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Abstract—Cardiovascular diseases cause deaths every year. For 

that reason it is important to model these diseases and the troubles that 

they can cause into the human body, particularly the arteries, in the 

cardiovascular field. As an effort for achieving the understanding of the 

phenomena, an electric analogue representation of the arteries and blood 

flow has been made, where the key part is the characteristic impedance. 

We present the calculations made for obtaining the characteristic 

impedances in different cases. The Navier-Stokes in cylindrical 

coordinates is used with the boundary condition, representing 

Newtonian and non-Newtonian fluids, with a special interest in 

Atherosclerosis disease. Laplace transform is used as a classical method 

for solving the differential equation. The power of the computer algebra 

system is shown through this work. 
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I. INTRODUCTION 

HE cardiovascular system has as primary function 

nutrients and waste transport through all body, which is 

constituted by the veins, the arteries, the blood vessels and the 

heart that pump the blood for a network of branching pipes, 

doing the distribution of oxygen and the collection of carbon 

dioxide, between others functions. 

Blood flow is an unsteady phenomenon (use of differential 

equation are required), where a normal arterial flow could be 

considered as laminar with secondary flows in the curves and 

branches. But in some cases, this flow could turn turbulent, 

because in the cardiovascular system, the Reynolds number 

varies from 1 in the small arterioles to 4000 in the largest artery 

[1]. In the same way, the arteries varies depending of the flow 

and pressure, these variations create abnormal conditions. This 

abnormal condition could be produced by problems due to 

cholesterol, generating the Atherosclerosis disease [2]. Both 

conditions (normal and abnormal) are preciously studied for 

helping to reduce the deaths mainly in developed countries 

where the majority of deaths are the result of cardiovascular 

diseases [3]. 
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Similarly, the pressure and flow are pulsated, because of the 

heart cyclic function, systolic and diastolic periods (in some 

special occasions the flow goes in the contrary direction of the 

pressure) [4]-[5]. As the viscosity is not constant throughout 

the artery, it’s necessary to consider the blood (a fluid composed 

by cells, proteins, lipoproteins) as a non-Newtonian fluid, and 

non-Newtonian viscosity which is widely studied in the 

bio-rheology field. This kind of studies will be useful for the 

prediction of particulars flow in each patient, and the designs of 

electronic devices that imitate of alter the blood flow [6]. 

For carrying out the studies in hemodynamic phenomena 

[7]-[8]-[9], it’s easier to bring an electrical model for the fluid 

system, in which the pressure is analogue of voltage and the 

flow is analogue of current, consequently, it is required an 

equivalent impedance for this model [10]. In this work, we 

present the calculations based in the Navier-Stokes equation for 

finding the characteristic impedances from different possible 

cases in arterial phenomena as normal artery comportment or 

altered artery comportment which is linked with the 

atherosclerosis disease. 

II. PROBLEM 

 

Hemodynamic fluid systems could be described by the 

Navier-Stokes equation, which is presented in cylindrical 

coordinates as a facility for the treatment: 
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where ρ is the density of the blood, μ is the viscosity, both 

constants. And ( , )v r t and ( , ) /P z t z  are the functions of 

speed and pressure gradient respectively. 

The domain of application is an arterial cylindrical section with 

radius R and length l. It’s necessary to have the initial condition 

and boundary conditions for obtaining the complete solution of 

a differential equation. As initial condition we will have and null 

condition for all cases treated in this study,  

  ,0 0v r   (2) 

We have two boundary conditions, which represent a 

Newtonian or non-Newtonian Fluid, these conditions are 

presented in the below sections. Moreover, in some cases we 

should use mathematical tools like the singularity analyze for 

getting the complete solution. 
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A. Normal Newtonian Artery 

For an normal artery, where the inertial forces are more 

important that the viscous forces, we can treat the fluid 

dynamics as a Newtonian fluid, in the model this is represented 

by the boundary condition of displacement in the artery border 

is zero 

  , 0v R t   (3) 

B. Normal Non-Newtonian Artery 

In the opposite direction from the previous section, in the case 

of the viscous forces cannot be neglected, we have to consider 

the fluid as non-Newtonian. For this case the boundary 

condition depends on the speed and acceleration of the fluid. 

