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Coordination of multi-agents with a revenue-
cost-sharing mechanism: A cooperative game
theory approach

Athanasios C. Karmperis, Konstantinos Aravossis, Anastasios Sotirchos, and Ilias P. Tatsiopoulos

Abstract— In this paper we focus on the coordination of multi-
agents through a revenue-cost-sharing mechanism. We consider a
grand-coalition consisting of finite agents, who undertake part of the
costs individually, while the remaining costs C and the total revenues
R are shared between them with a revenue-cost-sharing contract. We
introduce a novel approach in the form of a cooperative game for a
finite set of agents N and we estimate the finite set of possible
solutions. Specifically, each of these solutions can be used for the
coordination of the multi-agents, as it allocates the grand-coalition’s
profits and risks equally among them. A computation algorithm is
developed and illustrated in a numerical example for the coordination
of a grand-coalition with nine individual agents.

Keywords— coalitions, cooperative game, multi-agents, revenue-
cost-sharing mechanism

1. INTRODUCTION

LOBALLY, the development and exploitation of new

products is implemented through contractual agreements,
where at least two individual agents cooperate by forming a
grand-coalition. The grand-coalition’s coordination can be
achieved under a centralized or decentralized scheme, with
one or several decision makers respectively. However, the
decentralized scheme is mostly used over the last decades, in
which the contractual agreements may include a revenue-
sharing or cost-sharing mechanism among the cooperative
parties and each agent act in such a way that is optimal for the
achievement of mutual targets. Specifically, these mechanisms
are developed in order to coordinate all grand-coalition’s
members, so as both their individual objectives as well as the
coalition-wide performance can be optimized [1] — [2]. In
cases where the system’s profits are equal to the relative
profits arising through the centralized scheme, then the grand-
coalition is perfectly coordinated [3]. However, taking into
consideration that the coordination mechanism should be
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accepted by all the grand-coalition’s members, it has to be fair
allocating equally the total profits and risks among all agents.

Generally, in such multi-person situations, where individual
decision makers examine to form a grand-coalition with a
revenue-cost-sharing mechanism and the total outcome is
influenced by each agent’s outcome, game theory can be
effectively applied [4]. Herein, we focus on a system
consisting of multi-agents, who agree to undertake part of the
grand-coalition’s cost individually, while the remaining costs
and the total revenues should be shared properly, in order to
get all agents equal profits under an equal risk allocation
scheme. We develop a basic model and we use cooperative
game theory, in order to estimate the number of possible
solutions and to introduce a computation algorithm that can be
used by the individual decision makers. The rest of this paper,
which is closely related to the multi-agent coordination and the
quantitative risk analysis, is organized as follows. The review
of the literature is presented in section II and the basic model
is developed in section III. In section IV we present a
computation algorithm, which is illustrated in a numerical
example in section V, while useful conclusions and the future
research issues are also discussed.

II. LITERATURE REVIEW

A. Revenue Sharing and Cost Sharing Contracts

The design of revenue-sharing contracts as well as the
negotiation process between the cooperative parties is
presented in [5], while [6] examine the revenue-sharing in a
supply network formation and propose some feasible
allocation rules that ensure the positive profit for the networks’
enterprises. A profit-sharing model for the coordination of a
decentralized supply chain is developed in [7], [8]
demonstrates that a system can be coordinated with a properly
designed profit-sharing contract and [9] presents a profit-
sharing and transfer pricing framework for the network
companies. Furthermore, in [10] is analyzed the coordination
that is achieved through a revenue-sharing contract, while in
[11] is proposed a revenue-sharing contract that guarantees a
win-win outcome and suggest that the revenue-sharing ratio
can be settled through negotiation. Moreover, [2] indicate that
the system’s coordination can always be achieved through
properly designed buy-back and lost-sales cost-sharing
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contracts, while in [12] is presented a method for the funding
sharing between two cooperative parties and in [13] is
developed a formula that increases the financial sustainability
of partnerships in Greece.

However, taking into consideration that the coordination
mechanisms should use risk as driver, as mentioned in [14], it
is excluded the correlation between the revenue/cost-sharing
contracts with the system’s risks, which are shared between the
cooperative parties. Generally, according to [15], the firms
collaborate in order to have an efficient risk-sharing, as
approximately 96% of the US ventures include the risk-sharing
between partners, while [16] mention that the risk-sharing
should be preferred and [17] suggest that the shared profit
among agents should be proportional to their investment and
risk taking. Moreover, there are several methods proposed in
the literature for the quantitative risk analysis. In a
decentralized case, where the decision makers want to estimate
the expected profits, one of the mostly used methods is the
Monte Carlo simulation that takes into account the impact of
the system’s variables [18] — [19], and defines the possible
magnitude of the profits, graphically expressed as the
cumulative probability distribution function [20] —[21].

B. Cooperative Game Theory for the System Coordination

The applications of cooperative game theory to the multi-
agent systems, focusing on the profit allocation and stability,
are surveyed in [4] and also examined in [22] — [23] — [24].
Generally, game theory is applied in a finite set of agents N =
{1,2,3,...,n}, namely grand-coalition. Moreover, any subset in
which this set can be divided is usually called a coalition [25],
and any coalition with just one agent is called a singleton
coalition [26]. A cooperative game is a pair (N, u) where u is
the characteristic function representing the collective payoff
for a set of agents that form a coalition [27]. The game’s
solution is a vector x € R" representing the allocation of the
total profit to each agent. A formal solution for the cooperative
bargaining process was first introduced by Nash [28], namely
Nash-bargaining solution, which consists of an axiomatic
derivation of the solution for a bargaining game between two
agents, who have perfect information [29] and examine to
cooperate and share the profits. The solution satisfies a set of
axioms that is symmetry, Pareto-optimality and feasibility, i.e.
identical agents receive identical profit allocations, any change
to a different allocation that makes at least one agent better off
will make at least one of the other agents worse off, and the
sums of the agents’ allocations do not exceed the total pie.
Additionally, the solution is preserved under linear
transformations and is independent of irrelevant alternatives.

However, especially in the decentralized systems, where
there are individual agents who cooperate by undertaking
different tasks, main challenge is to estimate a fair solution, in
order to allocate the grand-coalition’s profits and risks equally
among the cooperative parties.

