
 

 

  
Abstract—This paper deals with the symbolic solution of the 

switched current circuits. As is described, the full graph method of 
the solution can be used for finding relationships expressing current 
transfer, too. The summa MC-graph is constructed using two-graphs 
method in two-phase switching. By comparing the matrix form with 
results of the Mason’s formula are derived relations for current 
transfers in all phases. 
 There are discussed various options described transistor 
memory cells - with loss and lossless transistors and normal 
transistor current mirror. 

Evaluation of the graph is simplified if we consider the lossless 
transistors or if the y21-parameter of one transistor is alpha multiple 
of second ones. 
 

Keywords—Switched current, two phases, two-graph, Mason’s 
formula, relations for current transfer, summary MC-graph.  

I. INTRODUCTION 

SWITCHED-CURRENT (SI) system is defined as a 
system using analogue sampled-data circuits in which 

signals are represented by a current samples. The basic 
building block of SI circuits is the current memory cell. This 
can be described by the equation of time domain or by the z-
transform of the operator z-domain. Current memory cell can 
be represented by graph, too [3], [14]. 

Graph methods give results in a symbolic form [6], which 
makes it can be used to finding general relations. One option is 
to find general relations for current transfer in switched current 
circuits in two-phase switching. General relations are used for 
the calculation method of matrix calculus of final solution. 
This method will be demonstrated in the example. The summa 
MC-graph is constructed using two-graphs method in two-
phase switching, two-graphs method for switched capacitor 
circuits is described in [4], where the resulting relationship is 
in the shape of the matrix. 
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II.  CALCULATION OF THE TRANSMISSIONS FROM THE 

SUMMARY GRAPH 

A. Calculation of the Transmissions From the Summary 
Graph for Circuits with Less Transistors 

A circuit with a switched current has got for example the 
schematic wiring diagram shown in Fig.1 [7], [9], [10]. This 
circuit consist of two capacitors C, and three field effect 
transistors T1, T2 and T3. Phases of the switching are marked 
as odd and even, not 1 and 2, which could lead to confusion 
with the numbering of nodes and phases. 

A solution of a switched current circuit by the two-graph 
method of a summary MC-graph constructed on the basis of 
two-graphs will be shown in Fig.3. 
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Fig.1 schematic diagram of the SI circuit from the solution 
 

First we draw a partial diagram for the even phase and the 
odd phases separately by the algorithm described in [4]. These 
two diagrams for individual phases are in Fig.2. 

Since the circuit consists of regular elements, which are 
described by their admittances, it is not necessary to 
distinguish different nodes numbering especially for voltage 
(V-) and current (I-) graph. 
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Fig.2 graphs for even and odd phases 
 

To the diagrams for individual phases, we can assign 
directed graphs. For both even and odd phases it is necessary 
to draw a special voltage graph (ie. V-graph) and current graph 

Assembling a formula for current transferring 
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(ie. I-graph). The voltage and current graphs have the same 
numbers of nodes as the circuit and are generated from the 
circuit in the following form: two-terminal passive elements of 
the circuit are included as appropriate branches in both current 
and voltage graphs, active elements, in the form of four-
terminal voltage controlled current sources (VCCS), generate a 
branch in the voltage graph connecting the VCCS input nodes 
and a branch in the current graph connecting the VCCS output 
nodes. These graphs are shown in Fig.3. 

Node numbers are in the square for the the current graph 
and in the triangle for the voltage graph. V-graph and I-graph 
of the less FET are in the Tab.1 (first row). 

A summary graph is now constructed by first finding the 
incomplete common skeletons of the V-graph and the I-graph 
in the even phase and in the odd one, because the determinant 
∆  of the Y-matrix of the circuit is given by (1) 

 

∆=Σ±(product of addmittances) 
W          (1) 

where  

W={set of spannig trees of V-graph}  ∩
           ∩ {set of spannig trees of I-graph}

       (2) 
In other words, there is a term in the expression for ∆  

corresponding to each spanning tree that is common to the 
voltage graph and current graph [12], [13]. 

In the even phase there is one incomplete common skeleton 
for example formed by the .)2(
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Table 1. Two-graph of the FET 
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Fig.3 finding common skeletons of the V-graph and I-graph (less transistrors) 
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Fig.4 the summa MC-graph for transfer I4E/I1E 

 
 

Thus obtained summary Mason-Coates graph is in Fig.4. 
The current transfers [7], [10] will now be obtained from an 

extended graph, i.e. a graph must be extended to two branches 
as it is shown in Fig.4: the first branch from the input node IINP 
to the node 1E with transfer 1 and the second branch from the 
node 2E to the node IOUT. The transfer is equal to the 

transmission of its own loop at the output node. The summary 
graph is then evaluated by means of the Mason’s rule [1], for 
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E

E

I

I

1

4  is (3). 

