
dominated sorting genetic algorithm, NSGA-II) with a 
diversity preserving mechanism are applied for Pareto 
optimization of such GS-GMDH-type neural networks. The 
important conflicting objectives of the GS-GMDH neural 
networks that are considered in this work are, namely, training 
error (TE), prediction error (PE) and number of neurons (N). 
The total numbers of experimental data are 74 from which 50 
are used for evaluations of TE whilst the remaining 24 data are 
used for evaluation of PE. Different pairs of these objective 
functions (TE-PE), (N-TE) and (N-PE) are selected for 2-
objective Pareto optimization of GS-GMDH neural networks 
models. Moreover, all these 3 conflicting objectives are also 
considered in an inclusive 3-objective optimization which 
consequently leads to a complete Pareto set of solutions of 
GMDH-type neural networks models. Pareto results are 
including, all of optimal points and we are selected one of 
them as a suitable final model to predict fatigue life of UD 
GRP composites. 
 

II. MODELING USING GMDH NEURAL NETWORKS 

A. General Mathematics of GMDH 

 By means of GMDH algorithm a model can be represented 
as set of neurons in which different pairs of them in each layer 
are connected through a quadratic polynomial and thus 
produce new neurons in the next layer. Such representation 
can be used in modeling to map inputs to outputs. The formal 

definition of the identification problem is to find a function f̂

so that can be approximately used instead of actual one, f  in 

order to predict output ŷ  for a given input vector 
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it is now possible to train a GMDH-type neural network to 

predict the output values 
i
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The problem is now to determine a GMDH-type neural 
network so that the square of difference between the actual 
output and the predicted one is minimized, that is 
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General connection between inputs and output variables can 
be expressed by a complicated discrete form of the Volterra 
functional series in the form of 
 

...
n

1

n

1
xx

n

1
xa

n

1

n

1
xxax

n

1i
a0ay +∑

=
∑
=

∑
=

∑
=

∑
=

++∑
=

+=
i j

kj
k

iijk
i j

jiijii      (4) 

 
where is known as the Kolmogorov-Gabor polynomial [12, 
13]. This full form of mathematical description can be 
represented by a system of partial quadratic polynomials 
consisting of only two variables (neurons) in the form of 
 

2
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(5) 

 
In this way, such partial quadratic description is recursively 
used in a network of connected neurons to build the general 
mathematical relation of inputs and output variables given in 

equation (4). The coefficients 
ia  in equation (5) are 

calculated using regression techniques [11-14] so that the 

difference between actual output, y , and the calculated one, ŷ  

for each pair of ( ix , jx ) as input variables is minimized. 

Indeed, it can be seen that a tree of polynomials is constructed 
using the quadratic form given in equation (5) whose 
coefficients are obtained in a least-squares sense. In this way, 

the coefficients of each quadratic function 
i

G are obtained to 

optimally fit the output in the whole set of input-output data 
pair, that is 
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In the basic form of the GMDH algorithm, all the possibilities 
of two independent variables out of total  n  input variables are 
taken in order to construct the regression polynomial in the 
form of equation (5) that best fits the dependent observations 

iy( , i=1, 2, …, M) in a least-squares sense. Consequently, 
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Using the quadratic sub-expression in the form of equation (5) 
for each row of M data triples, the following matrix equation 
can be readily obtained as 
 

YA =a ,                                                                                 (7) 

 

where a  is the vector of unknown coefficients of the 

quadratic polynomial in equation (5) 
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And 
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is the vector of output’s value from observation. It can be 
readily seen that 
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The least-squares technique from multiple-regression analysis 
leads to the solution of the normal equations in the form of 
 

YAAA TT 1)( −=a ,                                                            (11) 

 
Which determines the vector of the best coefficients of the 
quadratic equation (5) for the whole set of M data triples. It 
should be noted that this procedure is repeated for each neuron 
of the next hidden layer according to the connectivity topology 
of the network. However, such a solution directly from normal 
equations is rather susceptible to round off errors and, more 
importantly, to the singularity of these equations. 