III. THE BASIC MODEL

We focus on a decentralized system with a finite set of
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TABLEI
LIST OF NOTATIONS
Symbol Description
Finite set of agents _
N (grand-coalition) N {1 235 s n}
e Costundertakenby ;= jo j=12,.. n
agent i
R Grand-coalition’s (¢ Givided in all agents)
revenues
c Grand-coalition’s (1. 4ivided in all agents)
remaining cost
Revenue-sharing g _
Ri ratio of agent i R; E(O’l) > Z;‘Ri =1
i=
C. Cost-sharing ratio of %,C- -1
! agent i - i
i=
P, Profit tallocated to P; = RR,; -CC; -¢;, Vi EN
agent i
Probability density 2 2
I functions: R, C Hg(ug.og), Helue,oc”)
P Profit’s probability Pr={gR;, 1 cCiue;)
! distribution function ;&N
Wi Expected profit pi=ugR;-ncCi-c;, ViEN
probability : (u;-o; <P; <p; +0;) = 0.6827
Conmidence  probability : (1; -20; < Py < p; +20;) = 0.9545
probability : (u; -30; £P; <p; +30;) =0.9973
Equal profit - I
LA PO A (u1,01%) =Py (12.62%) = =Py (. 0,7) S
allocation Hp=HU2 = . Ty, O] T027..70y,
Number of possible .
s(n) solutions j=123,..,s(n)
s Finite set of possible S = {192,3,'”, s(n)}

solutions

Solutions for equal
profit, risk allocation
(pairs of vectors)

= ®{RA R,
r,c €RY Co L
o/ =(cf.c)...cn). ViES

agents N = {1,2,3,...,n} that is the grand-coalition. These
agents agree to cooperate by undertaking part of the grand-
coalition’s cost individually, i.e. the costs ¢, ¢, ¢3, ..., and ¢,
are undertaken by agents 1,2,3,...., and n, respectively.
Furthermore, the grand-coalition’s remaining costs C and
revenues R are shared between all agents, through a revenue-
cost-sharing mechanism. Let P; denote the profit allocated to
each agent. A complete list of the notations used in this paper
is presented in Table 1.

Obviously, the revenue-cost-sharing mechanism has to be
feasible and individually rational, i.e. the sum of the agents’
allocations does not exceed the total pie and each agent gets at
least as much as what it could obtain through the non-
cooperative option:

n n

R; €(0,1) and XR; = XC; =1 (1)
i=1 i=1

PZ:R(RI)-C(CI)-CI>O, ViEN (2)
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We assume that there is full information among agents and
we examine the case where the grand-coalition’s profits should
be shared equally and be proportional to each agent’s
investment and risk taking [17]. Generally, if there is no
probability distribution assigned to the revenues R and costs C
to be shared, yields the following proposition:

Proposition 1. For a finite grand-coalition N, with i=1,2,....n
agents, there are infinite revenue-cost-sharing ratios (Ri), (Cl-)

which define the equal profit allocation among all agents.

Proof of Proposition 1. The profit for each agent i =
1,2,3,...,n who is member in a grand-coalition N is given:

Pi :RRi_CCi_Ci (3)

Obviously,
(Ri), (Ci), because even in the simplest case with two agents

there are infinite revenue-cost-sharing ratios

(n =2), the grand-coalition profit Py is calculated with (4):
Py =R-C-cj-c 4)

In order to estimate the agents’ revenue-cost-sharing ratios:
(RI,RZ),(CI,CZ), with which the grand-coalition profits are
allocated equally among them, we have a system of four
equations with four unknowns (RI,RZ), (CI,CZ), as follows:

Py
Pl :RRI -CCI -Cl :T (5)
Py
PZZRRZ'CCZ'CZZT (6)
Rj+Ry=C;+Cy =1 (7

Summarizing (5) with (6) we get:

4
RRy +R,)-ClC) +Cy)-le +¢p)= Py <0=0

@)
Moreover, we mention that in all other cases, where n > 2, we
have to calculate 2n unknowns, while the available equations
willbe: n +2 <2 n.

However, in order to define the system’s risks and to
allocate them with fairness among agents, the costs and
revenues to be shared are normally distributed with specific
mean value p and variance o”. That is, a different probability
distribution function IT is assigned in the grand-coalition’s
revenues: Il (uz, ch) and the shared costs: ¢ (e, Gcz)‘
According to these distributions, we get the following
proposition.

Proposition 2. The grand-coalition’s profits and risks are
allocated equally when all agents’ profits get equal
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probability distribution functions, satisfying (8):

B =Ry =H3 == Hy,

6] =0 =03 =..=0y, (8)
Proof of Proposition 2. Taking into consideration that both
the grand-coalition’s revenues R and shared costs C are
normally distributed, the profits Py, P,, Ps,...., and P, , which
are allocated to agents 1,2,3,...., and n, respectively, follow
normal probability distribution functions:

RGENE
Pl(ul,fflz):(l/\/gﬁl)e 2o

(Propy)?
Py(11y,0,2) = (1/\/%02)8 205° yereieees ,

(Pyuy)®

P,y(1y,6,%) = (1/ 2 c,,)e 20,7 for agent i = 1,2,.., and n,
respectively.
From these functions, the profits and risks are allocated
equally when: A (11,61?) =Py (12,627) =.. =P, (11,0,%) &
up=up=..=p, and 6y =065 =...=0,

IV. EQUAL PROFIT AND RISK ALLOCATION AMONG ALL AGENTS

In this section we use insights from the cooperative game
theory, in order to estimate the possible solutions for the
agents’ revenue-sharing and cost-sharing ratios, which define
the equal profit and risk allocation among them. Initially, we
examine the case with 2 agents and further the cases where the
grand-coalition consists of n > 2 agents.

A. Grand-Coalition with 2 Agents

In cases where the grand-coalition consists of two agents,
i.e. N = {1,2}, the system’s profits and risks are allocated

equally when (8) is satisfied: A (111,01%) =P (n2,0,2%) ©

W =Ky ,0] =0, . Moreover, we derive Theorem 1.

Theorem 1. There is a unique solution: (RT,R;),(CT,C;) ,

with which the system’s profits and risks are allocated equally
among two agents.

Proof of Theorem 1. The probability distribution functions of
the agents’ 1 and 2 profits are given by: A =IIgR-II¢C;-¢;
and P, =IIzxR, -TIcCp-cy.

According to Proposition 2, the mean values and the profit
values in the same confidence interval, e.g. the (u + 26) should
be equal.