=
−−−++++

++−
=

−

∆
==

−−∑
∑

.)3(
22

.)3(
22

.)1(
21

2

1
.)2(

21
2

1
.)3(

22
.)1(

21
.)2(

22
.)1(

22
.)3(

22
.)2(

21
.)2(

22
.)1(

22

.)3(
22

.)1(
21

.)2(
22

.)1(
22

.)3(
22

.)3(
21

)()(

)()(

1

4

))(()()(

)()(1

.

.

yyyzyzyyyyyyyy

yyyyyy

VSV

p

I

I

I

I
KK

ii

E

E

INP

OUT

 

.)1(
21

.)2(
21

1.)1(
21

.)2(
22

.)1(
22

.)2(
21

.)2(
22

.)1(
22

.)1(
21

.)2(
22

.)1(
22

.)3(
21

))((

)(

yyzyyyyyy

yyyy
−−++++

++−=                (3) 

 
 

Summary Mason-Coates graph for transfer 
E

O
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4  is shown in 

Fig.5, transfer of current from the Mason’s rule is (4). 

In Fig.6 and Fig.7 are Mason-Coates graphs for transfers 
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Fig.5 the summa MC-graph for transfer I4O/I1E 
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Fig.6 the summa MC-graph for transfer I4E/I1O 
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Fig.7 the summa MC-graph for transfer I4O/I1O 

 

=
−++++

−
=

−

∆
==

−−

−−

∑
∑

.)3(
22

.)3(
22

.)1(
21

2

1
.)2(

21
2

1
.)3(

22
.)1(

21
.)2(

22
.)1(

22
.)3(

22
.)2(

21
.)2(

22
.)1(

22

.)3(
22

.)3(
22

.)3(
21

2

1
.)1(

21
2

1

)()(

)()(

1

4

)()(

)(.1.

yyyzyzyyyyyyyy

yyyzyz

VSV

p

I

I

I

I
KK

ii

O

O

INP

OUT

 

.)1(
21

.)2(
21

1.)1(
21

.)2(
22

.)1(
22

.)2(
21

.)2(
22

.)1(
22

.)3(
21

.)1(
21

1

))(( yyzyyyyyy

yyz
−

−

−++++
−−=         (6) 

 

B  Circuit with Normal Current Mirror with Less 
Transistors 

The current memory cell in Fig.1 is simply a current mirror. 

By normal current mirror action α=
)2(
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)3(
21

y

y . We are considering 

)1(
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)2(
21 yy = , thus obtained summary Mason-Coates graph in 

this cases is in Fig.8, current transfer for example 
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The remaining currernt transfers (i.e. 
E

O

I

I

1

4 , 
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4  and 
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4 ) 

can be found analogous procedure, described in the previous 
paragraph. 
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Fig.8 the summa MC-graph for transfer I4E/I1E for normal current mirror 
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C Calculation of the Transmissions From the Summary 
Graph for Circuits with Lossless Transistors 

 Voltage and current graphs are shown in Fig.9 for even and 
odd phases, node numbers are in square for current and in 
triangle for voltage graph. 
 V-graph and I-graph of the lossless FET are in the Tab.1 
(second row). 
 The summary MC-graph is in Fig.9. Transfer for 

example
E
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4  by Mason’s rule is (8). The remaining currernt 

transfers can be found analogous procedure. 
 The summary MC-graph in case normal current mirror is in 

Fig.10. Transfer 
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4  by Mason’s rule is (9). 
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Fig.9 finding common skeletons of the V-graph and I-graph (lossless transistors) 
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Fig.10 the summa MC-graph for transfer I4E/I1E (lossless transistors) 
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Fig.11 the summa MC-graph for transfer I4E/I1E (lossless transistors, normal current mirror) 
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III. CALCULATION OF THE TRANSMISSIONS FROM THE MODEL 

OF THE CIRCUITS 

A Description of the CircuitUsing a Matrix 
Relations for transfers of currents (1) to (4) have been 

expressed as fractions in which conductivities )(
21
iy  and )(

22
iy  are 

found both in the numerator and in the denominator. That 
shows a theoretical possibility to express these transfers as 
ratios determinants of certain algebraic complements of 
matrices constructed from the mentioned conductivities )(

21
iy  

and )(
22
iy . 

In order to find such relations, a linearized diagram of the 
circuit from the Fig. 1. is drawn in Fig. 12. 

When the switches are on, this circuit has two nodes, so it 
can be described by two equations for currents 

1I , 2I  

constructed by means of the Kirchhoff’s law. However, as the 
currents can occur in even and odd phases, the total of four 

equations will be constructed (10). The transistors are 
modelled by the VCT elements with the control voltages 

EV1 ,
OV1 . Next there is the voltage 2V  in the circuit, again in 

both phases, i.e. 
EV2  and 

OV2
. 