B. Application of SVD to the design of GMDH-Type neural 

networks 

Singular Value Decomposition (SVD) is the method for 
solving most linear least square problems that some 
singularities may exist in the normal equations. The SVD of a 

matrix, 6×ℜ∈ MA  is a factorization of the matrix into the 
product of three matrices, column-orthogonal matrix

6×ℜ∈ MU , diagonal matrix 66 ×ℜ∈W  with non-

negative elements (singular values), and orthogonal matrix 

66 ×ℜ∈V  such that  
 

TVWUA =                             .                                        (12) 
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The most popular technique for computing the SVD was 
originally proposed in [27]. The problem of optimal selection 
of vector of the coefficients in equations (7) (11) is firstly 
reduced to finding the modified inversion of diagonal matrix 
W [28] in which the reciprocals of zero or near zero singulars 
(according to a threshold) are set to zero. Then, such optimal 

a  is calculated using the following relation 

 

YTUwdiagV
j
)]/1([=a              .                                (13) 

 
Such parametric identification problem is part of the general 
problem of modeling when structure identification is 
considered together with the parametric identification problem 
simultaneously. In this work, an encoding scheme developed 
by authors [21] is used in an evolutionary approach for 
simultaneous determination of structure and parametric 
identification of GMDH neural networks. 

C. Application of GA in the topology design of GMDH-

Type neural networks    

 GAs as stochastic methods are commonly used in the 
training of neural networks in terms of associated weights or 
coefficients and have successfully performed better than 
traditional gradient-based techniques [16]. The literature 
shows that a wide range of evolutionary design approaches 
either for architectures or for connection weights separately, in 
addition to efforts for them simultaneously [19]. In the most 
GMDH-type neural network, neurons in each layer are only 
connected to neurons in its adjacent layer as it was the case in 
Methods I and II previously reported in [17]. Taking this 
advantage, it was possible to present a simple encoding 
scheme for the genotype of each individual in the population 
as already proposed by authors [21]. The encoding scheme in 
generalized GMDH (GS-GMDH) neural networks must 
demonstrate the ability of representing different length and 
size of such neural networks [21] and is now presented in 
summery. 

In Figure 2, neuron ad in the first hidden layer is connected 
to the output layer by directly going through the second 
hidden layer. Therefore, it is now very easy to notice that the 
name of output neuron (network’s output) includes ad twice as 
abbcadad. In other words, a virtual neuron named adad has 
been constructed in the second hidden layer and used with 
abbc in the same layer to make the output neuron abbcadad as 
shown in the Figure 2. 

 

 
Fig. 2 a GS-GMDH network structure of a chromosome [25]. 

 
 It should be noted that such repetition occurs whenever a 

neuron passes some adjacent hidden layers and connects to 

another neuron in the next 2nd, or 3rd,or 4th,or … following 
hidden layer. In this encoding scheme, the number of 
repetition of that neuron depends on the number of passed 

hidden layers, ñ, and is calculated as
ñ2 . It is easy to realize 

that a chromosome such as abab bcbc, unlike chromosome 
abab acbc for example, is not a valid one in GS-GMDH 
networks and has to be simply re-written as abbc. 