Due to the fact that R; + R, =1 and C; + C, = 1 from (1),
where R|,R, €(0,1) , we define that C;,C, can take negative
or higher than 1 values, with respect to (1) and (2), so as to

ensure that there is at least one solution (RT R;),(CT,C;), with
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which p; =p,,01 =0, . Furthermore, in order to prove the
uniqueness of this solution, we suppose that there is another
solution, denoted by (RT*,R;*)(CT*,C;*), which also satisfies
(8). Particularly, at least one of RT #R T* , or R; iR;* , or

CT ¢CT* , or C; ¢CZ* , while in both cases there is:

R} +R5 =R +R5 =C] +C,=C| +C5 =1 )

We consider that both (Rl Rz),(Cl,Cz) and (Rl*,Rz ),(Cl N )
solutions satisfy (10), (12) and (11), (13) respectively:

(10)

* * * *
n=po QURR-ueCr-e;=pgRp-ncCh-co

(11)

ek 3k %k 3k
=g PugRy -ucCp -o=ugRy -pcCy -cp

* * * *
Uy £207 =y £209 SRRy -MI¢Cy - = gRH -MI¢Cy - ¢y (12)

Uy £201 = pp £209 <

13
MxR5 -McCh - (13)

TMRRY -TcCY - =
From (10) minus (11) we get:

(10)-(11) &

uR(RT-R;-RT*ﬂ“R;) uc(cl-C2+C2 -Q ):
and from (12) minus (13):
(12)-(13) &

* * ek k% * * kk %k _
HR(Rl -Ry-Ry +Ry )'HC(CI -Cr+Cy -G )—0

(14)

(15)

There is pg >pc,lg > and thus both the parentheses
in (14) as well as in (15) equal zero:

* * sk sk * * sk sk
R] -Rz-R] +R2 =0 (9 1-R2-R2-1+R2 +R2 =0

* * sk K3k * * sk sk @
C;-Cy-Cp #C5 =0 < 1-C5-C5-1+Cy +Cy =0
Ry =R5 OR] =R}

sk * sk *
Cy =Cy ©C) =C

Therefore, the second solution is equal to the first:
RT = RT*,RZ = R?,C]k = CT*,CZ = Cz* and there is a unique
(RT,R;),(CT,C;) for the equal profit and risk
allocation among agents 1 and 2.

solution:

B. Grand-Coalition with n > 2 Agents

In order to find the solution/s that allocates the grand-
coalition’s profits and risks equally among all agents, we use a
cooperative game theory approach. Specifically, the grand-
coalition is divided in two coalitions, namely: Ny = {1,2,...,h}
Np = {ht1,h+2,....n}, with: 1< h<n . Due to (2), there is no
coalition that can be profitably blocked by any coalition of
agents. Hence, there is no constraint considered for the
division of the agents, i.e. any agent can be placed either in the
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N, or in the Ny coalition. However, there is: Ry + Rg= C, +
CB =1.
Further, we derive Theorems 2 and 3.

Theorem 2. For each pair of non-empty coalitions N,, Np,
that the grand-coalition N can be divided, there is a unique
solution: (RZ,RE)(CZ,CE), with which the system’s profits
and risks are allocated equally among all agents.

Proof of Theorem 2. In order to demonstrate that the grand-
coalition’s profits and risks are allocated equally, the mean
values and the profit values in the confidence intervals: (p + 0)

(piZc) and (}1i3o) should be equal for all agents. We
mention that these confidence intervals include the profit
values for each agent with 68.27%, 95.45% and 99.73%
probability, respectively. However, the probability distribution
functions of the N,, Ny coalitions, are given by:

i
Py =TIgR A -TIoCp - 2c, (16)
a=1
n
Pg=TgRp-NcCp- 2cp (17)

b=h+1

According to Proposition 2, the mean values and the profit
values in the same confidence interval, e.g. the (u + 0), or the
(+25), or the (1+30), should be equal. Similarly with the
proof of Theorem 1, we suppose that there are two solutions:
(RZ,RE),(CZ,CE) and (RT,R*B*),(CT,CE*), which satisfy
the following equations (18) and (19):

h
HA = h(l-li)s pB = (n-h)(ui)© HA = MB <

h

* *
(MRRA-1CCA- 2e, )- (HRRB HCCB- Zcb) =
a=1 b=h+1

(RRRA- HCCA 26 )- (HRRB HCCB- 2ﬂb)—
a=1 b=h+1

(18)

(ITgRA-TLcCla- an) (HRRB cCh- Zcb)*
a=1 b=h+1

h
(MgRA-TeCh- an)'_(HRRB T Ch- z‘401))—0 (19)
b=

a=1

Following the same concept with the proof of Theorem 1,

we solve (18), (19) and we get: Ry =Rx.Rp=Rp,

Cp =Cx,Cg=Cpg . Hence, there is a unique solution:

(RZ,RE),(CX,CE)for each pair of non-empty coalitions N,
N, that the grand-coalition N can be divided, with which the
system’s profits and risks are allocated equally among all
agents.
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Theorem 3. The number of possible solutions s(n), with which
the system’s profits and risks are allocated equally among all
agents, is equal to the combinations of agents divided in pairs
of non-empty coalitions iteratively, until all are divided in
singleton coalitions: {{1},{2},...,{n}}. Specifically, the
number of possible solutions: s(n), Vn 22, is given from (20)
and (21), whether n is odd or even number respectively:

n-

——s(n-1)+ i

s(n) = 1), k)'(k)' ————s(n-k)s(k) (20)
2
!

OR 1)|s(n 1)+ :Z‘;ms(n-k)s(k) +

(21)

1
TS GG

G

Proof of Theorem 3. According to Theorem 2, for each pair
of non-empty coalitions N,, N, that the grand-coalition N can
be divided, there is a unique solution: (RZ,RE)(CZ,CE)‘
However, if we consider the further division of the N,
coalition that includes / agents in another pair of coalitions,
namely Ny and Npp, where Npa consists of ¢ agents and Njg
consists of A-t agents, then according to Theorem 2, there is a

unique solution: (RZA,RZB)(CZA,CZB)‘ Moreover, the rest
agents n-h of the Ny coalition can also be divided further in
two other coalitions, namely Ngs, Npp, and with the same
concept there is another unique solution:

(REA,REB)(CEA,CEB)‘ We consider the iterative divisions
in pairs of coalitions, until all the n agents of the grand-
coalition are divided in singleton coalitions: {{1},{2},...,{n}}.
Taking into account that for each coalition considered there is
a unique solution, we conclude that there is a unique solution
for each agent who is included in specific coalitions. This is
calculated when all the solutions of the coalitions including
him are multiplied. For instance, the solution for agent i, who
is included in Np, Nga, Npaa, Neaap coalitions, is given: R; =
(Rg)(Rga)(Rgas)(Rpaas) » and C; = (Cg)(Cpa)(Can)(Cpaap)-
Obviously, each time we consider the division of a set Nin a
pair of coalitions with /4 and n-h agents respectively,
where 1< h<n , there are alternative possible combinations of
the agents in the coalitions and each combination results in a
R:)(Cr.ch.n ). Thus,
the number of the system’s possible solutions, with which the
grand-coalition’s profits and risks are allocated equally among
agents, is equal to the number of possible combinations of the
agents in the coalitions, until all agents are divided in a
singleton coalition. Let s(n) denote the number of solutions for
a grand-coalition with n =22 agents. We mention that s(n) is

