
 

 

  

Abstract— The velocity profiles of a layer of liquid flowing on 

an inclined moving plane are studied. This process is modeled by 

boundary layer flows of non-Newtonian fluids. The equations of 

continuity and motion with appropriate boundary conditions have 

been solved analytically. The effect of changes of the rheological 

properties and inclination angle is examined for sand-water, 

bentonite and sand-bentonite-water mixtures. 

 

Keywords— Boundary layer, moving plate, Non-Newtonian 

fluid, Ostwald-de Waele power law 

I. INTRODUCTION 

NVESTIGATION of the properties of flow down an 

inclined plane may be used in many practical situations and 

has attracted the attention of many researchers ([1],[3],[4]). 

We consider a fluid constantly poured on the inclined plane 

from above. The fluid forms a steady stream moving 

downwards under the action of the gravity. Such an example is 

a river flow. This phenomenon also occurs in case of conveyor 

belts and in the lubrication theory. 

A continuum description of granular flows would be of 

considerable help in predicting natural geophysical hazards or 

in designing industrial processes ([2],[4],[6]-[9],[11]-[19]). 

The constitutive equations for granular flows, which govern 

how the material moves under shear, are still a matter of 

debate. These materials can behave like a solid or like a liquid. 

The main characteristics of granular liquids are complex 

dependence on shear rate when flowing. In this sense, granular 

materials show similarities with classical non-Newtonian 

fluids. Here we propose power-law relation between the shear 

stress and the shear rate for different mixtures of sand, 

bentonite and water. The rheological parameters for different 

volumetric concentrations are determined experimentally. In 

our investigations the results have also obtained for bentonite 
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mud when the rheological parameters were given by Jiao and 

Sharma [10]. 

The stationary solution for the Navier-Stokes equation for 

this problem was solved analytically. We derive this solution 

for both Newtonian and non-Newtonian fluids. The influence 

of the rheological parameters and inclination angle is exhibited 

on the velocity distributions in the boundary layer. 

II. MODEL DESCRIPTION 

In this paper, the material is assumed to be incompressible 

and approximated as a homogeneous fluid with constant 

density.  

 
 

The governing equations for steady laminar incompressible 

flow of a non-Newtonian fluid on an inclined plane under 

gravity are ([1],[4]-[6],[8],[10],[12],[17]-[19]): 
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where x and y are coordinates along and normal to the plate, 

respectively, u  and v  are the velocity components in x and y 

direction, respectively (see Fig. 1), ρ  is the density of fluid, 

g  is the gravitational acceleration, α  is the angle of 

inclination of the plane to the horizontal.  

We consider a uniform flow of a non-Newtonian power-law 

fluid past a moving plane with 
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Figure 1.  Flow on an inclined plane 
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where γ  is a consistency index for non-Newtonian viscosity 

and n is called power-law index, that is 1<n  for 

pseudoplastic, 1=n  for Newtonian, and 1>n  for dilatant 

fluids. The value of the power exponent n  in (3) is 3,0≈n  

for mud flow [10], 1>n  for sand-water mixture and sand-

bentonite-water mixture when the concentration of bentonite is 

less than 5%, the value of n  is approximately 2 for dry 

granular material. 

The boundary conditions can be formulated as follows when 

the conveyor belt is moving with constant velocity U : 

Uu
y

==0
,  (no-slip boundary condition)      

0
0

==yv
,                  

0=
=hyy

u . (free-surface boundary condition) (4) 

Here h  denotes the height of the fluid. 

 

A. Newtonian fluid 

For a Newtonian fluid flow ( 1=n ) in (3) γ  denotes the 

dynamic viscosity. Steady, fully developed, laminar, 

incompressible flow of a Newtonian fluid down an inclined 

plane (see Fig.1) under gravity the Navier-Stokes equations 

reduces to 
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In case of steady, fully developed flow there is no change in 

time and in the flow direction, moreover, the flow occurs with 

no pressure gradient. 

