
 

 

  

Abstract— In this paper we focus on the coordination of multi-

agents through a revenue-cost-sharing mechanism. We consider a 

grand-coalition consisting of finite agents, who undertake part of the 

costs individually, while the remaining costs C and the total revenues 

R are shared between them with a revenue-cost-sharing contract. We 

introduce a novel approach in the form of a cooperative game for a 

finite set of agents N and we estimate the finite set of possible 

solutions. Specifically, each of these solutions can be used for the 

coordination of the multi-agents, as it allocates the grand-coalition’s 

profits and risks equally among them. A computation algorithm is 

developed and illustrated in a numerical example for the coordination 

of a grand-coalition with nine individual agents.    

Keywords— coalitions, cooperative game, multi-agents, revenue-

cost-sharing mechanism 

I. INTRODUCTION 

LOBALLY, the development and exploitation of new 

products is implemented through contractual agreements, 

where at least two individual agents cooperate by forming a 

grand-coalition. The grand-coalition’s coordination can be 

achieved under a centralized or decentralized scheme, with 

one or several decision makers respectively. However, the 

decentralized scheme is mostly used over the last decades, in 

which the contractual agreements may include a revenue-

sharing or cost-sharing mechanism among the cooperative 

parties and each agent act in such a way that is optimal for the 

achievement of mutual targets. Specifically, these mechanisms 

are developed in order to coordinate all grand-coalition’s 

members, so as both their individual objectives as well as the 

coalition-wide performance can be optimized [1] – [2]. In 

cases where the system’s profits are equal to the relative 

profits arising through the centralized scheme, then the grand-

coalition is perfectly coordinated [3]. However, taking into 

consideration that the coordination mechanism should be 
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accepted by all the grand-coalition’s members, it has to be fair 

allocating equally the total profits and risks among all agents. 

Generally, in such multi-person situations, where individual 

decision makers examine to form a grand-coalition with a 

revenue-cost-sharing mechanism and the total outcome is 

influenced by each agent’s outcome, game theory can be 

effectively applied [4]. Herein, we focus on a system 

consisting of multi-agents, who agree to undertake part of the 

grand-coalition’s cost individually, while the remaining costs 

and the total revenues should be shared properly, in order to 

get all agents equal profits under an equal risk allocation 

scheme. We develop a basic model and we use cooperative 

game theory, in order to estimate the number of possible 

solutions and to introduce a computation algorithm that can be 

used by the individual decision makers. The rest of this paper, 

which is closely related to the multi-agent coordination and the 

quantitative risk analysis, is organized as follows. The review 

of the literature is presented in section II and the basic model 

is developed in section III. In section IV we present a 

computation algorithm, which is illustrated in a numerical 

example in section V, while useful conclusions and the future 

research issues are also discussed.  

II. LITERATURE REVIEW 

A. Revenue Sharing and Cost Sharing Contracts 

The design of revenue-sharing contracts as well as the 

negotiation process between the cooperative parties is 

presented in [5], while [6] examine the revenue-sharing in a 

supply network formation and propose some feasible 

allocation rules that ensure the positive profit for the networks’ 

enterprises. A profit-sharing model for the coordination of a 

decentralized supply chain is developed in [7], [8] 

demonstrates that a system can be coordinated with a properly 

designed profit-sharing contract and [9] presents a profit-

sharing and transfer pricing framework for the network 

companies. Furthermore, in [10] is analyzed the coordination 

that is achieved through a revenue-sharing contract, while in 

[11] is proposed a revenue-sharing contract that guarantees a 

win-win outcome and suggest that the revenue-sharing ratio 

can be settled through negotiation. Moreover, [2] indicate that 

the system’s coordination can always be achieved through 

properly designed buy-back and lost-sales cost-sharing 
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contracts, while in [12] is presented a method for the funding 

sharing between two cooperative parties and in [13] is 

developed a formula that increases the financial sustainability 

of partnerships in Greece.   

However, taking into consideration that the coordination 

mechanisms should use risk as driver, as mentioned in [14], it 

is excluded the correlation between the revenue/cost-sharing 

contracts with the system’s risks, which are shared between the 

cooperative parties. Generally, according to [15], the firms 

collaborate in order to have an efficient risk-sharing, as 

approximately 96% of the US ventures include the risk-sharing 

between partners, while [16] mention that the risk-sharing 

should be preferred and [17] suggest that the shared profit 

among agents should be proportional to their investment and 

risk taking. Moreover, there are several methods proposed in 

the literature for the quantitative risk analysis. In a 

decentralized case, where the decision makers want to estimate 

the expected profits, one of the mostly used methods is the 

Monte Carlo simulation that takes into account the impact of 

the system’s variables [18] – [19], and defines the possible 

magnitude of the profits, graphically expressed as the 

cumulative probability distribution function [20] – [21]. 

B. Cooperative Game Theory for the System Coordination  

The applications of cooperative game theory to the multi-

agent systems, focusing on the profit allocation and stability, 

are surveyed in [4] and also examined in [22] – [23] – [24]. 

Generally, game theory is applied in a finite set of agents N = 

{1,2,3,…,n}, namely grand-coalition. Moreover, any subset in 

which this set can be divided is usually called a coalition [25], 

and any coalition with just one agent is called a singleton 

coalition [26]. A cooperative game is a pair (N, u) where u is 

the characteristic function representing the collective payoff 

for a set of agents that form a coalition [27]. The game’s 

solution is a vector x Є 
N
 representing the allocation of the 

total profit to each agent. A formal solution for the cooperative 

bargaining process was first introduced by Nash [28], namely 

Nash-bargaining solution, which consists of an axiomatic 

derivation of the solution for a bargaining game between two 

agents, who have perfect information [29] and examine to 

cooperate and share the profits. The solution satisfies a set of 

axioms that is symmetry, Pareto-optimality and feasibility, i.e. 

identical agents receive identical profit allocations, any change 

to a different allocation that makes at least one agent better off 

will make at least one of the other agents worse off, and the 

sums of the agents’ allocations do not exceed the total pie. 

Additionally, the solution is preserved under linear 

transformations and is independent of irrelevant alternatives. 

However, especially in the decentralized systems, where 

there are individual agents who cooperate by undertaking 

different tasks, main challenge is to estimate a fair solution, in 

order to allocate the grand-coalition’s profits and risks equally 

among the cooperative parties.   

III. THE BASIC MODEL   

We focus on a decentralized system with a finite set of 

agents N = {1,2,3,…,n} that is the grand-coalition. These 

agents agree to cooperate by undertaking part of the grand-

coalition’s cost individually, i.e. the costs c1, c2, c3, …., and cn, 

are undertaken by agents 1,2,3,…., and n, respectively. 

Furthermore, the grand-coalition’s remaining costs C and 

revenues R are shared between all agents, through a revenue-

cost-sharing mechanism. Let Pi denote the profit allocated to 

each agent. A complete list of the notations used in this paper 

is presented in Table 1. 