 

III. MULTI-OBJECTIVE OPTIMIZATION 

Multi-objective optimization which is also called multi-
criteria optimization or vector optimization has been defined 
as finding a vector of decision variables satisfying constraints 
to give optimal values to all objective functions [24]. In 
general, it can be mathematically defined as: 

find the vector [ ]T*
nx,...,

*
2x,

*
1x

*
X = to optimize 

 

[ ]T
(X)

k
f(X),...,

2
f(X),

1
fF(X) = ,                                         (14) 

 
subject to m inequality constraints 
 

mto1i,0(X)ig =≤ ,                                                (15) 

 
and p equality constraints 
 

p  to  1j          ,0(X)jh == ,                                                (16) 

where 
nℜ∈*

X  is the vector of decision or design variables, 

and 
kℜ∈F(X)  is the vector of objective functions. Without 

loss of generality, it is assumed that all objective functions are 
to be minimized. Such multi-objective minimization based on 
the Pareto approach can be conducted using some definitions: 

A. Definition of Pareto dominance 

A vector [ ] k
ku,...,2u,1uU ℜ∈=  dominates to vector 

[ ] k
kv,...,2v,1vV ℜ∈=  (denoted by VU ≺  ) if and only if 

}{ k,...,2,1i ∈∀ , 
iviu ≤  ∧ }{ k,...,2,1j∈∃  : 

ju <
jv . It means 

that there is at least one 
ju  which is smaller than 

jv  whilst 

the rest u ’s are either smaller or equal to corresponding v ’s. 

B. Definition of Pareto optimality 

A point Ω∈*
X  ( Ω  is a feasible region in 

nℜ  satisfying 
equations (15) and (16)) is said to be Pareto optimal (minimal) 

with respect to all Ω∈X  if and only if F(X))
*

F(X ≺ . 

Alternatively, it can be readily restated as }{ k,...,2,1i ∈∀  , 

}
*

X{X −Ω∈∀  (X)if)
*

(Xif ≤  ∧ }{ k1,2,...,j ∈∃  :

(X)jf)
*

(Xjf < . It means that the solution 
*

X  is said to be 
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Pareto optimal (minimal) if no other solution can be found to 

dominate 
*

X  using the definition of Pareto dominance. 

C. Definition of Pareto Set 

For a given MOP, a Pareto set Ƅ ٭is a set in the decision 
variable space consisting of all the Pareto optimal vectors,   

Ƅ٭ |ΩX ∈= { ∄ }F(X))XF(:ΩX ≺′∈′ . In other words, there 

is no other X ′  in Ω that dominates any X ∈Ƅ٭.  

D. Definition of Pareto front 

For a given MOP, the Pareto front ƄŦ ٭is a set of vectors of 
objective functions which are obtained using the vectors of 

decision variables in the Pareto set Ƅ٭, that is,                    

ƄŦ٭ ∈== X:(X))
k

f....,(X),
2

f(X),
1

(fF(X){ Ƅ٭}. Therefore, 

the Pareto front ƄŦ ٭is a set of the vectors of objective 

functions mapped from Ƅ٭.  
Evolutionary algorithms have been widely used for multi-

objective optimization because of their natural properties 
suited for these types of problems. This is mostly because of 
their parallel or population-based search approach. Therefore, 
most difficulties and deficiencies within the classical methods 
in solving multi-objective optimization problems are 
eliminated. For example, there is no need for either several 
runs to find the Pareto front or quantification of the 
importance of each objective using numerical weights. It is 
very important in evolutionary algorithms that the genetic 
diversity within the population be preserved sufficiently. This 
main issue in MOPs has been addressed by much related 
research work [29]. Consequently, the premature convergence 
of MOEAs is prevented and the solutions are directed and 
distributed along the true Pareto front if such genetic diversity 
is well provided. The Pareto-based approach of NSGA-II [30] 
has been recently used in a wide range of engineering MOPs 
because of its simple yet efficient non-dominance ranking 
procedure in yielding different levels of Pareto frontiers. 
However, the crowding approach in such a state-of-the-art 
MOEA [31] works efficiently for two-objective optimization 
problems as a diversity-preserving operator which is not the 
case for problems with more than two objective functions. The 
reason is that the sorting procedure of individuals based on 
each objective in this algorithm will cause different enclosing 
hyper-boxes. Thus, the overall crowding distance of an 
individual computed in this way may not exactly reflect the 
true measure of diversity or crowding property. In order to 
show this issue more clearly, some basics of NSGA-II are now 
represented. Figure 3 illustrates the main procedure of 
selecting individuals from the entire population Rt to construct 
the next parent population Rt+1. 