. N . * *
unique system’s solution: (R1 ,Ro,..,

equal to the sum of possible combinations of the »n agents in
coalitions, which is multiplied with the number of possible
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solutions for the specific coalitions. That is, s(#) increases with
the number of agents, as for a grand-coalition with 3 agents,
ie. N = {1,2,3}, there are 3 combinations in a 2-agent
coalition:

1) {{1,2}={2,1},{3}} that gives a unique solution:

RLRSLRS (sl el
1 -2 ,RK3 1 -L2,L3

2) {{1,3}={3,1},{2}} that gives another solution:
R R R )2 0 P

3) {{2,3}={3.,2},{1}} that gives another solution:
(SRS CReesy)

Each of these solutions allocates the grand-coalition’s

profits and risks equally among all agents, i.e. the s(3)=3.
Particularly, the mean values are equal for all agents in all

w/ =py/n, Vi=123, j=123  while the

standard deviations are also equal for all agents in all

solutions:

1,23,

sharing and cost-sharing ratios are different between these
three solutions.
Moreover, for a grand-coalition with 4 agents, i.e. N =

solutions: G V] i=1,2,3 even though the revenue-

{1,2,3,4}, there are m = 4 combinations of the 4 agents

in a 3-agent coalition: {{1,2,3},{4}}, {{1,2,4}.{3}},
{{1,3,4},{2}} and {{2,3,4},{1}} , where each one has 3
possible solutions, while there are also three combinations of
the 4 agents in a 2-agent coalition respectively: {{1,2},{3,4}},
{{1,3},{2,4}}, {{1,4},{2,3}} and each one has 1 solution,
thus: s(4) = 4s(3) +3s(2) & s(4) = 4(3) + 3(1) = 15 . Furthermore,
the number of possible solutions, with which the system’s
profits and risks are allocated equally among all agents, is
calculated with (20) and (21), whether # is odd or even number
respectively.

C. Computation of Possible Solutions

Taking into consideration that the grand-coalition is a finite
set of agents and the number of possible solutions is calculated
with (20) and (21), whether n is odd or even number
respectively, we conclude that there are finite possible
solutions that define the equal profit and risk allocation among
agents. However, the number of possible solutions is rapidly
increased with the number of agents. Particularly, from the
Proof of Theorem 1 we get s(2)=1 and from the Proof of
Theorem 3, we get s(3)=3 and s(4)=15 and thus, for

n=5,6,...,10 we compute:
|
s(5) = 5—;5(4) + 3;52' s(3)s(2) = 5(15) +103)(1) = 105

6! 5 1
5(6) ——S(5)+—s(4)s(2) T (s3)*(5) =945

4121

7!
s(7) = —S(6) +

5'2'3(5)5(2) +

YT s(4)s(3) 10,395
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8*§7+i62+i53+8! 42i*
SO =350 SO 5 s BB T (ST =

135,135

9! 9! 9! 9!
5(9) = 57 38) H = s(DSR) + s (6)5(3) + o rs(5)s(4) =

2,027,025

o0 g d0 o 0! 0
5(10) =~ 5(9) + s (81S(2) + o s(1)s(3) + g s(6)s(4) +
10!

(5h?

(5(5))2(%) = 34,429,425

That is, in Fig. 1 we introduce a code that can be used in the
Wolfram Research, Inc., Mathematica, Version 7.0,
Champaign, IL (2008), for the calculation of the precise
number of possible solutions.

In[1:= s[n_] := Piecewise[
-1
nt 2 nt
{{(n_1)! S[n_1]+é[(n—k)!k! s[n_k]s[k])'
n-1

€ Integers &&n 2 3},

n
-1
nt 2 nt

{—(n_l)! s[n-1]+kz=; (7“1_1{)!“ s[n—k]s[k]]+

G
. 1]

s[2]

s[%]2 %, % € Integers && n 2 4}}

out[2]= 1

Fig. 1: Calculations of possible solutions with the Wolfram
Mathematica, (2008).

Moreover, in Table II we illustrate the results arising for n =
2,3,4,...., and 25 and we derive the following Proposition 3.

Proposition 3. The revenue-cost-sharing ratios for a finite
grand-coalition with n agents, can be computed through the
random division of the agents in pairs of coalitions iteratively
for n -1 times (until all agents are divided in a singleton
coalition), and the calculation of the unique revenue-cost-
sharing solution for each coalition.

Proof of Proposition 3. According to the proof of Theorem 2,
there is a unique (R A,RB)(C A,CB) solution for each pair of
coalitions Ny = {,2,., h}, Ng =i +1,h+2,.,nf, in which a
grand-coalition N can be divided. We consider the division of
the NV in pairs of coalitions iteratively, where the first coalition
in each pair consists of a singleton coalition, i.e. #=1. That is,
the  calculations in  the  first  division,  give:
* * * * * * * *

RA = RI’CA = Cl,and RB = Rn—lch = Cn—l . In the second
division, the coalition with the n-1agents is divided again, with
agent 2 in the first and the n-2 agents in the second coalition
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TABLEII
POSSIBLE SOLUTIONS §(7) FOR THE GRAND-COALITION N = {1,2,3,..11}

n s(n)
n=2 1
n=73 3
n=4 15
n=>5 105
n==6 945
n=717 10,395
n=_8 135,135
n=9 2,027,025
n=10 34,429,425
n=11 654,729,075
n=12 13,749,310,575
n=13 31,623,414,225
n=14 7,905,853,580,625
n=15 213,458,046,676,875
n=16 6,190,283,353,629,375
n=17 191,898,783,962,510,625
n=18 6,332,659,870,762,850,625
n=19 221,643,095,476,699,771,875
n =20 8,200,794,532,637,891,559,375
n=21 319,830,986,772,877,770,815,625
n=22 13,113,070,457,687,988,603,440,625
n=23 563,862,029,680,583,509,947,946,875
n =24 25,373,791,335,626,257,947,657,609,375
n=25 1,192,568,192,774,434,123,539,907,640,625

respectively, in the third division the two coalitions consist of
agent 3 and the n-3 agents respectively, etc. Specifically, the
set N is divided in pairs of coalitions for n-1 times, until all
agents are divided in a singleton coalition. However, the
number of repeated divisions in pair of coalitions is the same:
n-1 times, for all the possible combinations, while all the
possible solutions s(n) result in the same solution:
P =P, =P;=..=P,. Hence, we conclude that the revenue-

cost-sharing solution for a finite grand-coalition N, can be
estimated through the random division of the N’s agents in
pairs of coalitions iteratively for n-1 times and the calculation
of the agents’ revenue-cost-sharing ratios:
®;)c;) Vien, i=123,..n.