    , , 0
r R

v r t v r t
r

 
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 (4) 

Where   is the friction factor between the blood and the 

artery wall. 

C. Altered Artery with Linear Viscosity Shape 

For an artery with some kind of disease that is related with the 

viscosity of the blood, as example the atherosclerosis in which 

the cholesterol in the blood changes his viscosity in a not 

constant way, but we consider that cholesterol distribution does 

not changes the fluid density. Because of the non-constant 

viscosity, the Navier-Stokes is modified, and we have 
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as a first case we are going to consider the viscosity variation as 

linear, with a viscosity in the centre of the artery   that 

increases outwards. 

  r r     (6) 

We solve this new equation using boundary considerations, 

Newtonian (3) and non-Newtonian (4) condition. Other kinds of 

expressions for the atherosclerosis disease are presented by 

Wang [11]. 

D. Altered Artery with Quadratic Viscosity Shape 

As an extension of the previous  situation we extend the 

viscosity function into a quadratic expression and keep the 

Navier-Stokes (5). Equally we find the impedance for the 

Newtonian condition (3) as much as the non-Newtonian 

condition (4). The viscosity function turns to: 

   2r r     (7) 

This situation could represent a worse state of the disease 

than previous one because the viscosity increases too much at 

the artery wall and decrease the blood flow. 

E. Altered Artery with Two Fluids 

Other way to analyze the cardiovascular disease as the 

atherosclerosis is to suppose that there are two fluids inside the 

artery, one in the inner part and the other one in the outer, which 

have different characteristics as density and viscosity, but 

 

 
 

 

Fig. 1 Method applied for solving the differential Navier-Stokes equations, using the Laplace transform. 
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constant for each one. In this case, we have to solve the 

Navier-Stokes equation (1) for each fluid (this fluids could be 

blood and fat or lipid) and use a condition in the interface 
iR  

between them: 

    1 2, ,i iv R t v R t  (8) 

As previous problems, we make the calculations for the 

Newtonian (3) and non-Newtonian (4) boundary conditions. 

 

III. METHOD 

The process for solving the differential equation involves the 

Laplace transform, which take the equation from the time domain 

to the frequency domain. If we think in the input of our system, 

the heart, it has a periodic signal, so, the Laplace domain makes 

the analysis much easier. This method is shown in Fig.1. Solving 

the differential equation with the help of the initial and 

boundaries conditions, we obtain the speed function of the 

blood into the artery, for getting the characteristic impedance, 

first we proceed to integrated the speed into the artery cross 

section, obtaining the flow Q and after we make the division 

between a pressure difference and the flow, which is analogue to 

the electric scheme.  

 ,that is analogue to
P V

Z Z
Q I

 
   (9) 

IV. RESULTS 

We present the characteristic impedances from the previously 

cases, respecting the same order and having the corresponding 

numeration. 

A. Normal Newtonian Artery 

In this first case we present all step as example of the method, 

searching the characteristic impedance. We start taking Laplace 

transform to the Navier-Stokes equation (1): 
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and we apply the initial condition (2) 
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now, we solve the system: 
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where )(x
 is the Bessel function of the first kind and 

)(x
is the Bessel function of the second kind. After that, we 

make a series expansion of (12) around 0r  , looking for 

singularities. 
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here, we see that there is a logarithmic singularity at 0r  , if the 

constant 
2C  is different of zero, so, 

2 0C   and 
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we find the last constant using the boundary condition (3) in (14) 
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we rewrite the solution including the found constant, obtaining: 

 

0

0

( )

( ) 1

sd rP z
dzV r

s s
R





 



  
  

     
   

  

 (16) 

the term inside of the Bessel function is related to the Womersley 

number  which is 

 R





  (17) 

with  the frequency of pumping, we rewrite 
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with /y r R  this result is similar to that presented by 

Womersley [12]. 