From equation (5) one can get 
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and u  can be obtained as: 
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Taking into considerations the boundary conditions, 

constants A  and B  can be determined. Applying 

0==hyyu  we get 

α
γ

ρ
sinh

g
A = .          

From condition Uu y ==0  we obtain UB = . Then the 

solution has the form 
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Formula (8) describes the velocity distribution in the boundary 

layer when the plane is moving with constant speed U . If the 

plane is moving downward 0>U , for upward direction 

0<U . 

Applying (8) one gets the expression for the volumetric flow 

rate of thickness h. Here the volumetric flow rate through one 

unit width fluid along the z-direction is given by   
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B. Non-Newtonian fluid 

In this section we apply the Ostwald-de Waele power law 

for non-Newtonian fluid down an inclined plane with angle α . 

Equation (2) with (3) reduces  

 ( ) 0sin =+ αργ gu
y

n
y      (9) 

where γ  and n  are parameters. The flow occurs with no 

pressure gradient and we apply the boundary conditions  

0==hyyu  and Uu y ==0 .       

Integrating from equation (9) 
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Constant B  can be evaluated from condition Uu y ==0 : 
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For the non-Newtonian case, the volumetric flow rate from the 

integral ∫=
h

dyuQ
0

 can be obtained by 
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We note that the maximal velocity maxU  is achieved for 

hy ≥ , i.e., 
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It can be easily shown that maxU  is increasing with an 

increase of ρ , or α , or h  and maxU  is decreasing with an 

increase of γ  or n . Moreover, there exists a limit velocity 

U that 0=Q  if 0<=UU : 
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We have that 0>Q  if  UU >  and in this case  
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For Newtonian fluid this relation is  
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1
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III. DETERMINATION OF RHEOLOGICAL PARAMETERS FOR 

SAND-WATER MIXTURE 

Sand is generally used in the building industry, glass 

production or in metallurgy processes where sand is used for 

mould. As a bulk material it is transported in dry or wet form 

through pipeline, flowing properties of both cases are essential 

to determine for design purposes. During mineral processing 

operations, SiO2 is often part of the tailing material as well, 

where determination of rheology of the processed slurry is also 

important. 

 

Here we shall determine the rheological parameters for 

some sand-water mixtures. 

One of the most widely used devices for measuring rheology 

of fluids is rotational viscometer. Rotational viscometers are 

having a cylindrical container in which the fluid is filled, and a 

rotor which submerge into the fluid. The geometry of the tank 

and the body is make very narrow ring like space, filled with 

the fluid. While the rotor rotating at different speed, the torque 

can be measured caused by the friction between the fluid and 

the rotor, share diagram can be determined. Measuring 

rheology of water / solid mixtures has its limitations in 

rotational viscometer, since large particles are settling down 

rapidly causing the concentration distribution of the mixture 

become inhomogeneous. This is the reason, why rotational 

viscometers can be used measuring rheology of slurries only 

made of very fine particles. 
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Figure 3. Volumetric concentration 25% 
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Figure 2. Volumetric concentration 20% 
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Our investigation was carried out with fine glass sand 

powder. The maximum particle size of the sample was 72 

micrometers. For the tests, glass sand/water mixtures were 

mixed at different volumetric concentrations c (20, 25, 30 and 

40% by volume) and inserted into the cylindrical tank of the 

ANTON PAAR type rotational viscometer.  

 

During each measurement, 30 measurement points were 

taken between 100…1000 1/s shear rate, while shear stresses 

were measured accordingly. Data were analyzed using 

Goldensoftware Grapher software. The results of the 

measurements can be seen in Fig.2-5. 

From these figures we can see that the power law model (3) 

fits the measured data. Table 1 exhibits the values of the 

consistency constant γ , the power exponent n  and the density 

ρ  for different volumetric concentrations of sand-water 

mixtures. 