Obviously, the revenue-cost-sharing mechanism has to be 

feasible and individually rational, i.e. the sum of the agents’ 

allocations does not exceed the total pie and each agent gets at 

least as much as what it could obtain through the non-

cooperative option: 

 

1=C=R  and  (0,1)∈R ∑∑
1=1=

n

i
i

n

i
ii  (1) 

NicCR iiii ∈ ∀   , 0>-)(C -)(R =P  (2)     

TABLE I 

LIST OF NOTATIONS 

Symbol Description   

N 
Finite set of agents 

(grand-coalition) 
{ }nN .,1,2,3,....=  

c i 
Cost undertaken by 

agent i 
 1,2,...,=  i.e. ,∈ ni Ni  

R 
Grand-coalition’s 

revenues 
(to be divided in all agents) 

C 
Grand-coalition’s 

remaining cost 
(to be divided in all agents) 

R i 
Revenue-sharing 

ratio of agent i 
( ) 1=R  ,  0,1∈R ∑

1=

n

i
ii  

C i 
Cost-sharing ratio of 

agent i 
1=C∑

1=

n

i
i  

P i 
Profit allocated to 

agent i 
N∈ ∀  ,-C-R=P icCR iiii  

Π 
Probability density 

functions: CR   ,  
 )σ,µ(Π   ),σ,(µΠ 22

CCCRRR  

P i 
Profit’s probability 

distribution function  Ni

cP iiCiRi

∈∀
 ),CΠ,R(Π=

 

µ i Expected profit   Ni-c-= iiCiRi ∈∀  , CµRµµ  

Confidence 

Intervals 

0.6827≈)σ+µ≤P≤σ-(µ   :yprobabilit iiiii  

0.9545≈)2σ+µ≤P≤2σ-(µ   :yprobabilit iiiii  

0.9973≈)3σ+µ≤P≤3σ-(µ    :yprobabilit iiiii  

Equal profit  

and risk 

allocation  nn

nnnPPP

σ=...=σ=σ     ,µ=...=µ=µ  

 ⇔)σ,(µ≡...≡)σ,(µ≡)σ,(µ

2121

22
222

2
111  

s(n) 
Number of possible 

solutions 
)(,...,3,2,1= nsj  

S 
Finite set of possible 

solutions 
( ){ }nsS 1,2,3,...,=  

r, c Є N 

Solutions for equal 

profit, risk allocation  

(pairs of vectors)    Sj
j
n

jjj

j
n

jjj

∈∀   ),C,...,2C,1C(=c

, )R...,,2R,1R(=r
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We assume that there is full information among agents and 

we examine the case where the grand-coalition’s profits should 

be shared equally and be proportional to each agent’s 

investment and risk taking [17]. Generally, if there is no 

probability distribution assigned to the revenues R and costs C 

to be shared, yields the following proposition: 

 

Proposition 1. For a finite grand-coalition N, with i=1,2,...,n 

agents, there are infinite revenue-cost-sharing ratios ( ) ( )ii C,R  

which define the equal profit allocation among all agents. 

 

Proof of Proposition 1. The profit for each agent i = 

1,2,3,…,n  who is member in a grand-coalition N is given:   

 

iiii cCR -C-R=P                   (3) 

 

Obviously, there are infinite revenue-cost-sharing ratios 

( ) ( )ii C,R , because even in the simplest case with two agents    

(n = 2), the grand-coalition profit PN is calculated with (4): 

 

21 ---=P ccCRN                      (4) 

  

In order to estimate the agents’ revenue-cost-sharing ratios: 

( ) ( )2121 C,C,R,R , with which the grand-coalition profits are 

allocated equally among them, we have a system of four  

equations with four unknowns ( ) ( )2121 C,C,R,R , as follows: 

 

2

P
=-C-R=P 1111

N
cCR                 (5) 

2

P
=-C-R=P 2222

N
cCR                (6) 

1=C+C=R+R 2121                  (7) 

 

Summarizing (5) with (6) we get:  

 

( ) ( ) ( ) 0=0

)7(

⇔
)4(

P=+-C+C-R+R 212121 NccCR  

Moreover, we mention that in all other cases, where n > 2, we 

have to calculate 2n unknowns, while the available equations 

will be: n + 2 < 2 n. 

 

However, in order to define the system’s risks and to 

allocate them with fairness among agents, the costs and 

revenues to be shared are normally distributed with specific 

mean value µ and variance σ
2
. That is, a different probability 

distribution function Π is assigned in the grand-coalition’s 

revenues: ΠR (µR, σR
2
) and the shared costs: ΠC (µC, σC

2
). 

According to these distributions, we get the following 

proposition. 

 

Proposition 2. The grand-coalition’s profits and risks are 

allocated equally when all agents’ profits get equal 

probability distribution functions, satisfying (8): 

 

n

n

σ=...=σ=σ=σ

µ=....=µ= µ=µ

321

321
 (8) 

 

Proof of Proposition 2. Taking into consideration that both 

the grand-coalition’s revenues R and shared costs C are 

normally distributed, the profits P1, P2, P3 ,…., and Pn , which 

are allocated to agents 1,2,3,…., and n, respectively, follow 

normal probability distribution functions: 

 

( )

( ) ,........,eσ2π/1=)σ,(µ

,eσ 2π/1=)σ,(µ

2
2

2
22

2
1

2
11

2σ

)µ-(
-

2
2

222

2σ

)µ-(
-

1
2

111

P

P

P

P

( ) 2

2

2σ

)µ-(
-

2 eσ 2π/1=)σ,(µ n

nnP

nnnnP for agent i = 1,2,.., and n, 

respectively.  

From these functions, the profits and risks are allocated 

equally when: ⇔)σ,(µ≡...≡)σ,(µ≡)σ,(µ 22
222

2
111 nnnPPP  

nµ=...= µ=µ 21  and nσ=...= σ=σ 21  

IV. EQUAL PROFIT AND RISK ALLOCATION AMONG ALL AGENTS  

In this section we use insights from the cooperative game 

theory, in order to estimate the possible solutions for the 

agents’ revenue-sharing and cost-sharing ratios, which define 

the equal profit and risk allocation among them. Initially, we 

examine the case with 2 agents and further the cases where the 

grand-coalition consists of n > 2 agents.  

A. Grand-Coalition with 2 Agents 

In cases where the grand-coalition consists of two agents, 

i.e. N = {1,2}, the system’s profits and risks are allocated 

equally when (8) is satisfied:    ⇔  )σ,µ(≡)σ,(µ 2
222

2
111 PP  

2121 σ=σ , µ=µ . Moreover, we derive Theorem 1. 

 

Theorem 1. There is a unique solution: ( ) ( )*
2

*
1

*
2

*
1 C,C,R,R  , 

with which the system’s profits and risks are allocated equally 

among two agents. 

 

Proof of Theorem 1. The probability distribution functions of 

the agents’ 1 and 2 profits are given by: 1111 -CΠ-RΠ= cP CR  

and 2222 -CΠ-RΠ= cP CR . 

According to Proposition 2, the mean values and the profit 

values in the same confidence interval, e.g. the ( )2σ±µ  should 

be equal. 