After we have the speed we proceed to calculate the flow, 

integrating the speed into the artery cross section 
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including (18) in (19), we solve: 
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where )(x
is the modified Bessel function of the first kind 

and it could be simplified using  /X s R   (the 

same X i ) 
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the gradient of pressure is supposed constant, along the artery 

distance L  
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we obtain so: 
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using the relation (9) we obtain the characteristic impedance 
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using a recurrence relation between Bessel function 

      0 1 22X X X X X   (25) 

it is simplified to 
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B. Normal Non-Newtonian Artery 

As the previous result, we use the method applying the 

non-Newtonian boundary condition (4), and we obtain: 
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C. Altered Artery with Linear Viscosity Shape 

Now, we solve the Navier-Stokes equation with viscosity 

variable (5) with the viscosity function (6), and we find the 

impedance from its solution. This first result is made taking in 

account the Newtonian fluid consideration (3): 
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with 
2/s     and /z    . This solution has an 

integral inside which is not resolved yet, but for the application 

we can use numerical solutions which will provide results. 

Equally, the impedance is described by the Heun Confluent 

function HeunC  which could be reviewed in [13]-[14]. 

For the non-Newtonian case (non-Newtonian condition) (4), 

the impedance expression we find is presented below: 
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with A as follow: 
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in the last equation appears HeunCPrime which is derivative of 

the Heun Confluent function. 

D. Altered Artery with Quadratic Viscosity Shape 

As the previous result, this one is obtained from the 

Navier-Stokes equation with viscosity variable (5), but in this 

case with the viscosity function (7). As first result we present the 

characteristic impedance for a fluid considered as Newtonian (3): 
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here appears the Legendre Polynomials )(n x  where the 

degree is defined by 
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and the argument, which is function of the radius r  

 
22

( ) 1W r r



   (33) 

For the non-Newtonian fluid consideration (4), the 

characteristic impedance we obtain is  
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with B as follow: 
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with a new degree for the Legendre polynomials  
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E. Altered Artery with Two Fluids 

In this subsection, we present the characteristic impedance, 

which expression is big so, we have to decompose into multiple 

parts, we start redefining the arguments of the Bessel functions 

that appears: 
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also we present some expression of Bessel functions 

compressed to get space: 
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for the Newtonian condition (3), we obtain: 
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where C  is defined as 
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''C  is described by 
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Now, we present the solution for the characteris tic impedance 

for a non-Newtonian fluid (condition (4)): 
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'D  is defined as follow 
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V. MAPLE ALGORITHM 

We have been presented through all the paper; the differential 

equations that model the problem, with their initial and boundary 

conditions, and also, the results obtained via MAPLE, but it is 

still missing the commands we used in the process for getting the 

characteristic impedance for the arteries in normal conditions 

and others conditions.  

We are going to present the complete process for getting the 

first result (26) , with the steps as they are presented in MAPLE 

(we have used the mode: classic worksheet): 

We start opening two special packages from MAPLE, 

because we need them for our calculations . In this chapter we 

will show the commands in italics with a minor “ > ” at the 

beginning. 

>  with(inttrans) 

>  with(VectorCalculus) 

With these packages, we can work vectorial equations and we 

can used integral transformation as the well known Laplace 

transform. After starting the package we define the main 

equation, Navier-Stokes equation for a laminar flow of a 

Newtonian fluid into the arteries. 

> eq1:=rho*diff(v(r,t),t)=-diff(P(z,t),z)+mu*Laplacian(v(r,t),

cylindrical[r,theta,z]); 

 

 

 
   

2

2

1: ,

, ,

,

eq v r t
t

v r t r v r t
r r

P z t
z r






 



  
 

    


(46) 

 

This equation (46) is the same as (1), except for the “order”. 

After that, we have included the initial condition (2): 

> eq2:=v(r,0)=0; 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1426



 

 

  2: ,0 0eq v r   (47) 

Now, we take Laplace transform from “eq1” (46), using the 

following command: 

> eq3:=laplace(eq1,t,s); 

 

    

  

  

  
2

2

3: , , , ,0

, , ,

, , ,

, , ,

eq slaplace v r t t s v r

laplace P z t t s
z

laplace v r t t s
r

r

laplace v r t t s
r

 





  














 (48) 

Here, we can see some changes of the mathematical notation 

for the Laplace transform, this equation (48) is the same as (10). 