 

 
Fig. 3 basics of NSGA-II procedure [32]. 

 
 The entire population Rt is simply the current parent 

population Pt plus its offspring population Qt which is created 
from the parent population Pt by using usual genetic operators. 
The selection is based on non-dominated sorting procedure 
which is used to classify the entire population Rt according to 
increasing order of dominance [30]. Thereafter, the best Pareto 
fronts from the top of the sorted list is transferred to create the 
new parent population Pt+1 which is half the size of the entire 
population Rt. Therefore, it should be noted that all the 
individuals of a certain front cannot be accommodated in the 
new parent population because of space, as shown in Figure 3. 
In order to choose exact number of individuals of that 
particular front, a crowded comparison operator is used in 
NSGA-II to find the best solutions to fill the rest of the new 
parent population slots. The crowded comparison procedure is 
based on density estimation of solutions surrounding a 
particular solution in a population or front. Figure 4 illustrates 
the crowding approach which has been used in NSGA-II. In 
this way, the solutions of a Pareto front are first sorted in each 
objective direction in the ascending order of that objective 
value. The crowding distance is then assigned equal to the half 
of the perimeter of the enclosing hyper-box, as shown in 
Figure 4.  

 

 
Fig. 4 the crowding distance approach of NSGA-II [32]. 

 
The sorting procedure is then repeated for other objectives 

and the overall crowding distance is calculated as the sum of 
the crowding distances from all objectives. The less crowded 
non-dominated individuals of that particular Pareto front are 
then selected to fill the new parent population. It must be 
noted that, in a two-objective Pareto optimization, if the 
solutions of a Pareto front are sorted in a decreasing order of 
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importance to one objective, these solutions are then 
automatically ordered in an increasing order of importance to 
the second objective. Thus, the hyper-boxes surrounding an 
individual solution remain unchanged in the objective-wise 
sorting procedure of the crowding distance of NSGA-II in the 
two-objective Pareto optimization problem. However, in 
multi-objective Pareto optimization problem with more than 
two objectives, such sorting procedure of individuals based on 
each objective in this algorithm will cause different enclosing 
hyper-boxes. Thus, the overall crowding distance of an 
individual computed in this way may not exactly reflect the 
true measure of diversity or crowding property for the multi-
objective Pareto optimization problems with more than two 
objectives. 

In this work, a different  method is presented to modify 
NSGA-II so that it can be safely used for any number of 
objective functions (particularly for more than two objectives) 
in MOPs. 

E. є-elimination diversity algorithm 

In the є-elimination diversity approach that is used to 
replace the crowding distance assignment approach in NSGA-
II [30], all the clones and є-similar individuals are recognized 
and simply eliminated from the current population. Therefore, 
based on a pre-defined value of є as the elimination threshold 
(є=0.0001 has been used in this paper), all the individuals in a 
front within this limit of a particular individual are eliminated. 
It should be noted that such є-similarity must exist both in the 
space of objectives and in the space of the associated design 
variables. This will ensure that very different individuals in 
the space of design variables having є-similarity in the space 
of objectives will not be eliminated from the population. The 
pseudo-code of the є-elimination approach is in reference [32]. 
Evidently, the clones and є-similar individuals are replaced 
from the population by the same number of new randomly 
generated individuals. Meanwhile, this will additionally help 
to explore the search space of the given MOP more 
effectively. 

The evolutionary process starts by randomly generating an 
initial population of symbolic strings each as a candidate 
solution. Then, the objective functions that have been 
considered in this work are training error (TE), prediction 
error (PE), and number of neurons (N) is evaluated for each 
entire string of symbolic digits which represents a GMDH-
type neural network to model fatigue life in GRP’s. The 
modified NSGAII presented in previous sections, is then used 
for multi-objective optimization of GMDH-type neural 
networks. 