Due to the fact that R1 + R2 = 1 and C1 + C2 = 1 from (1), 

where ( ) 0,1∈R,R 21 , we define that 21 C,C  can take negative 

or higher than 1 values, with respect to (1) and (2), so as to 

ensure that there is at least one solution ( ) ( )*
2

*
1

*
2

*
1 C,C,R,R , with 
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which 2121 σ=σ , µ=µ . Furthermore, in order to prove the 

uniqueness of this solution, we suppose that there is another 

solution, denoted by ( ) ( )**
2

**
1

**
2

**
1 C,C,R,R , which also satisfies 

(8). Particularly, at least one of **
1

*
1 R≠R , or **

2
*
2 R≠R , or 

**
1

*
1 C≠C , or **

2
*
2 C≠C , while in both cases there is: 

 

1=C+C=C+C=R+R=R+R **
2

**
1

*
2

*
1

**
2

**
1

*
2

*
1  (9) 

 

We consider that both ( ) ( )*
2

*
1

*
2

*
1 C,C,R,R  and ( ) ( )**

2
**

1
**

2
**

1 C,C,R,R  

solutions satisfy (10), (12) and (11), (13) respectively:  

 

2
*
2

*
21

*
1

*
121 CµRµCµRµ⇔µµ -c-=-c-= CRCR  (10) 

 

2
**

2
**

21
**

1
**

121 CµRµCµRµ⇔µµ -c-=-c-= CRCR  (11) 

 

2
*
2

*
21

*
1

*
12211 -CΠ-RΠ=-CΠ-RΠ⇔2σ±µ=2σ±µ cc CRCR (12) 

 

2
**

2
**

21
**

1
**

1

2211

-CΠ-RΠ=-CΠ-RΠ

⇔2σ±µ=2σ±µ

cc CRCR
 (13) 

 

From (10) minus (11) we get: 

 

⇔(11)-(10)  

( ) ( ) 0=-C+C-Cµ-R+R-R-Rµ **
1

**
2

*
2

*
1

**
2

**
1

*
2

*
1 CCR  (14) 

and from (12) minus (13): 
⇔(13)-(12)  

( ) ( ) 0=-C+C-CΠ-R+R-R-RΠ **
1

**
2

*
2

*
1

**
2

**
1

*
2

*
1 CCR  (15) 

 

There is CRCR Π>Π,µ>µ  and thus both the parentheses 

in (14) as well as in (15) equal zero: 

*
1

**
1

*
1

**
1

*
2

**
2

*
2

**
2

**
2

**
2

*
2

*
2

**
2

**
2

*
2

*
2

**
2

**
1

*
2

*
1

**
2

**
1

*
2

*
1

C=C

R=R

⇔
(9)

C=C

R=R

⇔
0=C+C+1-C-C-1

0=R+R+1-R-R-1

⇔
(9)

0=C+C-C-C

0=R+R-R-R

  

Therefore, the second solution is equal to the first: 
**

2
*
2

**
1

*
1

**
2

*
2

**
1

*
1 C=C,C=C,R=R,R=R  and there is a unique 

solution:  ( ) ( )*
2

*
1

*
2

*
1 C,C,R,R  for the equal profit and risk 

allocation among agents 1 and 2.   

B. Grand-Coalition with n > 2 Agents 

In order to find the solution/s that allocates the grand-

coalition’s profits and risks equally among all agents, we use a 

cooperative game theory approach. Specifically, the grand-

coalition is divided in two coalitions, namely: NA = {1,2,…,h} 

NB = {h+1,h+2,…,n}, with: nh <≤1 . Due to (2), there is no 

coalition that can be profitably blocked by any coalition of 

agents. Hence, there is no constraint considered for the 

division of the agents, i.e. any agent can be placed either in the 

NA or in the NB coalition. However, there is: RA + RB = CA + 

CB = 1.  

Further, we derive Theorems 2 and 3.  

 

Theorem 2. For each pair of non-empty coalitions NA, NB, 

that the grand-coalition N can be divided, there is a unique 

solution: ( ) ( )*
B

*
A

*
B

*
A C,C,R,R , with which the system’s profits 

and risks are allocated equally among all agents.     

 

Proof of Theorem 2. In order to demonstrate that the grand-

coalition’s profits and risks are allocated equally, the mean 

values and the profit values in the confidence intervals: ( )σ±µ  

, ( )2σ±µ  and ( )3σ±µ  should be equal for all agents. We 

mention that these confidence intervals include the profit 

values for each agent with 68.27%, 95.45% and 99.73% 

probability, respectively. However, the probability distribution 

functions of the NA, NB coalitions, are given by: 

  

∑
1=

AAA -CΠ-RΠ=
h

a
aCR cP  (16) 

∑
1+=

BBB -CΠ-RΠ=
n

hb
bCR cP  (17) 

 

According to Proposition 2, the mean values and the profit 

values in the same confidence interval, e.g. the ( )σ±µ , or the 

( )2σ±µ , or the ( )3σ±µ , should be equal. Similarly with the 

proof of Theorem 1, we suppose that there are two solutions: 

( ) ( )*
B

*
A

*
B

*
A C,C,R,R  and ( ) ( )**

B
**

A
**

B
**

A C,C,R,R , which satisfy  

the following equations (18) and (19): 

 

( ) ( ) ⇔   µ
-

=µ   ⇔  µ)-(=µ   ,µ=µ BABA hn

h
hnh ii  

=)CµRµ(
-

-)CµRµ( ∑∑
1+=

*
B

*
B

1=

*
A

*
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  

0=)CµRµ(
-

-)CµRµ( ∑∑
1+=

**
B

**
B

1=

**
A

**
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  (18) 

 

=)CΠRΠ(
-

-)CΠRΠ( ∑∑
1+=

*
B

*
B

1=

*
A

*
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  

0=)CΠRΠ(
-

-)CΠRΠ( ∑∑
1+=

**
B

**
B

1=

**
A

**
A

n

hb
bCR

h

a
aCR c--

hn

h
c--  (19) 

 

Following the same concept with the proof of Theorem 1, 

we solve (18), (19) and we get: ,R=R,R=R **
B

*
B

**
A

*
A  

**
B

*
B

**
A

*
A C=C,C=C . Hence, there is a unique solution: 

( ) ( )*
B

*
A

*
B

*
A C,C,R,R for each pair of non-empty coalitions NA, 

NB, that the grand-coalition N can be divided, with which the 

system’s profits and risks are allocated equally among all 

agents.     
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Theorem 3. The number of possible solutions s(n), with which 

the system’s profits and risks are allocated equally among all 

agents, is equal to the combinations of agents divided in pairs 

of non-empty coalitions iteratively, until all are divided in 

singleton coalitions: {{1},{2},…,{n}}. Specifically, the 

number of possible solutions: s(n), 2≥∀ n , is given from (20) 

and (21), whether n is odd or even number respectively: 

 

  k)s(k)-s(
(k)!k)!-(

!
+1)-s(

1)!-(

!
=)s( ∑

2

1-

2=k

n

n
n

n
n

n

n
n  (20) 

 

)
2

1
())

2
(s(

)!
2

(

!
 

+k)s(k)-s(
(k)!k)!-(

!
+1)-s(

1)!-(

!
=)s(

2

2

1-
2

2=k

∑

n

n

n

n
n

n
n

n

n
n

n

 (21) 

 

Proof of Theorem 3. According to Theorem 2, for each pair 

of non-empty coalitions NA, NB, that the grand-coalition N can 

be divided, there is a unique solution: ( ) ( )*
B

*
A

*
B

*
A C,C,R,R . 

However, if we consider the further division of the NA 

coalition that includes h agents in another pair of coalitions, 

namely NAA and NAB, where NAA consists of t agents and NAB 

consists of h-t agents, then according to Theorem 2, there is a 

unique solution: ( ) ( )*
AB

*
AA

*
AB

*
AA C,C,R,R . Moreover, the rest 

agents n-h of the NB coalition can also be divided further in 

two other coalitions, namely NBA, NBB, and with the same 

concept there is another unique solution: 

( ) ( )*
BB

*
BA

*
BB

*
BA C,C,R,R . We consider the iterative divisions 

in pairs of coalitions, until all the n agents of the grand-

coalition are divided in singleton coalitions: {{1},{2},…,{n}}. 