We continue replacing the initial condition “eq2” (47) in the 

“eq3” (48): 

> eq4:=subs(eq2,eq3); 

 

  

  

  

  
2

2

4 : , , ,

, , ,

, , ,

, , ,

eq slaplace v r t t s

laplace P z t t s
z

laplace v r t t s
r

r

laplace v r t t s
r







 














 (49) 

Next, we change the “laplace” expression for a simplified 

expression, what allow us to work easily.  

> eq5:=subs(laplace(v(r,t),t,s)=V(r),laplace(P(z,t),t,s)=P(z),

eq4); 

 

 

 
 

 
2

2

5 : sV r

d
V r

d ddrP z V r
dz r

q

d

e

r








  



 (50) 

 Now, as we have the Laplace version for our problem, we are 

going to include the boundary condition in Laplace domain. 

> eq6:=v(R,t)=0; 

  , 06 : ve Rq t   (51) 

but in Laplace domain, it becomes: 

> eq6A:=V(R)=0; 

   06 :eq A V R   (52) 

We solve the differential equation “eq5” (50): 

> eq7:=dsolve(eq5,V(r)); 

 

 

 

7 : BesselJ 0, _ 2

BesselY 0, _ 1

s
eq V r r C

d
P z

s dzr C
s







 

 
    

 

 
    

 

 (53) 

We are going to expand in series this equation, looking for 

some singularities. We expand around 0r  : 

> eq8:=series(rhs(eq7),r=0,2); 

 

 
 2

1
2ln

2 2
8 : _ 2 _ 1

s
r

eq C C

d
P z

dz O r
s



 







  
  

     
 
 
 

   (54) 

 We can see a logarithmic singularity at 0r  , so we are 

going to eliminate it.  

> eq9:=_C1=0; 

 9: _ 1 0eq C   (55) 

> eq10:=subs(eq9,eq7); 

 

 

 
BesselJ 0, _

10 :

2

V r

d
P z

s dzr
s

e

C

q



 



 
   

 



 (56) 

 Now we use the boundary condition “eq6A” (52) in (56), for 

find the constant which is missing: 

> eq11:=subs(r=R,rhs(eq10))=0; 

 

 
J 0,11: Bessel _ 2 0

d
P z

s dzR Ce
s

q


 

 
    

 
 (57) 

> eq12:=isolate(eq11,_C2); 

 

 
12 : _ 2

BesselJ 0,

d
P z

dzeq C
s

s R





 
  

   
  

 (58) 
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 We replace the constant for obtaining the complete 

expression of velocity: 

> eq13:=subs(eq12,eq10); 

 

 

 

 

BesselJ 0,

13:

BesselJ 0,

s d
r P z

dz
eq V r

s
s R

d
P z

dz

s












 
 

  
  

   
  



 (59) 

> eq14:=factor(eq13); 

 

   14 : *

BesselJ 0, BesselJ 0,

BesselJ 0,

d
eq V r P z

dz

s s
r R

s
s R

 

 






 
   

 

    
       

    

  
   

  

(60) 

 Equation (60) represents the Laplace transformation of the 

blood velocity profile in the artery. Now we are going to calculate 

the flow that it is defined as the integral of the velocity across the  

circular cross section. 

> eq15:= Q(s)=int(int(V(r)*r,r=0..R),theta=0..2*Pi); 

    
0

15: 2
R

eq Q s V r rdr    (61) 

solving the integral 

> eq16:=subs(eq14,eq15); 

   
0

16 : 2 *

BesselJ 0, BesselJ 0,

BesselJ 0,

R
d

eq Q s P z
dz

s s
r R

rdr
s

s R



 

 






 
   

 

    
       

    

  
   

  



(62) 

 

We simplify a little bit the expression (62): 

> eq17:=simplify(eq16); 

 

   17 :

2Bes J 1, Bessels J 0,

Besse ,

el

lJ 0

d
eq Q s P z R

dz

s s s
R R R

s s
s R

  


  

 


 

 
   

 

    
        

    

  
    

  

(63) 

Now, we convert the BesselJ into BesselI, for simplifying the 

equation more. 