V. COMPUTATION ALGORITHM

In this section we introduce a novel algorithm that can be used
for the coordination of multi-agents. Particularly, the algorithm
computes a specific solution that is fair, as the grand-
coalition’s profits and risks are allocated equally among all
agents through a revenue-cost-sharing mechanism. The
computation algorithm includes seven basic steps, as follows:
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Step 1: Estimate the cost that is individually undertaken by
each agent: ¢, ¢, ¢, . ¢, and assign a normal probability
density function to the revenues R and costs C, which will
be shared in all agents: Tg(ug,0g2), Hc(ne,o02) .
Select a specific confidence interval: (u :tc), or (u 120),
or (}1 + 36) .

Step 2: Divide randomly the grand-coalition N = 123, .n)
in a pair of non-empty coalitions: Nj = {.2,..h},
Ng=th+Lh+2,.,n}, with 1Sh=<n.

Step 3: Define the equations for the calculations of the profits:

h

Py =TIzR A -TIcCy - 2e, (16)
a=1
n

PB = HRRB -HCCB - ZCb (17)

b=h+1

Step 4: Develop a Monte Carlo simulation model, in which the
IR, I are defined as inputs and the Pa , Py as outputs.

Step 5: Use equation (1) and examine alternative values of

E(O,l)‘ Particularly, for each value of R4, the Rg and

the C, as well as the Cg (Which can be negative or higher

than 1), take specific values, in order to satisfy:

h
* *
HRRA-LCCA- 2cq
=1
= 4 . For

n

WRRB-1cCh- 2ep

b=h+1
RA,Ca,Rp,Cp run the Monte Carlo simulation, analyze
the probability distribution functions P,, Py and calculate
the coalitions’ profits in the selected confidence interval:
(npa *op)and (ng £op), Or (np *+204)and (ug +20p )
or (pp +3cp)and (ug £3og) Following the trial and
error method, select the scenario R ,Cp,Rp,Cp that
satisfies the proportionality presented in equation (22):

HA _

N
ng n-h

each scenario

H_A_O_L_(HA+20A)-(HA-2GA)
n-h up n-h (ug +20p)-(up -20p)

HA 204 T20p

ug  20p +20p
(&)
HA _OA 22)
up ©oB
This scenario is a solution: (RZ,RE) (CZ,CE) , which is
unique for the selected N, Ng coalitions.

Step 5: Use the (RZ,RE)(CZ,CE)solution and repeat the 2 to
4 Steps, i.e. divide randomly N » , Ng in two other pairs of
coalitions, namely Naa,Nag and Nga , Ngp respectively.
Specifically, the first pair of coalitions from N, is the:
Nap = L2, kb Nag =+ 1Lk +2,,h},  with 1<k<h
and the second pair of coalitions from Ny is the:
Npa = i+ 1Lh+2,,m} Ngp = fm+1,m+2,..,n}, where the
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h+1<m=<n. Further, calculate the unique scenarios:

* * * * k HAA OAA
Raa,R Caa.C that satisfies = = >
( AA AB)s( AA AB) h-k Wap OAB

. m-h p c
(REA,REB),(CEA,CEB) that satisfies = tBA _BA
n-m  UBg  OBB

Repeat the above steps, until all agents are divided in a
singleton coalition, i.e. the 2 to 4 steps should be followed
for n-1 times.

Step 6: For each agent i = 1,2,3,....,n , multiply the
revenue-cost-sharing ratios of the coalitions including

him and get the system’s solution: (RTR;RZRZ)
and (C},C3,C5.....C} ).

For instance, the revenue-cost-sharing ratios (R;), (Cz)

for agent 5 who is included in the N,, Naa, Naaa and
Naaag coalitions, is calculated through:

RS = (RA)(RAa)(RAAA)(RAAAR) and
C5 =(CA)CAANCAAANCAAAB) -

As can be seen, the grand-coalition’s solution is a pair of
vectors r, c € RY that is:

r=R;,R7,R5,..,R, |, ¢c=1C{,Cy,C5,...,C, ).
Step 7: Use: RT,R;,R;,...,RZ and CT,C;,C;...,CZ and run

the Monte Carlo simulation model, with the agents’
profits P;,P,,P3,...., P, as outputs, in order to verify that:

U =My =..=WUy,, O]=0p=..=0,<P =P =..=P,
VI. NUMERICAL EXAMPLE

A numerical example is presented here, in order to illustrate
some significant features of the basic model as well as the
application of the proposed computation algorithm.

A. Assumptions
We with »n=9 agents
N=1{,2345,6789}, who examine to cooperate in a single

consider a grand-coalition

project, by undertaking parts of the costs individually, while
both remaining costs C and revenues R should be shared
following a revenue-cost-sharing mechanism. Specifically, the
costs ¢; = 900000, ¢, = 2550000, c; = 950000, c,= 880000, cs
= 1200000, cs= 1050000, c¢;= 870000, cs= 1500000, and cy=
1200000, are undertaken by agent 1,2, 3, , and 9,
respectively. This system can be perfectly coordinated through
the equal allocation of the grand-coalition’s profits and risks to
agents, i.e. all agents get equal profits with equal probability
distributions. The shared revenues R and costs C are normally
distributed: TIg(uz = 50000000, 6 x = 4500000) and

¢ (ke =10000000,6 = 4300000) , respectively.