IV. MULTI-OBJECTIVE OPTIMIZATION OF GMDH-TYPE 

NEURAL NETWORK MODELS OF FATIGUE LIFE IN 

UNIDIRECTIONAL GRP COMPOSITES 

Unidirectional GRP specimens were fabricated using the 
‘Scotchply Reinforced Plastic type 1003’ preperg at five 

different fiber orientation angles 
���� 71,45,19,0( =θ and 

)90� , where θ  is the angle between the fiber direction and 

the direction of applied load. Unidirectional fiber-reinforced 
composite specimens were cyclically tested under load control 

condition at room temperature. Specimens built with the 
various fiber angle orientations were tested under stress ratios 

)/( maxmin σσ=R  of 0.5,0 and -1 with a loading frequency 

of 3.3 Hz. [33]. Fatigue data of unidirectional GRP composites 
is available in the literature [33]. 

The parameters of interest in this multi-input single-output 

system that maximum stress ( maxσ ), minimum stress ( minσ ), 

failure stress level in one cycle ( uσ ), cyclic strain energy       

(W ) that calculate from varvani’s Energy-based model [34], 

stress ratio ( maxmin /σσ=R ) and fiber orientation angle       

(θ ). Among these parameters, 

θσσσ ,,,/,log maxmax RWu  make best composition as 

inputs for GMDH modeling of fatigue life of GRP composites. 
Therefore, the input vector X is represented as X = {

θσσσ ,,,/,log maxmax RWu  }. In this work, the output 

parameter has been the logarithmic value of fatigue life (

fNlog ). The modified NSGAII discussed in previous 

sections are used for multi-objective optimization of GMDH-
type neural networks for modeling and prediction of fatigue 
life of unidirectional GRP composites using these input-output 
data. However, in order to demonstrate the prediction ability 
of the evolved GMDH-type neural networks, the data have 
been divided into two different set, namely, training and 
testing sets. The training set, which consists of 50 out of 74 
inputs-output data pairs, is used for training the neural 
networks models using the evolutionary method of this paper. 
The testing set consists of 24 unforeseen input-output data 
samples during the training process, is merely used for testing 
to show the prediction ability of such evolved GMDH-type 
neural network models during the training process. The 
GMDH-type neural networks are now used for such input-
output data to find the polynomial model of fatigue life with 
respect to their effective input parameters. In order to design 
GMDH-type neural network described in previous section 
from a multi-objective optimum point of view, a population of 
100 individuals with a crossover probability of 0.95 and 
mutation probability of 0.1 has been used in 400 generation 
that no further improvement has been achieved for such 
population size. In the multi-objective optimization design of 
such GMDH-type neural networks, different pairs of 
conflicting objectives (TE, PE), (TE, N) and (PE, N) are 
selected for 2-objective optimization design of neural 
networks. The obtained Pareto front for each pair of 2-
obgective optimization have been shown through Figures 5, 6 
and 7 for (TE, PE), (TE, N) and (PE, N), respectively. It is 
clear from these figures that all design points representing 
different GMDH-type neural networks are non-dominated 
with respect to each other corresponding to that pair of 
conflicting objectives. 
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Fig. 5 pareto front of prediction error and training error in 2-

objective optimization. 
 
 
 
 

 
Fig. 6 pareto front of training error and number of neurons in 

2-objective optimization. 
 

 
Fig. 7 pareto front of prediction error and number of neurons 

in 2-objective optimization. 
 

Figure 5 depicts the Pareto front of 2-objective optimization 
of training error (TE) and prediction error (PE) representing 
different non-dominated optimum points. In this figure, points 
A and B stand for the best (PE) and the best (TE), 
respectively. The corresponding values of errors and the 
structure of these extreme optimum design points are given in 
Table 1. It must be noted that the number of neurons (N) is not 
an objective function in this case and only (TE) and (PE) have 

been accounted in such 2-objective optimum design of 
GMDH-type neural networks.  