 

 

 

Volumetric 

concentration 

of sand/water 

mixtures c 

γ  n  ρ [kg/m
3
] 

20 % 0.000313 1.475 1340 

25 % 0.000538 1.444 1425 

30 % 0.001388 1.360 1510 

40 % 0.026902 1.211 1680 

Table 1. Parameter values of mixtures 

 

 

 

 
 

IV. THE INFLUENCE OF PARAMETERS 

A. Sand-water mixture  

Here we examine the effect of the volumetric concentration 

c of sand-water mixtures on the velocity distribution. We 

perform numerical simulations with MAPLE12 and exhibit the 

velocity profiles in Fig.6-7. The figures exhibit that the 

maximum velocity increases as the volumetric concentration 

decreases. We can observe the effect of angle α : the 

maximum value of the velocity increases as α  increases. 
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Figure 4. Volumetric concentration 30% 
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Figure 5. Volumetric concentration 40% 

 
Figure 6. Velocity profile for different concentrations mixtures 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 6, 2012 75



 

 

 
 

B. Bentonite mud 

In [10] water based mud at different mud flow rates are 

examined by Jiao and Sharma. It was observed that the 

thickness of the mud cake was a sensitive function of the mud 

rheology and the mud shear rate. 

A commercial Wyoming bentonite was used to prepare 

different type of mud. The fresh water mud was prepared by 

adding 40 grams of the bentonite to 1 liter of water. It was 

mixed with a blender and then aged for 20 hours. 2% NaCl or 

2% NaCl with 3% lignosulfonate (thinner) were added to get 

either flocculated or dispersed mud. It was shown in [10] that 

the power law rheological model fits the obtained date best. 

Table 2 contains the rheological properties of the three types 

of mud. 

 

 

Mud γ  n  ρ [kg/m
3
] 

Fresh water mud 0.319 0.8 1070 

Dispersed mud 0.313 0.7 1070 

Flocculated mud 0.235 1.7 1070 

Table 2. Parameter values for mud [10] 

 

We perform numerical simulations with MAPLE12 to 

observe the influences of the parameters. First, fix 
�15=α  

and 
n

sPa
−⋅= 7,0γ .  

 

 
 

 

In Fig.8., it can be seen that the maximum values of the 

velocity decrease as n  increases. Next fix 
�15=α  and 

4,0=n , and we investigate the influence of γ . It is presented 

that the velocity maximum decreases as γ  increases (see 

Fig.9). 

Then we examine the influence of α  when 4,0=n  and 

nsPa −⋅= 7,0γ . For different values of angle α  we see that 

the maximum value of the velocity increases as α  increases 

(see Fig. 10). 

 

 
 

 
Figure 9. The effect of γ  on the velocity 

 
Figure 8. Effect of n  for the velocity profile 

 
Figure 7. Effect of α  on the velocity for volumetric concentration 

20% 
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C. Bentonite-sand-water 

 

Rheology properties of bentonite suspensions are well 

known in industrial operations. It is well known, that bentonite 

is increasing the viscosity of water even at very low 

concentrations, and therefore it is used for stabilizing 

suspensions where low settling rate is required. One example 

for this application is heavy media separation of materials, 

where particles made of different components are separated by 

their density putting them into a suspension with intermediate 

density. This suspension is made of heavy solid particles and 

water. Adding small portion of bentonite is able to prevent 

heavy fine particles to settle down quickly.  

Other example of using bentonite suspension is deep hole 

drilling. In these operations bentonite particles are suspended 

in water at high concentration and this mixture is going to 

introduce into the drill pipeline. At the lower and of the 

pipeline, the suspension penetrates into the cavity and moving 

upward between the cavity wall and the outer surface of the 

pipeline. Doing this is cooling the drilling head, stabilizing the 

cavity and importantly removes the particles become free of 

the rock during the drilling operations. The suspension is able 

to sustain particle lifting if the upward flow velocity is higher 

than the terminal settling velocity of the particles. To ensure 

this, high viscosity is applied which slowing down the particle 

settling. 