B. First Solution

Following the proposed algorithm, we divide the 9 agents in
pairs of coalitions iteratively until all agents are divided in
singleton coalitions, by following specific combinations,
which are illustrated in Figure 2. According to equations (20)
and (21) introduced in Theorem 3 as well as the calculations
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Grand-Coalition
N={1,2,3,4,5,6,7,8,9}

Coalition Coalition
h=1{2,3,5,6,7 Ne={1,4,8,9}

Ra = 55.320% Rg = 43.680%
Ca = 54.844% Cg = 45,156%

Coalition Coalition
Naa= {2, 6} Nas=1{3,5,7)} /
R = 42.800% Rng = 57.200% Coalition Coalition
Cpn = 37.018% Chs = 62.982% Nea= {4, 8} Nes={1, 9}

Rea = 50.520%

Cea = 49.415%
Coalition . Singleton

a8 = {5, 7] Nasa= {3},

Rags = 67.000% Raga = 33.000%
Ches = 66.581% Chen = 33.419%

Res = 49.480%
Cas =50.585%

Raan = 54.900%

Rass = 45.100%
Cpan = 42.147% Resn = 47.650%

Cans = 57.853%
Cegan =52.273%

Singleton . Singleton
nees = {7

Rene = 52.350%
Ceag =47.727%

Insea = {5,
Singleton ' Singleton
Nees = {9}

Raggs = 48.700%
Chagss = 51.074%

Rpsga = 51.300%
Cpasa = 48.926%
Nesa= {1},

Resn = 48.800%
Casn = 50.890%

Fig. 2: first solution of the computation algorithm

Regs = 51.200%
Cees = 49.110%

presented in Table II, this set of combinations is one out of
2,027,025 possible sets that can be followed in this case
(where 7=9). Initially, following the 2™ to 4" Steps of the
computation algorithm, we divide N in two coalitions:
Np = {2,3,5,6,7}, Np = {1,4,8,9} and we calculate the unique
solution for the specific pair of coalitions:

TABLEIII

FIRST SOLUTION OF THE REVENUE-COST-SHARING RATIOS (R} ), (C})

i Calculations R 7 1 Calculations CT 1
i=1 RBRBREBBA 10.54% CpCgppCppa 11.62%
i=2 RARAARAAA 13.23% CACAACAAA  8.55%
i=4 RgRpaRBaA 10.51% CgCpaCpaa 11.66%

R AR ABR CaCagC
i=5 ATABTABB 11.07% A-AB-ABB 11.25%
R ABBA CaBBA
i=6 RARAARAAB  1087% CACAACAAB 11.74%
R AR ABR CaCagC
i=7 ARNAB™ABB 10.51% A“AB“ABB 11.74%
R ABBB CaBBB
i= RBRBARBAB 11.55% CBCBACBAB 10.64%
i=9 RBRBBRBBB 11.06% CBCBBCBBB 11.21%
9 9
2R; 100.0% 2C; 100.0%

i=1 i=1

Issue 1, Volume 6, 2012

216

(R%, = 55.320%, RY = 43.680% (C"y = 54.844%, Cs = 45.156%)

According to Proposition 3, we follow the basic Steps of the
proposed algorithm (Steps 2 to 4), for n-1=8 times, in order to
calculate the unique and optimum solutions for the selected
set of combinations, which is illustrated in Figure 2.
Let: (RTI,RZI,..., Rzl),(cfl,czl,..., Czl) denote  the first
revenue-cost-sharing solution, which is presented in Table III.
As can be seen, the revenue-cost-sharing ratios for each agent
are calculated with the multiplication of the revenue-cost-
sharing ratios of the coalitions including him. For instance, the
revenue-cost-sharing ratios for agent 7: (R;ll(cél), who is
included in the Na, Nig, Nags and Nuggp coalitions, is
calculated through:

%R;l “RARABRABBRABBB /.
C7 =CACABCABBC ABBB

(R’é‘ = (55.320%)( 57.200%)(6 7.000%)(48 .700%),)
C5! = (54.844%)( 62.982%)(6 6.581%)(51 .074%)
(RS = 10.5114% ) (3 = 11.7461%)

Furthermore, according to Step 7 of the proposed algorithm,
we verify the resulting revenue-cost-sharing ratios.

Particularly, we use the RTI,RZI,..., Rgl and CTI,CZI,...,CSI as

&

well as the I, I1c and ¢y, ¢,, ¢3, ¢4, Cs, Cs, , C3, and cg as inputs
and the agents’ profits: Pj,P,,Ps,..., Pg as outputs in a Monte

Carlo simulation model: P; = RR} - CC} - .

The simulation is performed with 5,000 runs calculating the
probability distribution functions of the agents’ profits, namely
Pl,Pz,P3,P4,P5,P6,P7,Pg,aIldPQ,fOI'thei: 1,2, 3,4, 5,
6, 7, 8, and 9 agent, respectively. These functions are
illustrated together in Figure 3 and demonstrate that all agents

get equal expected profits: i =y =3 =...=pg =3,211170

Furthermore, we analyze the probability distribution

functions in the same confidence intervals: W; £o; , pj +20; ,

Cumulative Probability Distributions of the Agents' Profits (P;)

,-=-H1=3211184
,

1,=3211170

o
5
o

o _H3=3211169

Ha=3211171

[y

Probability

"""""" Ms=3211168

He=3211168

N
N=mpe=3211171

v

1000000 1750000 2500000 3250000 4000000

Agents' Profits (P;): i =1,2,3,...,9

4750000 5500000

Fig. 3: cumulative probability distributions (first solution)
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TABLE IV
FIRST SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE
INTERVALS
W £0; [ :l:2csl~ Wi ﬂ:3ci
Probability of Profit:
2,520,000 1,830,000 1,140,000
Agent <P s SPhs <P <
3,900,000 4,590,000 5,280,000
i=1 68.69% 95.69% 99.70%
i=2 67.99% 95.46% 99.70%
i=3 68.70% 95.70% 99.70%
i=4 68.88% 95.71% 99.70%
i=5 68.69% 95.53% 99.69%
i=6 68.68% 95.14% 99.69%
i=17 68.84% 95.69% 99.69%
i=8 68.98% 95.64% 99.70%
i=9 68.88% 95.62% 99.70%

and p; £30; , as presented in Table IV. As can be seen, the
probability for all agents’ profits P; (where i=1,2,3,..,9), to get
values in the intervals: [2520000,3900000], [1830000,4590000],
and [1140000,5280000] is equal : 68.7%, 95.6%, and 99.7%,

respectively, and thus, the first solution gives:
Gl :(52 263 :...209 .

Hence, according to Proposition 2, all agents’ profits have
equal probability distributions: B =P, =P =.. =Py and the

coordination of the grand-coalition N = {1,2,3,4,5, 6,7,8,9 }can
be achieved.