Taking into account that for each coalition considered there is 

a unique solution, we conclude that there is a unique solution 

for each agent who is included in specific coalitions. This is 

calculated when all the solutions of the coalitions including 

him are multiplied. For instance, the solution for agent i, who 

is included in NB, NBA, NBAA, NBAAB coalitions, is given: Ri = 

(RB)(RBA)(RBAA)(RBAAB) , and Ci = (CB)(CBA)(CBAA)(CBAAB). 

Obviously, each time we consider the division of a set N in a 

pair of coalitions with h and n-h agents respectively, 

where nh <≤1 , there are alternative possible combinations of 

the agents in the coalitions and each combination results in a 

unique system’s solution: ( ) ( )**
2

*
1

**
2

*
1 C,...,C,C,R,...,R,R nn . Thus, 

the number of the system’s possible solutions, with which the 

grand-coalition’s profits and risks are allocated equally among 

agents, is equal to the number of possible combinations of the 

agents in the coalitions, until all agents are divided in a 

singleton coalition. Let s(n) denote the number of solutions for 

a grand-coalition with 2≥n  agents. We mention that s(n) is 

equal to the sum of possible combinations of the n agents in 

coalitions, which is multiplied with the number of possible 

solutions for the specific coalitions. That is, s(n) increases with 

the number of agents, as for a grand-coalition with 3 agents, 

i.e. N = {1,2,3}, there are 3 combinations in a 2-agent 

coalition: 

  

1) {{1,2}={2,1},{3}} that gives a unique solution:  

( ) ( )*1
3

*1
2

*1
1

*1
3

*1
2

*1
1 C,C,C,R,R,R  

2) {{1,3}={3,1},{2}} that gives another solution: 

( ) ( )*2
3

*2
2

*2
1

*2
3

*2
2

*2
1 C,C,C,R,R,R  

3) {{2,3}={3,2},{1}} that gives another solution: 

( ) ( )*3
3

*3
2

*3
1

*3
3

*3
2

*3
1 C,C,C,R,R,R  

 

Each of these solutions allocates the grand-coalition’s 

profits and risks equally among all agents, i.e. the s(3)=3. 

Particularly, the mean values are equal for all agents in all 

solutions: 1,2,3=  ,  3,2,1=∀   ,  / µ=µ jinN
j
i  while the 

standard deviations are also equal for all agents in all 

solutions: 1,2,3=  ,  1,2,3=∀ ,σ ij
j
i  even though the revenue-

sharing and cost-sharing ratios are different between these 

three solutions.  

Moreover, for a grand-coalition with 4 agents, i.e. N = 

{1,2,3,4}, there are 4=
3)!-(4!3

!4
combinations of the 4 agents 

in a 3-agent coalition:  {{1,2,3},{4}}, {{1,2,4},{3}}, 

{{1,3,4},{2}} and {{2,3,4},{1}} , where each one has 3 

possible solutions, while there are also three combinations of 

the 4 agents in a 2-agent coalition respectively: {{1,2},{3,4}}, 

{{1,3},{2,4}}, {{1,4},{2,3}} and each one has 1 solution, 

thus: ⇔s(2)3+)3(4=)4( ss 15=(1)3+)3(4=)4(s . Furthermore, 

the number of possible solutions, with which the system’s 

profits and risks are allocated equally among all agents, is 

calculated with (20) and (21), whether n is odd or even number 

respectively.  

C. Computation of Possible Solutions 

Taking into consideration that the grand-coalition is a finite 

set of agents and the number of possible solutions is calculated 

with (20) and (21), whether n is odd or even number 

respectively, we conclude that there are finite possible 

solutions that define the equal profit and risk allocation among 

agents. However, the number of possible solutions is rapidly 

increased with the number of agents. Particularly, from the 

Proof of Theorem 1 we get s(2)=1 and from the Proof of 

Theorem 3, we get s(3)=3 and s(4)=15 and thus, for 

n=5,6,…,10  we compute:  

105=10(3)(1)+5(15)=)s(2)3(
!2!3

!5
+)4(

4!

5!
=)5( sss

945=)
2

1
())3((

)(3!

6!
+)s(2)4(

!2!4

!6
+)5(

5!

6!
=)6( 2

2
ssss

395,10=)3()4(
4!3!

7!
+(2))5(

!2!5

!7
+)6(

6!

7!
=)7( ssssss
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135,135

=)
2

1
())4((

)!4(

!8
+)3()5(

5!3!

8!
+)s(2)6(

!2!6

!8
+)7(

7!

8!
=)8(

2
2

ssssss

025,027,2

=)4()5(
!4!5

!9
+)3()6(

6!3!

9!
+)s(2)7(

!2!7

!9
+)8(

8!

9!
=)9( sssssss

 

425,429,34=)
2

1
())5((

)!5(

!10

+)4()6(
!4!6

!10
+)3()7(

7!3!

10!
+)s(2)8(

!2!8

!10
+)9(

9!

10!
=)10(

2
2

s

sssssss

 

 

That is, in Fig. 1 we introduce a code that can be used in the 

Wolfram Research, Inc., Mathematica, Version 7.0, 

Champaign, IL (2008), for the calculation of the precise 

number of possible solutions. 

 

Moreover, in Table II we illustrate the results arising for n = 

2,3,4,…., and 25 and we derive the following Proposition 3.  

 

Proposition 3. The revenue-cost-sharing ratios for a finite 

grand-coalition with n agents, can be computed through the 

random division of the agents in pairs of coalitions iteratively 

for n -1 times (until all agents are divided in a singleton 

coalition), and the calculation of the unique revenue-cost-

sharing solution for each coalition.  

 

Proof of Proposition 3. According to the proof of Theorem 2, 

there is a unique ( ) ( )*
B

*
A

*
B

*
A C,C,R,R  solution for each pair of 

coalitions { }hN 1,2,..,=A , { }nhhN 2,..,+1,+=B , in which a 

grand-coalition N can be divided. We consider the division of 

the N in pairs of coalitions iteratively, where the first coalition 

in each pair consists of a singleton coalition, i.e. 1=h . That is, 

the calculations in the first division, give: 
*

1-
*
B

*
1-

*
B

*
1

*
A

*
1

*
A C=C ,R=R and ,C=C,R=R nn . In the second 

division, the coalition with the n-1agents is divided again, with 

agent 2 in the first and the n-2 agents in the second coalition  

 

respectively, in the third division the two coalitions consist of 

agent 3 and the n-3 agents respectively, etc. Specifically, the 

set N is divided in pairs of coalitions for n-1 times, until all 

agents are divided in a singleton coalition. However, the 

number of repeated divisions in pair of coalitions is the same: 

n-1 times, for all the possible combinations, while all the 

possible solutions s(n) result in the same solution: 

nPPPP =...=== 321 . Hence, we conclude that the revenue-

cost-sharing solution  for a finite grand-coalition N, can be 

estimated through the random division of the N’s agents in 

pairs of coalitions iteratively for n-1 times and the calculation 

of the agents’ revenue-cost-sharing ratios:  

( ) ( ) n1,2,3,...,=    ,∈∀   C,R iNiii .    

