
 

 

 

Abstract—This paper describes the use of peak functions in the 
heat load modeling of district heating system. Heat load is 
approximated by the sum of time dependent and temperature 
dependent components. The temperature dependent component is 
approximated using sum of two peak functions and temperature 
dependent component is approximated using generalized logistic 
function. The model parameters are estimated using Particle Swarm 
Algorithm. 
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I. INTRODUCTION 

his paper describes the usage of peak functions in heat 

load modeling of heat distribution and consumption in 

municipal heating network. Heat load is approximated by 

the sum of time dependent and temperature dependent 

components. There are several approaches for heat load 

modeling [1]-[7]. We have proposed new approximation based 

method, where the temperature dependent component is 

approximated using sum of two peak functions. We use the 
Hybrid of Gaussian and truncated exponential functions 

(EGH) [6].  

The temperature dependent component is approximated using 

generalized logistic function. The model parameters are 

estimated using Particle Swarm Optimization (PSO) 

Algorithm [10]. Method was implemented as algorithm in 

JAVA language and was evaluated on the data of two 

combined heat and power plants (CHP). This paper presents 

calculation of delivered heat load, approximation model, PSO 

variant, stopping criterion and related cost function. Finally, 

the experiment results are presented. 

II. HEAT LOAD ESTIMATION 

A. Primary and Secondary Side 

 

A district heating system consists of primary side (heat 

producer) and secondary side (heat consumer) (Fig. 1). We are 

modeling heat load supplied to the district heating system. 
 

 

 
 

 
 

Fig. 1: Primary and Secondary side 

 

where 

 

      is supply  temperature, 

      is return temperature. 

 

B. Transport Times 

 

Transport time of the supply line can be calculated according 

to [8]: 
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where 

 

     is the known mass volume, 

    
  

is the unknown supply line transport 

time, 

        

 
 is the measured mass flow at time  . 

 

Algorithm for estimation transport time of supply line is 

depicted in Fig. 2. The mass volume R is measured from 

known parameters of distribution network or is set by 

optimization algorithm. 

 

Transport time of the return line can be calculated according 

to [8] and this process is depicted in Fig. 3: 

 

         

     

 

   (2) 

 

where 

 

    is the unknown transport time of return line. 
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Fig. 2: Calculation of transport time of the supply line 
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Fig. 3: Calculation of transport time of the return line 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1242



 

 

C. Delivered Heat Load 

District heating system is approximated by load centre 

of mass of the system [8]: 

                 
   
 
       

   
 
   

(3) 

 

where 

 

       is the heat load, 

   

    
  is the specific heat capacity, 

 

 

Fig. 4 depicted delivered Heat Load to the CHP. 

 

 
Fig. 4: Measuered Heat Load 

 

III. HEAT LOAD APPROXIMATION A PREDICTION 

Heat load is approximated by the sum of time dependent and 

temperature dependent components. 

 

                              (4) 

 

where 

 

          is the time dependent, component, 

    is the time offset, 

       is the outdoor temperature, 

            
is the outdoor temperature, dependent 
component. 

 

Fig. 5 shows approximation function. 

 
Fig. 5: Approximated heat load 

 

A. Temperature Dependent Component 

Temperature dependent component is approximated using 

generalized logistic function (Fig. 6). 
 

             
   

               
 
 

 (5) 

 

where 

 

   is the lower asymptote, 

   is the upper asymptote, 

   is the depend on the value         , 

   is the growth rate, 

  
 

affects near which asymptote maximum 

growth occurs, 

   is the time of maximum growth if Q = v. 

 

 
Fig. 6: Generalized logistic function 

 

B. Time Dependent Component 

The time dependent component is approximated by the sum of 
two peak functions. The Hybrid of Gaussian and truncated 

exponential function (EGH) [9] was selected as most the 

convenient function. 
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Hybrid of Gaussian and truncated exponential function is 

defined as 

 

               
 

         
      

       
 

 
     

     

  
(6) 

 

where 

 

   is  the peak height,, 

  
 

is the standard deviation of the parent 

Gaussian peak, 

  
 

is the time constant of the precursor 

exponential decay, 

   
 

is the parameter of the speed of the fall 
of the leading trail, 

    is the time of the peak. 

 

         is the sum of two EGH functions: 

 

                             
 

(7) 

 

 
Fig. 7: Example of       function 

 

Fig. 8: Example of       function 

 

Fig. 9: Example of       function 
 

C. Cost Function 

 

Cost function using EGH functions is defined as 

 

   
 

                                 
 

 

 

                         

    
       

        

        

        

 

(8) 

where 

 

  
 

is vector of EGH1 and EGH2 functions 

parameters. 

 

The Particle swarm algorithm [10] was chosen as the numeric 

optimization algorithm suitable for problem without explicit 

knowledge of the gradient of function to be optimized. We use 

MaxDistQuick as a stopping criterion as described in [11]. 

The optimization is stopped if the maximum distance of the 

major part of particles is below a threshold eps (Fig. 10)  or 

the maximum number of iteration is reached. Fig. 11 depicted 

serial version of PSO and Fig. 12 parallel version of PSO. 

 
We use these PSO variant: 

                                   

                          

(9) 

             
 
    (10) 

 

where 

  is the number of particles, i = 1,…,n, 

  is the dimension, j = 1, …, m, 

     is the particle position, 

      is the updated particle position, 

     is the  particle velocity, 

  is the inertia component, 

   is the  social component, 

   is the  cognitive component, 

         are uniform random numbers 〈0,1〉  
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             is the best global position, 

              is the best local particle position. 

 

 

The number of particles n we usually set two times more than 

dimension m. Inertia component ω is set about 0.8, social 

component c1 is set about 1.4 and cognitive component c2 is 
set about 0.6.  
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Fig. 10: MaxQuickDist Stopping Criterion 
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Fig. 11: PSO Serial 
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Fig. 12: PSO Parallel 

 

 

 

D. Parameters Estimation and Prediction 

 

Parameters are estimated with use of PSO algorithm as 

depicted in Fig. 13: Parameters estimation and heat load is 

predicted as depicted in Fig. 14. 
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Fig. 13: Parameters estimation 
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Fig. 14: Heat load prediction 

 

 

IV. RESULTS 

Method was evaluated on data from two CHP plant in Czech 

Republic. Due to the legal restriction, the names and exact 

data of CPH cannot be published. Fig. 16 shows comparison 

of measured and approximated Heat Load at CPH A 

 
Fig. 15: Heat load approximation (CPH A) 

 

Fig. 16: Comparison of measured and approximated Heat 

Load (CPH A) 

 

Table 1 shows approximation results as Root Mean Square 

Error (RMSE), Percentage Average Relative Error (PARE) 

and Percentage Normalized Root Mean Square Error 

(PNRMSE) according to: 
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Table 1: Approximation results  

 CHP A  CHP B 

3 month, winter 

season 

3 month, winter 

season 

RMSE [KW] 7395.8 3200.5 

PARE [%] 7.34 10.18 

PNRMSE  [%] 5.99 6.98 

 

 

V. CONCLUSION 

The new method was evaluated on the data of two combined 

heat and power plant. The results prove the suitability of this 

method. Next research will be the classification of daily 

patterns by means of EGH parameters. 
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