C. Second Solution

However, the first solution is one out of 2,027,025 solutions
that can be calculated, according to the possible combinations
for the divisions of the 9 agents in pairs of coalitions for n-1=8
times. For instance, if we use different combinations of the
agents within the computation algorithm, as presented in
Figure 4, we calculate a second revenue-cost-sharing solution:
namely: (RTZ,R?,..., RSZ) and (CTZ,C?,..., CZZ) . According
to Theorem 3, we expect that the first and second solutions are
different. This fact is verified through the results presented in
Tables III and V, which present the agents’ revenue-cost-
sharing ratios in the first and second solution, respectively. As
can be seen, these revenue-cost-sharing ratios are different for
all agents in the two solutions:

)l )2, w1200

For instance, the revenue-cost-sharing ratios for agent 3, (i=3):

Rl = (0.63%) # R32 =(0.65%), and
oyl =(1s4%) = €32 =(11.64% )

Issue 1, Volume 6, 2012

Grand-Coalition
N={1,2,3,4,5,6,7,8,9}

Coalition
Na=1{2,3,4,5,6,7,8, 9

Ry = 89.450%
Cn=88.361%

Coalition ' Singleton
an=1{2,3,4,5,6,7, 8 Nas = {9}
Ry = 12.360%
Cag =12.640%

Re = 10.550%
Cq = 11.639%

Ry = 87.640%
Can = 87.360%

Coalition . Singleton

Iana=1{2, 3,4, 5,6, Nass = {8},

Rass = 14.700%
Chs = 13.613%

Raas = 85.300%
Chan = 86.387%

Coalition . Singleton

Raass = 15.700%
Chaane = 17.368%

Raasa = 84.300%
2%

Coalition
Naanan= {2, 3, 5, 6]

R = 81.400%
Chaamn = 78.922%

Coalition Singleton
Iananan = {2, 3, 6] Nananns = {5}
Rasaana = 75.600% Rasanae = 24.400%

Chaanasa = 72.704% Chnanae = 27.296%

Coalition . Singleton
Iannanne = {3)

Ruane = 18.600%
Canans = 21.078%

Innanann = {2, 6]

Rasanaas = 69.300%
Channanan = 63.190%

Singleton ' Singleton
Nannanane = {2]

Iananaana = {6

Raananss = 33.700%
Crananne = 36.810%

Raanaama = 45.000%
Crannana = 57.458%

Raaananas = 55.000%
Canananng = 42.542%

Fig. 4: second solution of the computation algorithm
Moreover, if we use the er,R?,...,Rzz , sz,C?,...,sz ,

the I, II- as well as the ¢, ¢, ¢3, ¢4, C5, C6, , C3, and cg as

Cumulative Probability Distributions of the Agents' Profits (P;)

Pl H,=3211269
.
= =|p,=3211272)
-
. === |p,=3211268
06 4 T
T a--- 1,=3211265)
Y e G
""""""" 1 5=3211267
11,=3211366|

4750000

08 P1=Py=P3=Py=Ps= -~

-
B
.
.
.
.
. -
e

Probability

04

S ~
AN
~ ~
N N
~
N
N
~
N

~

0,2

~
N~
~
N
~
~o

P

0
1000000

1750000 2500000 3250000 4000000 5500000

Agents' Profits (Pi): i=1,2,3,..,.9

Fig. 5: cumulative probability distributions (second solution)
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TABLE V
SECOND SOLUTION OF THE REVENUE-COST-SHARING RATIOS (R12 ), (C12
i Calculations R?z Calculations C?z
i=1 Rp 10.55% Cg 11.64%
RARAAR AAA CACAACana
RaaaaRAAAAA Caaaa CAAAA/
i=2 Raaaaaa 13.22%  CAAAAAA 8.50%
R AAAAAAA CAAAAAAA
R AAAAAAAB CAAAAAAAB
RARAARAAA CACAACanA
RaaAA CAAAA
i=3  RAAAAA 10.65%  CAAAAA 11.64%
R AAAAAA CAAAAAA
R AAAAAAB CAAAAAAB
g ARAARAAA oy, CACAACAAY L oy
R AAAB CAAAB
RARAARAAA CACAACana
jos  SAAAA 11209 CAMMA 11.87%
RaAAAA CAAAAA
R AAAAAB CAAAAAB
RARAAR AAA CACAACana
RaaaaRAAAAA Caaaa CAAAA/
i=6 RAAAAAA 10.82% CAAAAAA 11.48%
R AAAAAAA CAAAAAAA
RAAAAAAAA CAAAAAAAA
RAR AAR AAA CaCaaCana
i=7 Raaaa 10.49% Caaaa 11.61%
R AAAAB CAAAAB
i=8 RARAARAAR 1152% CACAACasp 10.51%
i=9 RARap 11.06% CACaB 11.17%
9 9
2R; 100.0% 2C; 100.0%
i=1 i=1
inputs and the agents’ profits: Pj,P;...,Pg as outputs in a

Monte Carlo simulation model: P; =RR,~2 -CC,~2 -¢; , we get

the cumulative probability of the agents’ profits as presented in
Figure 5. As can be seen in Figures 3 and 5, as well as the
results through the analysis in the confidence intervals
presented in Tables IV and VI, all agents get equal expected
profits and equal standard deviations (o) in the first and second

solutions:

]J.l :H2:H3::}l9:3,21],170, (51 :(52 :(53 :...:G9

D. Discussion

In the previous example, we have assumed that the shared
normally distributed:

revenues R and costs
Mg (ug = 50000000, 6 g = 4500000) ,

¢ (ue =10000000,6¢ = 4300000) .
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C are

TABLE VI
SECOND SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE
INTERVALS
W £0; Wi :l:2csl~ Wi ﬂ:3ci
Probability of Profit:
2,520,000 1,830,000 1,140,000
Agent <P < <P < <P <
3,900,000 4,590,000 5,280,000
i=1 69.99% 95.70% 99.90%
i=2 69.39% 95.60% 99.83%
i=3 69.81% 95.59% 99.81%
i=4 69.69% 95.96% 99.87%
i=5 68.53% 95.95% 99.93%
i=6 68.03% 95.92% 99.80%
i=17 68.45% 95.74% 99.88%
i=8 69.91% 95.67% 99.87%
i=9 69.86% 95.66% 99.79%

However, if we consider that the revenues and costs to be
shared follow different normal probability distributions, e.g.