V. COMPUTATION ALGORITHM 

In this section we introduce a novel algorithm that can be used 

for the coordination of multi-agents. Particularly, the algorithm 

computes a specific solution that is fair, as the grand-

coalition’s profits and risks are allocated equally among all 

agents through a revenue-cost-sharing mechanism. The 

computation algorithm includes seven basic steps, as follows: 

 

 

Fig. 1: Calculations of possible solutions with the Wolfram 

Mathematica, (2008). 

TABLE II 

POSSIBLE SOLUTIONS )(ns  FOR THE GRAND-COALITION { }nN ,...3,2,1=  

 

n s(n) 

n = 2 1 

n = 3 3 

n = 4 15 

n = 5 105 

n = 6 945 

n = 7 10,395 

n = 8 135,135 

n = 9 2,027,025 

n = 10 34,429,425 

n = 11 654,729,075 

n = 12 13,749,310,575 

n = 13 31,623,414,225 

n = 14 7,905,853,580,625 

n = 15 213,458,046,676,875 

n = 16 6,190,283,353,629,375 

n = 17 191,898,783,962,510,625 

n = 18 6,332,659,870,762,850,625 

n = 19 221,643,095,476,699,771,875 

n = 20 8,200,794,532,637,891,559,375 

n = 21 319,830,986,772,877,770,815,625 

n = 22 13,113,070,457,687,988,603,440,625 

n = 23 563,862,029,680,583,509,947,946,875 

n = 24 25,373,791,335,626,257,947,657,609,375 

n = 25 1,192,568,192,774,434,123,539,907,640,625 
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Step 1: Estimate the cost that is individually undertaken by 

each agent: c1, c2, c2 ,…, cn and assign a normal probability 

density function to the revenues R and costs C, which will 

be shared in all agents:  )σ,µ(Π   ),σ,(µΠ 22
CCCRRR . 

Select a specific confidence interval: ( )σ±µ , or ( )2σ±µ , 

or ( )3σ±µ . 

Step 2: Divide randomly the grand-coalition { }nN .,1,2,3,....=  

in a pair of non-empty coalitions: { }hN ,..,2,1=A , 

{ }nhhN ,..,2+,1+=B , with nh ≺≤1 .   

Step 3: Define the equations for the calculations of the profits:  

 

 ∑
1=

AAA -CΠ-RΠ=P
h

a
aCR c     (16) 

 ∑
1+=

BBB -CΠ-RΠ=P
n

hb
bCR c  (17) 

 

Step 4: Develop a Monte Carlo simulation model, in which the 

CR Π,Π are defined as inputs and the BA P,P as outputs.  

Step 5: Use equation (1) and examine alternative values of 

( )0,1∈R A . Particularly, for each value of RA, the RB and 

the CA as well as the CB (which can be negative or higher 

than 1), take specific values, in order to satisfy: 

∑

∑

1+=

*
B

*
B

1=

*
A

*
A

B

A

CµRµ

CµRµ

=
µ

µ

n

hb
bCR

h

a
aCR

c--

c--

n-h

h
= . For each scenario 

BBAA C,R,C,R  run the Monte Carlo simulation, analyze 

the probability distribution functions PA, PB and calculate 

the coalitions’ profits in the selected confidence interval: 

),σ±µ( and )σ±µ( BBAA  or )σ2±µ( and )σ2±µ( BBAA  

or )σ3±µ( and )σ3±µ( BBAA  Following the trial and 

error method, select the scenario BBAA C,R,C,R that 

satisfies the proportionality presented in equation (22): 

  

 ⇔
)σ2-(µ-)σ2+(µ

)σ2-(µ-)σ2+(µ
=0

µ

µ

BBBB

AAAA

B

A
-

n-h

h
=-

n-h

h
 

 ⇔
σ2+σ2

σ2+σ2
=

µ

µ

BB

AA

B

A
 

B

A

B

A

σ

σ
=

µ

µ
                   (22) 

 

This scenario is a solution: ( ) ( )*
B

*
A

*
B

*
A C,C,R,R , which is 

unique for the selected BA , NN coalitions.  

Step 5: Use the ( ) ( )*
B

*
A

*
B

*
A C,C,R,R solution and repeat the 2 to 

4 Steps, i.e. divide randomly BA , NN in two other pairs of 

coalitions, namely ABAA , NN and BBBA , NN respectively. 

Specifically, the first pair of coalitions from AN  is the: 

{ } { },,..,2+,1+=,,..,2,1= ABAA hkkNkN   with hk ≺≤1   

and the second pair of coalitions from BN  is the: 

{ } { },,..,2+,1+=,,..,2+,1+= BBBA nmmNmhhN  where the 

nh ≺m≤1+ . Further, calculate the unique scenarios: 

( ) ( )*
AB

*
AA

*
AB

*
AA C,C,R,R  that satisfies

AB

AA

AB

AA

σ

σ
=

µ

µ
=

- kh

k
,  

( ) ( )*
BB

*
BA

*
BB

*
BA C,C,R,R  that satisfies

BB

BA

BB

BA

σ

σ
=

µ

µ
=

-

-

mn

hm
.   

Repeat the above steps, until all agents are divided in a 

singleton coalition, i.e. the 2 to 4 steps should be followed 

for n-1 times. 

Step 6: For each agent i = 1,2,3,…,n , multiply the 

revenue-cost-sharing ratios of the coalitions including 

him and get the system’s solution: ( )**
2

*
2

*
1 R,...,R,R,R n  

and ( )**
3

*
2

*
1 C,,C,C,C n… .  

 For instance, the revenue-cost-sharing ratios ( ) ( )*
5

*
5 C,,R  

for agent 5 who is included in the NA, NAA, NAAA and 

NAAAB coalitions, is calculated through: 

 ))(R)(R)(R(R=R
*
AAAB

*
AAA

*
AA

*
A

*
5 and 

))(C)(C)(C(C=C AAABAAAAAA
*
5 . 

   As can be seen, the grand-coalition’s solution is a pair of 

vectors r, c Є N that is:  

 ( ) R,...,R,R,R=r **
2

*
2

*
1 n , ( ) C,...,C,C,C=c **

2
*
2

*
1 n . 

Step 7: Use: **
2

*
2

*
1 R,...,R,R,R n and **

3
*
2

*
1 C,,C,C,C n… and run 

the Monte Carlo simulation model, with the agents’ 

profits nP,....,P,P,P 321  as outputs, in order to verify that:  

nnn PPP ≡...≡≡ ⇔σ=...=σ=σ     ,µ=...=µ=µ  212121  

VI. NUMERICAL EXAMPLE 

A numerical example is presented here, in order to illustrate 

some significant features of the basic model as well as the 

application of the proposed computation algorithm.  

A. Assumptions 

We consider a grand-coalition with n=9 agents 

{ }6,7,8,91,2,3,4,5,=N , who examine to cooperate in a single 

project, by undertaking parts of the costs individually, while 

both remaining costs C and revenues R should be shared 

following a revenue-cost-sharing mechanism. Specifically, the 

costs c1 = 900000, c2 = 2550000, c3 = 950000, c4 = 880000, c5 

= 1200000, c6 = 1050000, c7 = 870000, c8 = 1500000, and c9 = 

1200000, are undertaken by agent 1,2, 3, … , and 9, 

respectively. This system can be perfectly coordinated through 

the equal allocation of the grand-coalition’s profits and risks to 

agents, i.e. all agents get equal profits with equal probability 

distributions. The shared revenues R and costs C are normally 

distributed: 4500000)=σ50000000,=(µΠ RRR  and 

 )4300000=σ,10000000=µ(Π CCC , respectively.  