The corresponding equation system (10) 
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can be rewritten to a matrix form (11). 
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Fig.12 linearized diagram of the circuit from the Fig. 1 
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B Obtaining General Relations by Comparing the Results 
In the next step, the elements occurring in the numerator and 

denominator of the relation (3) are written into the 
corresponding positions in which they are in the matrix (11). 

Because the nodes of Fig.1 are renumbered in Fig.2, when 
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By comparing with the matrix (11) it is now apparent that in 

the numerator there is an algebraic complement of this matrix 
(11) created out of this matrix by leaving out the rows 1E and 
2O and the columns 2E and 2O, symbolically written 

OEOE 2,2:2,1∆ . In the denominator, there is then the algebraic 

complement of the matrix (11) created out of this matrix by 
leaving out the rows 2E and 2O and the columns 2E and 2O, 
symbolically written 

OEOE 2,2:2,2∆ . 
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According to the theory of multiple algebraic complements, 
the sign (-1) in the numerator gives the number of omitted odd 
indices, in the numerator the row 1E is omitted, which is the 
first (odd index) row in the matrix, while the remaining row 
2O is even in the row as well as the omitted column 2E, which 
is the second column in the matrix, and the column 2O, which 
is the fourth column in the matrix. 

In the denominator the omitted rows 2E and 2O and 
columns 2E and 2O are the second and fourth rows and 
columns in the matrix, i.e. they always have even indices, 
which then corresponds to a positive sign. 

From the graph solution it is also possible to derive relations 
for the remaining current transfers. If the numerator of the 

relation (4) ie. ).( .)1(
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corresponding position in the conductivity matrix (11) the 
relation (14) will hold. 
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For the transfer of the currents 
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2  we can write the 

relation (15) if the numerator stayed the same. 
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Analogically for the transfer 
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and for 
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2  relation (19) from (18). The numerators stay 

unchanged. 
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Another possible way of writing the above mentioned 
derived relations for current transfers by means of multiple 
algebraic complements in individual phases using the symbols 
stated in [1] is then (18) 
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where the symbol > 0 means adding a given row (or column) 
to the zero row (or column) of the matrix.  
 Now we are considering normal current mirror [2]. In this 
case the matrix (11) will have the form (21). 
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The elements occurring in the numerator and denominator 
of the relation (7) are written into the corresponding positions 
in which they are in the matrix (21). 
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The results (12), (15), (17), (19) and (22) are identical with 
the results (8.49), (8.50), (8.51), (8.52) published in [2]. But 
finding relations (8.49), (8.50), (8.51), (8.52) in [2] requires 
the use of multiple (i.e. double and triple) algebraic 
complements. 

This calculation is somewhat more difficult than described 
graphs method. 
 

C Obtaining General Relations for Lossless Transistor 
 We are considering circuit with the lossless transistors. The 
linearized circuit diagram of the circuit from the Fig.1. is 
drawn in this case in Fig.13. 
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Fig.13 linearized diagram of the circuit with lossless FETs 
 

The corresponding equation system is in this case (23) and 
can be rewritten to a matrix form (24). 
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The network elements )(k
ijy  in the relation (8) are in next 

step written into the corresponding positions in the previous 
matrix (24). 

Thus 
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According to the theory of multiple algebraic complements, 
the sign (-1) in the numerator gives the number of omitted odd 
indices, in the numerator the row 1E is omitted, which is the 
first (odd index) row in the matrix, while the remaining row 
2O is even in the row as well as the omitted column 2E, which 
is the second column in the matrix, and the column 2O, which 
is the fourth column in the matrix. 

The result (12), (25) and (8.49) in [2] are identical. 
 Now we are considering normal current mirror [2]. 

In this case the corresponding system of equations have the 
form (26). 
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and can be rewritten to a matrix form (27).  
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The elements in the relation (9) are written into the 
corresponding positions in the matrix (27). According to the 
theory of multiple algebraic complements, the sign (-1) in the 
numerator gives the number of omitted odd indices. 
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 As we can see, the result (28) is identical to the previous 
resulsts, too. 

CONCLUSION 

A unified method in analyzing switched current circuits is 
presented. The advantages of this approach are in its 
uniformity in deriving results from graph. The two-graph 
method is applied to assembly of the MC-graph. A clearly 
arranged set of graphs derived for different types of switching 
circuits can by used for finding a formula for current 
transfering. By comparing the results from the matrix and 
results obtained from the Mason’s formula are derived general 
relations for current transfers. 

As can be seen, the description of different types of memory 
cells can be used for the assembling of the general relations. 
The more elements the description contains, the more matrix is 
full. Finding algebraic complements is then more easy and 
most arranged, too. The relationship can be found from the 
simplest description, of course. 

The described method can be used for solving and 
understanding of simple circuits. 
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