Grand-Coalition
N={1,2,3,4,5,6,7,8,9}

Coalition
Na=1{2,3,4,5,6,7,8, 9

Ry = 89.080%
Cn=86511%

Coalition ' Singleton
Inn=12,3,4,5,6,7,8 Nas={9}
Ran = 87.550%

Chn = 86.890%

Coalition . Singleton
Nass = {8}

Inan=1{2, 3, 4,5, 6,

Raan = 85.708%
Chann = 88.532%

Coalition . Singleton

Naana=1{2,3, 5,6, 7} Ianas = {4]

Re =10.920%
Csg = 13.489%

Rys = 12.450%
Cp = 13.110%

Rass = 14.292%
Cass = 11.468%

Rynn = 83.628%
Canan = 79.253%

Ruwe = 16.372%
Crase = 20.747%

Coalition
Nanana={2, 3, 5, 6}

R = 80.170%
Chann = 72.293%

Coalition Singleton
Ianaana= {2, 3, 6 Naanans = {5},
Ranaann = 75.100% Rananas = 24.900%

Chasana = 69.359% Casanae = 30.641%

Coalition . Singleton
Ianannss = {3}

Raamns = 19.830%
Chanans = 27.707%

Innanann = {2, 6]

Rasasnas = 66.900%
Chaanans = 46.724%

Singleton . Singleton
Inannaas = {2

Iannannna = {6]

Raasanas = 33.100%
Chaanaane = 53.276%

Ransannas = 49.190%
Chaanannaa = 103.316%

Ransannas = 50.810%
Cramnaang = -3.316%

Fig. 6: solution of the computation algorithm
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with the same mean values but with lower standard deviations,
then the system’s solution for the equal profit and risk
allocation will be different. For instance, we assign initially:

IR (1R = 50000000, R = 2150000) , and

I (nec =10000000,6¢ =430000) .  According to these

probability distributions, we implement the proposed
algorithm, by following the same set of combinations (for the
divisions of the grand-coalition in pairs of coalitions) with the
second solution in the previous example. The results are
presented in Figure 6, while the agent profits’ cumulative
distribution functions are illustrated in Figure 7 and the
analysis in the confidence intervals in Table VIII. These
TABLE VII

* *
SOLUTION OF THE REVENUE-COST-SHARING RATIOS (R ),(Cj)

i Calculations R? Calculations C;‘
i=1 Rp 1092% Cpy 13.48%
RARAAR AAA CaCanCana
RaaaaRanaaa (IVVINIVVVY,
i=2 RaaaaAA 11.44% CAAAAAA -0.40%
R AAAAAAA CAAAAAAA
R AAAAAAAB CAAAAAAAB
RaARAARAAA CaCanCana
R aaAA CAAAA
i=3  RAAAAA 11.14% CAAAAA 14.08%
LYVVVVVY CaAAAAA
R AAAAAAB CAAAAAAB
i=4 RaRaaRaaa 10.94% CaCanCara 13.80%
R AAAB CaaAB
RaARAARAAA CaCanCana
i=5 Raasa 11.15% Canaa 11.68%
VIVVA CAAAAA
R AAAAAB CAAAAAB
RARAAR AAA CaCanCana
RaaaaRanaaa (IVVINIVVVY,
i=6 Raaaaaa 11.07% CAAAAAA 12.76%
R aarAAAA CAAAAAAA
RaAAAAAAA CAAAAAAAA
RARAARAAA CACAACana
i=7 Raaaa 11.08% Caaaa 14.61%
R AAAAB CAAAAB
i=8 RARAARAAR 11.14% CACApACAAR 8.62%
i=9 RARAp 11.09% CACap 11.34%
9 9
2R; 100.0% >C; 100.0%

i=1

i=1

results verify that the grand-coalitions profits and risks are
allocated with fairness in all agents, as they all have the same
probability for having lower or higher profits than the expected
profit values. However, in this case (where the shared revenues
and costs have lower standard deviations), the agents’ profits
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Cumulative Probability Distributions of the Agents' Profits (P ;)

Pi1=Py=P3=Py=Ps= -~ oo ez
\

Ps=P;=Py=P, N 7 o== uy=3211128
_o-- p3=3211128
=== H,=3211127

P R 72 S Ms=3211127

Probability

Me=3211128

~
N==He=3211130

¥,
2500000 3250000 4000000
Agents' Profits (P;): i =1,2,3,...,.9

0
1000000

1750000 4750000 5500000

Fig. 7: cumulative probability distributions (second solution)
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have lower standard deviations too. This fact is demonstrated
through the analysis of the cumulative probability distribution

functions in the same confidence intervals: y; o; , p; +20; ,

and p; +30; , as presented in Table VIIL

As can be seen, there is equal probability for all agent profits
P;: 68.7%, 95.6%, and 99.7%, to get values in the profit
intervals:  [2967000,3450000],  [2720000,3700000],  and
[2475000,3945000] respectively.

Conclusively, the computation algorithm gives the desired
results in both the first and second examples, i.e. it calculates
the revenue-cost-sharing ratios for all agents, in order to
allocate the grand-coalition’s profits and risks equally among
them. We mention that the specific combinations that were
followed in the first example (in both solutions) as well as in
the second example, were randomly selected.

TABLE VIII
SECOND SOLUTION: AGENTS’ PROFITS IN THE CONFIDENCE
INTERVALS
W £0; W *20; uj +30;
Probability of Profit:
2,967,000 2,720,000 2,475,000
Agent SP s <P < <P <
3,450,000 3,700,000 3,945,000
i=1 68.02% 95.69% 99.70%
i=2 67.64% 95.46% 99.70%
i=3 68.22% 95.70% 99.70%
i=4 67.94% 95.71% 99.70%
i=5 67.90% 95.53% 99.69%
i=6 68.00% 95.14% 99.69%
i=7 68.00% 95.69% 99.69%
i=8 68.98% 95.64% 99.70%
i=9 68.88% 95.62% 99.70%
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Taking into consideration that the basic model developed
here assumes that all players are identical (satisfying the
symmetry axiom), the development of a model for the profit
and risk allocation in situations with non-symmetric players,
can be a subject for future research. Future papers can also be
focused on the comparison between the solutions arising
through the algorithm with the Nash-bargaining solution and
the Shapley value, as well as on the application of the
computation algorithm in different types of investments, e.g.
the exploitation of a single product in a two-level supply chain,
or a construction project, etc.

VII. CONCLUSIONS

In situations where individual agents examine to cooperate
by forming a grand-coalition, which is the case in the
decentralized systems, coordination can be achieved with
revenue-cost-sharing mechanisms. Herein, we focus on cases
where parts of the grand-coalition’s costs are undertaken
individually by the agents, while the remaining costs and the
revenues should be shared among them, in order to allocate
equally the grand-coalition’s profits under an equal risk
allocation scheme. A novel approach in the form of a
cooperative game is used, in order to estimate the possible
coalitions of agents and to compute the finite set of solutions.
Each of these solutions is a pair of vectors r, ¢ € RY, with
which the profits of all agents are normally distributed, having
equal mean values and variances. Furthermore, we introduce a
novel computation algorithm, which estimates the revenue-
cost-sharing ratios for all agents, in order to allocate equally
the grand-coalition profits and risks. The proposed algorithm
includes the random division of the agents in pairs of
coalitions until all agents are divided in singleton coalitions.
Moreover, we present a numerical example, in order to
highlight some significant features of the basic model, as well
as the application of the novel approach.
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