
 

 
 

  
Abstract—For vector quantization (VQ), it is extremely 

time-consuming to extract the similar codeword with input vector 
during the encoding process. In this paper, three efficient algorithms 
are proposed to extract the features of input vector using orthogonal 
transform, i.e., PCA transform, Hadamard transform, Haar wavelet 
transform, respectively.  These features are then used to early remove 
impossible codeword in the distortion computations stage. From the 
experimental results, it is shown that the proposed approaches can 
largely decrease the computation time for achieving VQ coding with 
the same quality with full search algorithm. More specifically, 
compared with the DHSS algorithm, the proposed algorithm reduces 
the computational time by 31% to 61%. Compared with the Pan’s 
algorithm, the proposed algorithm reduces the computational time by 
62% to 75%. Compared with the Lai’s algorithm, the proposed 
algorithm reduces the computational time by 48% to 58%. Compared 
with the HTPDE algorithm, the proposed algorithm reduces the 
computational time by 27% to 44%. Compared with the WTPDE 
algorithm, the proposed algorithm reduces the computational time by 
21% to 45%. Moreover, the computation time of the HWT-based 
approach is less than all other previous algorithms. 
 

Keywords—Vector quantization, PCA transform, Hadamard 
transform, Haar wavelet transform, Image coding.  

I. INTRODUCTION 
ector Quantization (VQ)[1] is one of high performance and 
popular methods for data compression. In the past, it has 

been wildly used in various applications, e.g., image 
compression [2]-[3], watermarking [4], and image filtering [5], 
etc. However, traditional VQ methods require huge computing 
time to accomplish the encoding process and this factor limit its 
use for practical applications. To reduce the computing time in 
encoding stage, a lot of fast algorithms have been proposed 
[6]-[18] during the last decade. Basically, these approaches can 
obtain the almost same quality as full-search methods but much 
less time required. For example, the partial distance elimination 
(PDE) algorithm [6] can early stop the distortion computations 
if the partial distance between the input block and codeword 
excess the existed distance. Chung et al. [12] improved the PDE 
to increase the search efficiency. The equal-average 
nearest-neighbor search (ENNS) algorithm [7] removed the 
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non-similar codeword by using the distance between the sum of 
input vector and the sum of codeword. The dynamical 
hyperplanes shrinking search (DHSS) algorithm [8] employed 
three projections of the input vector to reject unlike codewords 
and then speed up the search process. PAN et al. algorithm [9] 
also uses the sum and the variance of input vector and a segment 
of the codeword or whole codeword to get rid of impossible 
codeword. The method proposed by Lai and Liaw [14] utilizes 
the characteristic of the input vector, e.g., mean value, edge 
strength, and texture strength, to filter un-similar codewords. Lu 
et al. [19] employed the PDE technique to achieve an efficient 
VQ in Hadamard transform domain, namely (HTPDE). 
Additionally, another approaches [10]-[11] used the mean (sum) 
of image block and codeword to build a pyramid structure, 
respectively. With coarse-to-fine strategy, this method can 
gradually remove the false codewords.  

As illustrated above, for VQ, high dimension of the input 
vectors and large codebooks are key factors of why huge 
computation time is unavoidable. Therefore, most of the 
previous approaches for fast VQ algorithms are to remove 
unlike codewords as early as possible during encoding stage. 
Hence, to achieve the goal of speed up the searching process, 
this work proposes three novel VQ encoding algorithms by 
using orthogonal transform to obtain the reduced features, and 
then increase the system performance. These algorithms not 
only reduce the search range for codebook, but also the 
dimension of the input vector and the complexity. Experimental 
results show that the performance of the proposed methods is 
superior to other previous methods in computation time. 

The remainder of this paper is organized as following. 
Section II presents the details of the proposed algorithms which 
first introduce the brief concept of VQ, the theory of orthogonal 
transform and then illustrate the steps used. The experimental 
results and performances comparison of our methods and 
previous approaches are included in section III. Section IV is 
conclusions. 

II. THE PROPOSED METHODS 

A. BRIEF CONCEPT OF VQ 

The first step for VQ is to build a codebook from a set of 
training image and the elements of a codebook are named 
codewords. Generally, LBG algorithm [20] is commonly used 
to produce the desired codebook. Once the codebook is ready, 
the non-overlapped image blocks of an image can be encoded 
with the nearest codeword such that the total storage for the 
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image is minimum. In brief, given one codeword 
),,,( 21 jkjjj cccC K=  and the image block ),,,( 21 kxxxX K= , 

the squared Euclidean distance can be expressed as (1).  
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Refer to (1), it is clear that calculation of the distance between 
an image block and a codeword needs k multiplications, k 
subtractions, and k-1 additions. Thus, it is extremely 
time-consuming for Full Search (FS) algorithm to encode an 
image block due to perform N iterations of (1) and N-1 
comparisons for a codebook with N codewords. In other words, 
the whole computation for encoding an image block requires 

kN ∗  multiplication, kN ∗  subtraction, )1( −∗ kN additions, 
and 1−N  comparisons. However, when the encoding process 
is accomplished, each image block is only represented with an 
index of the nearest codeword and this representation can 
significantly reduce the total memory storage. 