B. First Solution 

Following the proposed algorithm, we divide the 9 agents in 

pairs of coalitions iteratively until all agents are divided in 

singleton coalitions, by following specific combinations, 

which are illustrated in Figure 2. According to equations (20) 

and (21) introduced in Theorem 3 as well as the calculations 
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presented in Table II, this set of combinations is one out of 

2,027,025 possible sets that can be followed in this case 

(where n=9). Initially, following the 2
nd

 to 4
th

 Steps of the 

computation algorithm, we divide N in two coalitions: 

{ }7,6,5,3,2=AN , { }9,8,4,1=BN  and we calculate the unique 

solution for the specific pair of coalitions: 

 ( ) ( )%156.45=C54.844%,=C,43.680%=R,%320.55=R *
B

*
A

*
B

*
A  

According to Proposition 3, we follow the basic Steps of the 

proposed algorithm (Steps 2 to 4), for n-1=8 times, in order to 

calculate the unique and optimum solutions for the selected 

set of combinations, which is illustrated in Figure 2.  

Let: ( ) ( )  C,...,C,C,R,...,R,R *1
9

*1
2

*1
1

*1
9

*1
2

*1
1 denote the first 

revenue-cost-sharing solution, which is presented in Table III. 

As can be seen, the revenue-cost-sharing ratios for each agent 

are calculated with the multiplication of the revenue-cost-

sharing ratios of the coalitions including him.  For instance, the 

revenue-cost-sharing ratios for agent 7: ( ) ( )*1
7

*1
7 C,R , who is 

included in the NA, NAB, NABB and NABBB coalitions, is 

calculated through: 

( )
( )⇔CCC=CC 

RRRR=R

ABBBABBABA
1*

7

ABBBABBABA
*1
7

 

( )
( )⇔.074%)6.581%)(5162.982%)(6(54.844%)(=C

.700%),7.000%)(4857.200%)(6(55.320%)(=R
1*

7

*1
7

( ) ( )%7461.11=C, %5114.10=R *1
7

*1
7  

Furthermore, according to Step 7 of the proposed algorithm, 

we verify the resulting revenue-cost-sharing ratios. 

Particularly, we use the *1
9

*1
2

*1
1 R,...,R,R and *1

9
*1
2

*1
1 C,...,C,C as 

well as the ΠR, ΠC and c1, c2, c3, c4, c5, c6, , c8, and c9 as inputs 

and the agents’ profits: 9321 P,....,P,P,P as outputs in a Monte 

Carlo simulation model:  -C-R=P 11
iiii cCR .  

The simulation is performed with 5,000 runs calculating the 

probability distribution functions of the agents’ profits, namely 

P1, P 2, P 3, P4, P5, P6, P7, P8, and P9 , for the i = 1, 2, 3, 4, 5, 

6, 7, 8, and 9 agent, respectively. These functions are 

illustrated together in Figure 3 and demonstrate that all agents 

get equal expected profits: 170,211,3=µ=...=µ=µ=µ 9321  

Furthermore, we analyze the probability distribution 

functions in the same confidence intervals: ii σ±µ , ii σ2±µ , 

 Cumulative Probability Distributions of the Agents' Profits (P i )

µ 1 = 3211184

µ 2 = 3211170

µ 3 = 3211169

µ 4 = 3211171

µ 5 = 3211168

µ 6 = 3211168

µ 7 = 3211174

µ 8 = 3211168

µ 9 = 3211171

0

0,25

0,5

0,75

1

1000000 1750000 2500000 3250000 4000000 4750000 5500000

 Agents' Profits (Pi ): i  = 1,2,3,…,9

P
ro
b
a
b
il
it
y

P1 = P2 = P3 = P4 = P5 =

P6 = P7 = P8 = P9

 
Fig. 3:   cumulative probability distributions (first solution) 

 

RA = 55.320%

CA = 54.844%

Coalition 

NA = {2, 3, 5, 6, 7}

Grand-Coalition

N = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Coalition 

NB = {1, 4, 8, 9}

RB = 43.680%

CB = 45.156%

Singleton 

NABBA = {5}

Singleton 

NABBB = {7}

RABBA = 51.300%

CABBA = 48.926%

RABBB = 48.700%

CABBB = 51.074%

Coalition 

NAA = {2, 6}

Coalition 

NAB = {3, 5, 7}

RAA = 42.800%

CAA = 37.018%

RAB = 57.200%

CAB = 62.982%
Coalition 

NBA = {4, 8}

Coalition 

NBB = {1, 9}

RBA = 50.520%

CBA = 49.415%

RBB = 49.480%

CBB = 50.585%

Singleton 

NBAA = {4}

Singleton 

NBAB = {8}

RBAA = 47.650%

CBAA = 52.273%
RBAB = 52.350%

CBAB = 47.727%

Coalition 

NABB = {5, 7}

RABB = 67.000%

CABB = 66.581%

Singleton 

NABA = {3}

RABA = 33.000%

CABA = 33.419%

Singleton 

NBBA = {1}

Singleton 

NBBB = {9}

RBBA = 48.800%

CBBA = 50.890%

RBBB = 51.200%

CBBB = 49.110%

Singleton 

NAAA = {2}

Singleton 

NAAB = {6}

RAAA = 54.900%

CAAA = 42.147%

RAAB = 45.100%

CAAB = 57.853%

 
Fig. 2: first solution of the computation algorithm 

TABLE III 

FIRST SOLUTION OF THE REVENUE-COST-SHARING RATIOS  ( ) ( )11 C,R ii  

i Calculations 1*R i  Calculations 1*Ci  

i = 1 BBABBB RRR  10.54% BBABBB CCC  11.62% 

i = 2 AAAAAA RRR  13.23% AAAAAA CCC  8.55% 

i = 3 ABAABA RRR  10.63% ABAABA CCC  11.54% 

i = 4 BAABAB RRR  10.51% BAABAB CCC  11.66% 

i = 5 
ABBA

ABBABA

R

RRR
 11.07% 

ABBA

ABBABA

C

CCC
 11.25% 

i = 6 AABAAA RRR  10.87% AABAAA CCC  11.74% 

i = 7 
ABBB

ABBABA

R

RRR
 10.51% 

ABBB

ABBABA

C

CCC
 11.74% 

i = 8 BABBAB RRR  11.55% BABBAB CCC  10.64% 

i = 9 BBBBBB RRR  11.06% BBBBBB CCC  11.21% 

 ∑
9

1=

R 
i

i  100.0% ∑
9

1=

C 
i

i  100.0% 
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and ii σ3±µ , as presented in Table IV. As can be seen, the 

probability for all agents’ profits Pi (where i=1,2,3,..,9), to get 

values in the intervals: [ ]3900000,2520000 , [ ]4590000,1830000 , 

and [ ]5280000,1140000  is equal : 68.7%, 95.6%, and 99.7%, 

respectively, and thus, the first solution gives: 

9321 σ=...=σ=σ=σ .  

Hence, according to Proposition 2, all agents’ profits have 

equal probability distributions: 9121 ≡...≡≡≡ PPPP  and the 

coordination of the grand-coalition { }6,7,8,91,2,3,4,5,=N can 

be achieved. 