Our investigation was carried out with fine glass sand 

powder originated from Fehérvárcsurgó, Hungary mixed with 

bentonite originated from Mád, Hungary at different 

concentrations. The mixtures were containing 1, 2, 3, 4, and 5 

% bentonite by mass respectively. The maximum particle size 

of the sample was 72 micrometer. For the tests, solid/water 

mixtures were made at different volumetric concentrations (20, 

25, 30, 35 and 40% by volume) and inserted into the 

cylindrical tank of the ANTON PAAR type rotational 

viscometer. During each measurement, 30 measurement points 

were taken between 100…1000 1/s share rate, while share 

stresses were measured accordingly. Data were analyzed using 

Goldensoftware Grapher software. The results of the 

measurements can be seen in Tables 3-5 and Fig.16 and 20. 

 

 

Volumetric 

concentration 

of bentonite-

sand/water 

mixtures c 

γ
 n  

ρ
[kg/m

3
] 

20 % 0.000447 1.391 1340 

25 % 0.000518 1.420 1425 

30 % 0.000421 1.490 1510 

35 % 0.015596 1.233 1595 

40 % 0.012280 1.085 1680 

Table 3. Parameter values of mixtures with 1% bentonite 

 

 

 

 

Volumetric 

concentration 

of bentonite-

sand/water 

mixtures c 

γ
 n  

ρ
[kg/m

3
] 

20 % 0.000541 1.378 1340 

25 % 0.000449 1.450 1425 

30 % 0.000449 1.500 1510 

35 % 0.002669 1.278 1595 

40 % 0.036933 1.070 1680 

Table 4. Parameter values of mixtures with 3% bentonite 

 

 

 

 

Volumetric 

concentration 

of bentonite-

sand/water 

mixtures c 

γ
 n  

ρ
[kg/m

3
] 

20 % 0.000742 1.322 1340 

25 % 0.000439 1.464 1425 

30 % 0.000401 1.531 1510 

35 % 0.006330 1.161 1595 

40 % 0.033954 1.072 1680 

Table 5. Parameter values of mixtures with 5% bentonite 

 

 

 

 

 
Figure 10. Effect of α  on the velocity 
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Figure 14. Velocity profiles for different concentrations 

mixtures with 4% bentonite 

 
Figure 13. Velocity profiles for different concentrations 

mixtures with 3% bentonite 

 
Figure 12. Velocity profiles for different concentrations 

mixtures with 2% bentonite 

 
Figure 11. Velocity profiles for different concentrations 

mixtures with 1% bentonite 
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Figure 20. The consistency index γ   
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Figure 17. The power exponent n  
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Figure 19. Volumetric concentration 25% with bentonite 4% 
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Figure 18. Volumetric concentration 30% with bentonite 3% 
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Figure 16. Volumetric concentration 25% with bentonite 2% 

 
Figure 15. Velocity profiles for different concentrations 

mixtures with 5% bentonite 
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V. CONCLUSION 

We presented the mathematical model for boundary layer 

flow of an incompressible homogeneous fluid with constant 

density on an inclined plane moving with constant velocity. 

The velocity distribution in the material is determined for 

steady, fully developed, laminar flow of non-Newtonian fluids 

up or down on an inclined moving plane. The Ostwald-de 

Waele power law model is applied for non-Newtonian fluids. 

Computations were carried out for sand-water slurry with 

different volumetric concentrations, bentonite mud and water-

sand-bentonite mixture with different volumetric 

concentrations. The rheological parameters were measured by 

ANTON PAAR type rotational viscometer for the sand-water 

mixtures and sand-bentonite-water mixtures, moreover, we 

applied the results for bentonite mud (see paper [10]) in our 

calculations. The influences of the consistency parameters, the 

power law exponent, the volumetric concentrations and the 

inclination angle α  are observed and exhibited in Fig.6-16, 

18-19. 
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