 
TABLE 1 

OBJECTIVE FUNCTIONS AND STRUCTURE OF NETWORKS OF 

DIFFERENT POINTS SHOWN ON FIGURES 5, 6 AND 7. 

Optimum 

Design 

Points 

Structure of Networks 

No. 

of. 

Neu 

Training 

Error 

(mm) 

Prediction 

Error 

(mm) 

Objectives 

of 

Optimization 

A aecdabddadcebbde 13 0.258142 0.168928 (TE, PE) 

B aedeacbdadecaece 13 0.178287 0.386124 (TE, PE) 

C ccbddaaeaebdbcbb 11 0.222370 0.174411 (TE, PE) 

D aedeacbdadecaece 13 0.178287 0.386124 (TE, N) 

E bd 1 0.594169 0.653016 (TE, N) 

F ccadaeddeeeaccbd 8 0.213755 0.279342 (TE, N) 

G caeeccccaaaaaebd 8 0.307671 0.193883 (PE, N) 

H ab 1 0.898281 0.532158 (PE, N) 

I aebdaaaa 4 0.321556 0.253776 (PE, N) 

 
Similarly, Figures 6 and 7 depict the Pareto front of 2-

objective optimization of training error and number of neurons 
(TE, N) and prediction error and number of neurons  (PE, N), 
respectively. In this figures, points D and G stand for the best 
optimum values obtained for TE and PE in their corresponding 
2-objective optimization process with respect to the number of 
neuron (N). On the other hand, points E and H stands for the 
simplest structure of GMDH-type neural networks (N=1) with 
their corresponding values of (TE) and (PE). The values of the 
objective functions together with their networks' structures are 
shown in Table 1. It is clear from these figures that all the 
optimum design points (GMDH-type neural networks) in a 
Pareto front are non-dominated and could be chosen by a 
designer for modeling and prediction of fatigue life. It is clear 
from the these figures that choosing a better value for any 
objective function in a Pareto front would cause a worse value 
for another objective. However, if the set of decision variables 
(genome structure of GMDH-type neural networks and the 
associated coefficients) is selected based on each of the 
corresponding sets, it will lead to the best possible 
combination of those two objectives as shown in Figures 5, 6 
and 7. In other words, if any other set of decision variables is 
chosen, the corresponding values of the pair of objectives will 
locate a point inferior to the corresponding Pareto front. Such 
inferior area in the space of the two objectives is in fact 
top/right side of Figures 5, 6 and 7. Clearly, there are some 
important optimal design facts between the two objective 
functions which have been discovered by the Pareto optimum 
design of GMDH-type neural networks. Such important 
design facts could not have been found without the multi-
objective Pareto optimization of those GMDH-type neural 
networks. From Figures 5, 6 and 7 points C, F, and I are the 
points which demonstrate these important optimal design 
facts. Point C in the 2-objective Pareto optimum design of TE 
and PE, exhibit a very small increase in the value of PE (about 
3%) in comparison with that point of A except that its training 
error is about 14% better than that of point A. Therefore, point 
C could be a trade-off optimum choice when considering the 
minimum values of both PE and TE. The structure and 
network configuration corresponding to point C is shown in 
Figure 8a whose good behavior of such GMDH-type neural 
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networks model in training and prediction data are shown in 
Figure 9.  

 

 
 

Fig. 8 the structure of network corresponding to (a) point C on 
Figure 5, (b) point I on Figure 7, in which a, b, c, d and e stand 

for θσσσ ,,,/,log maxmax RWu  , respectively. 

 
Similarly, points F and I of Figures 6 and 7 demonstrate the 
same trade-off between the complexity of networks (number 
of neurons) and training error and prediction error, 
respectively. 
 