C. Second Solution 

However, the first solution is one out of 2,027,025 solutions 

that can be calculated, according to the possible combinations 

for the divisions of the 9 agents in pairs of coalitions for n-1=8 

times. For instance, if we use different combinations of the 

agents within the computation algorithm, as presented in 

Figure 4, we calculate a second revenue-cost-sharing solution: 

namely: ( )  R,...,R,R *2
9

*2
2

*2
1 and ( )  C,...,C,C *2

9
*2
2

*2
1 . According 

to Theorem 3, we expect that the first and second solutions are 

different. This fact is verified through the results presented in 

Tables III and V, which present the agents’ revenue-cost-

sharing ratios in the first and second solution, respectively. As 

can be seen, these revenue-cost-sharing ratios are different for 

all agents in the two solutions:    

 

( ) ( ) ( ) ( ) 9)1,2,3,...,=( ,∈∀   , C ≠C  and  ,R ≠R *2*1*2*1 iNiiiii  

 

For instance, the revenue-cost-sharing ratios for agent 3, (i=3):  

( ) ( )   ,10.65%=R ≠10.63%=R 2*
3

1*
3

and 

( ) ( )11.64%=C ≠11.54%=C 2*
3

1*
3

 

Moreover, if we use the *2
9

*2
2

*2
1 R,...,R,R , *2

9
*2
2

*2
1 C,...,C,C , 

the ΠR, ΠC as well as the c1, c2, c3, c4, c5, c6, , c8, and c9 as 

TABLE IV 

FIRST SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE 

INTERVALS  

 ii σ±µ  ii σ2±µ  ii σ3±µ  

 Probability of Profit:  

Agent 

000,900,3

≤≤
000,520,2

iP  

000,590,4

≤≤
000,830,1

iP  

000,280,5

≤≤
000,140,1

iP  

i = 1 68.69% 95.69% 99.70% 

i = 2 67.99% 95.46% 99.70% 

i = 3 68.70% 95.70% 99.70% 

i = 4 68.88% 95.71% 99.70% 

i = 5 68.69% 95.53% 99.69% 

i = 6 68.68% 95.14% 99.69% 

i = 7 68.84% 95.69% 99.69% 

i = 8 68.98% 95.64% 99.70% 

i = 9 68.88% 95.62% 99.70% 

 

TABLE IV 

FIRST SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE 

INTERVALS  

 
ii σ±µ  ii σ2±µ  ii σ3±µ  

 Probability of Profit:  

Agent 

000,900,3

≤≤
000,520,2

iP  

000,590,4

≤≤
000,830,1

iP  

000,280,5

≤≤
000,140,1

iP  

i = 1 68.69% 95.69% 99.70% 

i = 2 67.99% 95.46% 99.70% 

i = 3 68.70% 95.70% 99.70% 

i = 4 68.88% 95.71% 99.70% 

i = 5 68.69% 95.53% 99.69% 

i = 6 68.68% 95.14% 99.69% 

i = 7 68.84% 95.69% 99.69% 

i = 8 68.98% 95.64% 99.70% 

i = 9 68.88% 95.62% 99.70% 

 

 

RA = 89.450%

CA = 88.361%

Coalition

NA = {2, 3, 4, 5, 6, 7, 8, 9}

Grand-Coalition

N = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Singleton 

NB = {1}

RB = 10.550%

CB = 11.639%

Singleton 

NAAB = {8}

RAA = 87.640%

CAA = 87.360%

RAB = 12.360%

CAB = 12.640%

RAAA = 85.300%

CAAA = 86.387%
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CAAAB = 17.368%

Coalition 

NAAAA = {2, 3, 5, 6, 7}

Singleton 

NAAAAB = {7}
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RAAAAB = 18.600%

CAAAAB = 21.078%

Coalition 

NAAAAA = {2, 3, 5, 6}

Singleton 

NAAAAAB = {5}

RAAAAAA = 75.600%

CAAAAAA = 72.704%

RAAAAAB = 24.400%

CAAAAAB = 27.296%

Coalition 

NAAAAAA = {2, 3, 6}

Singleton 

NAAAAAAB = {3}

RAAAAAAA = 69.300%

CAAAAAAA = 63.190%

RAAAAAAB = 33.700%

CAAAAAAB = 36.810%

Coalition 

NAAAAAAA = {2, 6}

Singleton 

NAAAAAAAB = {2}

RAAAAAAAA = 45.000%

CAAAAAAAA = 57.458%
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NAAAAAAAA = {6}

 
 

Fig. 4: second solution of the computation algorithm 
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Fig. 5: cumulative probability distributions (second solution) 
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inputs and the agents’ profits: 921 P,...,P,P as outputs in a 

Monte Carlo simulation model:  -C-R=P 22
iiii cCR , we get 

the cumulative probability of the agents’ profits as presented in 

Figure 5. As can be seen in Figures 3 and 5, as well as the 

results through the analysis in the confidence intervals 

presented in Tables IV and VI, all agents get equal expected 

profits and equal standard deviations (σ) in the first and second 

solutions: 

170,211,3=µ=...=µ=µ=µ 9321
, 9321 σ=...=σ=σ=σ   

D. Discussion 

In the previous example, we have assumed that the shared 

revenues R and costs C are normally distributed: 

4500000)=σ50000000,=(µΠ RRR ,

 )4300000=σ,10000000=µ(Π CCC .  

However, if we consider that the revenues and costs to be 

shared follow different normal probability distributions, e.g. 

TABLE V 

SECOND SOLUTION OF THE REVENUE-COST-SHARING RATIOS  ( ) ( )22 C,R ii  

i Calculations 2*R i Calculations 2*Ci  

i = 1 BR  10.55% BC  11.64% 

i = 2 

AAAAAAAAA

AAAAAA

RR

RRR

AAAAAAA

AAAAAA

R

R

AAAAAAABR  

13.22% 

AAAAAAAAA

AAAAAA

CC

CCC

AAAAAAA

AAAAAA

C

C

AAAAAAABC  

8.50% 

i = 3 

AAAA

AAAAAA

R

RRR

AAAAAAB

AAAAAA

AAAAA

R

R

R

 

10.65% 

AAAA

AAAAAA

C

CCC

AAAAAAB

AAAAAA

AAAAA

C

C

C

 

11.64% 

i = 4 
AAAB

AAAAAA

R

RRR
 10.50% 

AAAB

AAAAAA

C

CCC
 11.58% 

i = 5 
AAAA

AAAAAA

R

RRR

AAAAAB

AAAAA

R

R
 

11.20% 
AAAA

AAAAAA

C

CCC

AAAAAB

AAAAA

C

C
 

11.87% 

i = 6 

AAAAAAAAA

AAAAAA

RR

RRR

AAAAAAA

AAAAAA

R

R

AAAAAAAAR  

10.82% 

AAAAAAAAA

AAAAAA

CC

CCC

AAAAAAA

AAAAAA

C

C

AAAAAAAAC  

11.48% 

i = 7 AAAA

AAAAAA

R

RRR

AAAABR  

10.49% AAAA

AAAAAA

C

CCC

AAAABC  

11.61% 

i = 8 AABAAA RRR  11.52% AABAAA CCC  10.51% 

i = 9 ABARR  11.06% ABA CC  11.17% 

 ∑
9

1=

R 
i

i  100.0% ∑
9

1=

C 
i

i  100.0% 
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Coalition 
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Singleton 
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RAAAAAA = 75.100%