> eq18:=simplify(convert(eq17,BesselI)) assuming rho>0 

and s>0 and mu>0 and R>0; 

 

   

3/2 3/2

Bess

18 :

2 I 1, BesselI 0,

BesselI 0,

el

d
eq Q s P z R

dz

sR sR
R s

sR
s

 
  

 






 
   

 

    
        

    

  
    

  

(64) 

 

 We introduce a new variable, for representing some 

characteristics of the artery and blood. 

> eq19:=1/mu^(1/2)*rho^(1/2)*s^(1/2)*R=X; 

 19 :
R

q Xe
s


  (65) 

> eq20:=isolate(eq19,s); 

 

2

2
20 :

X
se

R
q




  (66) 

We substitute the new variable into the flow expression (64):  

> eq21:=lhs(eq18)=subs(eq20,rhs(eq18)); 

 

 
 

3/2
2 2

3/2

2 2

2

2

2 2

2 2

21: *

1
BesselI 0,

1
2BesselI 1,

1
BesselI 0,

d
P z R

dz
eq Q s

X X
R

R R

X
R

R

X X
R R

R R



 
 

  


 

 

 
 

 

 
 
  
   
          

  
  

   
 

  
   

  
  

(67) 

 

After simplification: 

> eq22:=simplify(eq21,power,symbolic); 
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   

    
 

4

3

22 : *

Bessel Bessel

B

2 I 1, I 0,

e I ,sse 0l

d
Q s P z R

dz

X X X

X

eq

X





 
  

 

 



 (68) 

 

In the simple case of a linear gradient of pressure we have: 

> eq23:=diff(P(z),z)=-Delta(P)/L; 

  
 

23:
Pd

P z
dz

e
L

q 


   (69) 

Then, the expression (68) could be rewrite: 

> eq24:=subs(eq23,eq22); 

 
 

 

 

    

4

3
*

BesselI 0,

2BesselI 1, Besse

24 :

lI 0,

P
eq

R
Q s

L X X

X X X














 (70) 

> eq25:=isolate(eq20,mu); 

 

2

2
25:

R s

X
eq


   (71) 

> eq26:=subs(eq25,eq24); 

 
 

 

 

    

2

*
I 0,

26 :
Bessel

Bessel Bess2 I 1, I 0,el

P R
Q s

LsX X
e

X X

q

X








 


 (72) 

Finally, the characteristic impedance is defined as the relation 

between the pressure and the flow as follow: 

> eq27:=Z(s)=Delta(P)/Q(s); 

  
 

 
27 :

P
Zeq s

Q s



  (73) 

 After the substitution: 

> eq28:=subs(eq26,eq27); 

 

 
 

    

2

I 0,
*

1

2 I 1, I 0,

Bessel
28 :

Bessel Bessel

LsX X
Z s

R

X X X

eq





 



 (74) 

With a mathematical recurrence relation, as a property of the 

Bessel functions, we have: 

> eq29:=-2*BesselI(1,X)+BesselI(0,X)*X=X*BesselI(2,X); 

 
   

 

29 : Bessel Bes2 I 1, I 0,sel

BesselI 2,

X X X

X X

eq  




 (75) 

 

Finally, we obtain the expression for the characteristic 

impedance, as we have presented in (26). 

> eq30:=subs(eq29,eq28); 

  
 

 2

Bessel
30

I 0,

I 2,
:

Bessel

Ls X
Zeq s

R X




   (76) 

VI. DISCUSSION AND CONCLUSIONS 

 

We have supposed the pressure gradient is constant in the 

artery length (22), but if we don’t do it, the characteristic 

impedance will rest invariable with the exception of the 

appearance of L  (as example the result (26) is similarly 

presented by Jager et al. [10]). We include L , which is along z , 

because we could changed it for a differential of length dL and 

make the radius R  depending of this:  R z , obtaining in this 

direction an impedance for the arteries with variable section what 

it is the most frequently case. Using the integration and mixing 

the impedance results we could obtain the characteristic 

impedance of the complex arterial system. 

MAPLE as other CAS (Computer Algebra System) have the 

last mathematical tools for helping in the development of our 

analytical models, but in some cases the results are presented in 

a simple way, so it is missing a capacity of factorize. 
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