 
Fig.  9 comparison of actual values with the evolved GMDH 

model corresponding to optimum point C. 
 
 For example, point I exhibits a very small increase in PE in 
comparison with that of point G whilst its number neurons is 
50% less than that of G which corresponds to a much simpler 
structure of neural network. The corresponding structure of 
point I is shown in Figure 8b, whose good behavior of such 
GMDH-type neural network model both in training and 
prediction data are shown in Figure 10. 
 

 
Fig. 10 comparison of actual values with the evolved GMDH 

model corresponding to optimum point I. 
 

A multi-objective optimization of GMDH-type neural 
networks including all three objectives can offer more choices 
for a designer. Moreover, such 3-objective optimization result 
can subsume all the 2-objective optimization results presented 
in previous section. Figure 11 depicts the non-dominated 
points of 3-objective optimization process in the plane of (TE 
– PE) together with the 2-objective results of the same 
objectives (TE and PE) obtained previously. Such non-
dominated individuals of 3-objective optimization process 
have alternatively been shown in the planes of (N – TE) and 
(N – PE) in Figures 12 and 13, respectively. It should be noted 
that there is a single set of points as a result of 3-objective 
optimization of TE, PE and N that are shown in different 
planes together with their corresponding 2-objective 
optimization results. Therefore, there are some points in each 
plane that may dominate others in the same plane in the case 
of 3-objective optimization. However, these points are all non-
dominated when considering all three objectives 
simultaneously. 

  

 
Fig. 11 prediction error variation with training error in both 3-

objective and 2-objective optimization. 
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Fig. 12 number of neuron variation with training error in both 

3-objective and 2-objective optimization. 
 

 
Fig. 13 number of neuron variation with prediction error in 

both 3-objective and 2-objective optimization. 
By careful investigation of the results of 3-objective 

optimization in each plane, the Pareto fronts of the 
corresponding 2-objective optimization obtained previously 
can now be observed in these figures. It can be readily seen 
that the results of such 3-objective optimization include the 
Pareto fronts of each 2-objective optimization and thus 
provide more optimal choices for designer. Consequently, the 
Pareto optimization of GMDH-type neural networks reveals 
that the models corresponding to the C or F or I could be 
compromisely chosen via a trade-off point of view regarding 
TE, PE and N.  

V. CONCLUSIONS 

Evolutionary algorithms have been effectively implemented 
for multi-objective Pareto based optimization of generalized 
GMDH-type neural networks for modeling and prediction of 
fatigue life in GRP unidirectional composites. Such multi-
objective optimization led to the discovering of useful optimal 
design principles in the space of objective functions. In this 
paper, the significant conflicting objective functions of 
GMDH-type neural networks have been preferred as Training 
Error (TE), Prediction Error (PE) and Number of Neurons (N) 
of such neural networks. Different pairs of them have been 
considered for various 2-objective optimization processes. 
Thus, optimal Pareto fronts of such models have been 

obtained in each case which exhibit the trade-offs between the 
corresponding pair of conflicting objectives and then provide 
different non-dominated optimal choices of GMDH-type 
neural networks models for prediction of fatigue life. It has 
been shown that there exist some optimal structures of neural 
networks (points C, F, and I of the given Pareto fronts) which 
exhibit a very reasonable compromise between the conflicting 
objective functions and consequently can be confidently 
chosen as optimum polynomial neural networks. Such 
important results as useful optimal design principles would not 
have been obtained without the employ of a multi-objective 
optimization approach of neural networks. Moreover, all the 
three objectives have been also considered in a 3-objective 
optimization process which accordingly led to some more 
non-dominated choices of GMDH-type models representing 
the trade-offs among the training error, prediction error, and 
number of neurons  at the same time. The overlay graphs of 
these Pareto fronts also reveal that the 3-objective results 
include those of the 2-objective results and, thus, provide more 
optimal choices for the multi-objective design of GMDH-type 
neural networks.  
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