CAAAAAA = 69.359%

RAAAAAB = 24.900%

CAAAAAB = 30.641%

Coalition 

NAAAAAA = {2, 3, 6}

Singleton 

NAAAAAAB = {3}

RAAAAAAA = 66.900%

CAAAAAAA = 46.724%

RAAAAAAB = 33.100%

CAAAAAAB = 53.276%

Coalition 

NAAAAAAA = {2, 6}

Singleton 

NAAAAAAAB = {2}

RAAAAAAAA = 49.190%

CAAAAAAAA = 103.316%

RAAAAAAAB = 50.810% 

CAAAAAAAB = -3.316%

Singleton 

NAAAAAAAA = {6}

 
 

Fig. 6: solution of the computation algorithm 

TABLE VI 

SECOND SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE 

INTERVALS  

 
ii σ±µ  ii σ2±µ  ii σ3±µ  

 Probability of Profit:  

Agent 

000,900,3

≤≤
000,520,2

iP  

000,590,4

≤≤
000,830,1

iP  

000,280,5

≤≤
000,140,1

iP  

i = 1 69.99% 95.70% 99.90% 

i = 2 69.39% 95.60% 99.83% 

i = 3 69.81% 95.59% 99.81% 

i = 4 69.69% 95.96% 99.87% 

i = 5 68.53% 95.95% 99.93% 

i = 6 68.03% 95.92% 99.80% 

i = 7 68.45% 95.74% 99.88% 

i = 8 69.91% 95.67% 99.87% 

i = 9 69.86% 95.66% 99.79% 
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with the same mean values but with lower standard deviations, 

then the system’s solution for the equal profit and risk 

allocation will be different. For instance, we assign initially: 

2150000)=σ50000000,=(µΠ RRR , and  

 )430000=σ,10000000=µ(Π CCC . According to these 

probability distributions, we implement the proposed 

algorithm, by following the same set of combinations (for the 

divisions of the grand-coalition in pairs of coalitions) with the 

second solution in the previous example. The results are 

presented in Figure 6, while the agent profits’ cumulative 

distribution functions are illustrated in Figure 7 and the 

analysis in the confidence intervals in Table VIII. These 

results verify that the grand-coalitions profits and risks are 

allocated with fairness in all agents, as they all have the same 

probability for having lower or higher profits than the expected 

profit values. However, in this case (where the shared revenues 

and costs have lower standard deviations), the agents’ profits 

have lower standard deviations too. This fact is demonstrated 

through the analysis of the cumulative probability distribution 

functions in the same confidence intervals: ii σ±µ , ii σ2±µ , 

and ii σ3±µ , as presented in Table VIII.  

As can be seen, there is equal probability for all agent profits 

Pi: 68.7%, 95.6%, and 99.7%, to get values in the profit 

intervals: [ ]3450000,2967000 , [ ]3700000,2720000 , and 

[ ]3945000,2475000  respectively.        

Conclusively, the computation algorithm gives the desired 

results in both the first and second examples, i.e. it calculates 

the revenue-cost-sharing ratios for all agents, in order to 

allocate the grand-coalition’s profits and risks equally among 

them. We mention that the specific combinations that were 

followed in the first example (in both solutions) as well as in 

the second example, were randomly selected.  

 

TABLE VII 

SOLUTION OF THE REVENUE-COST-SHARING RATIOS  )C(),R( **
ii  

i Calculations *R i  Calculations *Ci  

i = 1 BR  10.92% BC  13.48% 

i = 2 

AAAAAAAAA

AAAAAA

RR

RRR

AAAAAAA

AAAAAA

R

R

AAAAAAABR  

11.44% 

AAAAAAAAA

AAAAAA

CC

CCC

AAAAAAA

AAAAAA

C

C

AAAAAAABC  

-0.40% 

i = 3 

AAAA

AAAAAA

R

RRR

AAAAAAB

AAAAAA

AAAAA

R

R

R

 

11.14% 

AAAA

AAAAAA

C

CCC

AAAAAAB

AAAAAA

AAAAA

C

C

C

 

14.08% 

i = 4 
AAAB

AAAAAA

R

RRR
 10.94% 

AAAB

AAAAAA

C

CCC
 13.80% 

i = 5 
AAAA

AAAAAA

R

RRR

AAAAAB

AAAAA

R

R
 

11.15% 
AAAA

AAAAAA

C

CCC

AAAAAB

AAAAA

C

C
 

11.68% 

i = 6 

AAAAAAAAA

AAAAAA

RR

RRR

AAAAAAA

AAAAAA

R

R

AAAAAAAAR  

11.07% 

AAAAAAAAA

AAAAAA

CC

CCC

AAAAAAA

AAAAAA

C

C

AAAAAAAAC  

12.76% 

i = 7 AAAA

AAAAAA

R

RRR

AAAABR  

11.08% AAAA

AAAAAA

C

CCC

AAAABC  

14.61% 

i = 8 AABAAA RRR  11.14% AABAAA CCC  8.62% 

i = 9 ABARR  11.09% ABA CC  11.34% 

 ∑
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i  100.0% ∑
9

1=

C 
i

i  100.0% 
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Fig. 7: cumulative probability distributions (second solution) 

 

TABLE VIII 

SECOND SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE 

INTERVALS  

 
ii σ±µ  ii σ2±µ  ii σ3±µ  

 Probability of Profit:  

Agent 

000,450,3

≤≤
000,967,2

iP  

000,700,3

≤≤
000,720,2

iP  

000,945,3

≤≤
000,475,2

iP  

i = 1 68.02% 95.69% 99.70% 

i = 2 67.64% 95.46% 99.70% 

i = 3 68.22% 95.70% 99.70% 

i = 4 67.94% 95.71% 99.70% 

i = 5 67.90% 95.53% 99.69% 

i = 6 68.00% 95.14% 99.69% 

i = 7 68.00% 95.69% 99.69% 

i = 8 68.98% 95.64% 99.70% 

i = 9 68.88% 95.62% 99.70% 
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Taking into consideration that the basic model developed 

here assumes that all players are identical (satisfying the 

symmetry axiom), the development of a model for the profit 

and risk allocation in situations with non-symmetric players, 

can be a subject for future research. Future papers can also be 

focused on the comparison between the solutions arising 

through the algorithm with the Nash-bargaining solution and 

the Shapley value, as well as on the application of the 

computation algorithm in different types of investments, e.g. 

the exploitation of a single product in a two-level supply chain, 

or a construction project, etc.  

VII. CONCLUSIONS 

In situations where individual agents examine to cooperate 

by forming a grand-coalition, which is the case in the 

decentralized systems, coordination can be achieved with 

revenue-cost-sharing mechanisms. Herein, we focus on cases 

where parts of the grand-coalition’s costs are undertaken 

individually by the agents, while the remaining costs and the 

revenues should be shared among them, in order to allocate 

equally the grand-coalition’s profits under an equal risk 

allocation scheme. A novel approach in the form of a 

cooperative game is used, in order to estimate the possible 

coalitions of agents and to compute the finite set of solutions. 

Each of these solutions is a pair of vectors r, c Є 
N
, with 

which the profits of all agents are normally distributed, having 

equal mean values and variances. Furthermore, we introduce a 

novel computation algorithm, which estimates the revenue-

cost-sharing ratios for all agents, in order to allocate equally 

the grand-coalition profits and risks. The proposed algorithm 

includes the random division of the agents in pairs of 

coalitions until all agents are divided in singleton coalitions. 

Moreover, we present a numerical example, in order to 

highlight some significant features of the basic model, as well 

as the application of the novel approach.   
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