B. Fast Encoding Algorithm I based on PCA 

PCA is a well-known technique used for data reduction, 
especially in image compression. For example, PCA is 
commonly used to transform a random vector ),( 21 dxxxX L  
to a simplified vector ),( 21 myyyY L , where dm ≤ . That is, 
through PCA, a number of related variables are transformed to a 
smaller set of uncorrelated variables. At the same time, vector 
X has many projection axes, in which the axis with the largest 
variance is called as first axis, and the axis perpendicular to the 
first axis with the second largest variance is named as second 
axis, and so on [21]-[22]. 

To derive the transformation of PCA, vector X was first 
centralized. The covariance matrix xC of X is then expressed 
as 

)( t
x XXEC =                 (2) 

where xC  is a positive symmetric matrix. Using xC , the 
eigenvalues, denoted as ( dλλλ ,,, 21 L ) in descending order and 
their corresponding eigenvectors, denoted as { dwww ,,, 21 L } , 
can be obtained. Let W is an orthonormal matrix constructed 
with dwww ,,, 21 L . The row vectors of W  constitute an 

orthonormal basis. Since tWW =−1 , we then express PCA as 
(3). 

WXY =                   (3) 
According to the linear algebra, ky is written as 

Xwxwy ki

d

i
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where ky is the k-th principal component of vector X . Note 
that these principal components are uncorrelated and vector 
X can be reconstructed using (5) completely. 

YWX t=                  (5) 
For data reduction, we use m )( dm ≤ principal components to 

reconstruct vector X  as indicated by (6), and the mean square 

error (MSE) between vector X and the reconstructed vector 
X
~ is expressed as (7). 
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The projection values of the codewords in the codebook on 
first axis, 2nd axis, and 3rd axis are calculated. Let the 
projection values in the orthogonal coordinate be z1, z2, and z3, 
respectively. If the projection value on the first axis of the 
codeword cC  is the closest to z1 for all codewords, then it is 
chosen as the initial codeword. Next, we calculated the 
Euclidean distance r between the input vector X  and the 
codeword cC . If projection value of any codeword on 1st axis, 
2nd axis, or 3rd axis outsides the interval [z1-r, z1+r], [z2-r, 
z2+r], or [z3-r, z3+r], this codeword is rejected directly in the 
encoding process. Whereas, the Euclidean distance between the 
codeword and the input vector X  will be calculated and the 
value r will be updated by the smaller distance so that the search 
range is dynamically reduced [8]. Based on this strategy, a 
PCA-based method is proposed as below. 

Let iX is an input vector， cX  is the nearest codeword 
compared to input vector iX so far, and zcX is another 
codeword to be compared in the codebook. The dimensions of 
these three vectors are all the same, i.e., k.  By applying PCA to 
these three vectors, we obtain iY , cY  and zcY , respectively. It is 

noted that a vector after PCA transform, its orientation in 
feature space is changed, but the property of the vector is 
remained as the same. That is, we can use (8) to calculate the 
distance of iX and cX . 
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Additionally, if one codeword zcX in the codebook satisfies 
(9), then it is considered as a possible nearest codeword. 
Otherwise, zcX is rejected in encoding process. 
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For (9), let m = n = 1, we have 
eyyey izci +≤≤− 111             (10) 

eyyey izci +≤≤− 222             (11) 

eyyey izci +≤≤− 333             (12) 

In other words, during the encoding process, if the values of 
three principal components of a codeword do not fall into the 
range indicated as (10)-(12), this codeword should be discarded.  
This criterion is similar to [8], in which the authors declaim 
three principal component is enough to reject most of unlike 
codewords. But, we found more principal components are 
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usually required while deal with high-details images. 
Next, substitute ( kmn <= ,1 ) to (9), then we get 
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Here, (13) can be used to remove the impossible codewords 
that cannot be rejected by (10)-(12). As illustrated before, one 
can use a few principal components to represent the original 
vector without loss its characteristics. So if we can utilize 
principal components as less as possible, most of unnecessary 
codewords that do not locate in these principal axes can be early 
removed and then significantly reduce the time for distortion 
computations. The MSE shown as (7) is used to calculate the 
difference of origin vector and reconstructed vector with m 
principal components. Generally, the variances among these 
codewords located in first principal component are larger than 
others on 2nd principal component or 3rd principal component. 
Hence, if a codeword satisfies (10), then it may also fit the 
requirement of (11) and (12). Based on this concept, we use (10) 
to decide the search range for possible codewords, and utilize 
(13) to reject impossible codewords. This strategy is efficient to 
speed up the search process than [8].  

In summary, this PCA-based algorithm is described as below. 
1). Off-line preprocessing 
Step 1.1: Derive the transform matrix W using the training 

images. 
Step 1.2: Calculate the projections of the codewords in a 

codebook on first m axes. According to the projection value on 
the first axis, rearrange them in the ascending order.  

2). On-line processing 
Step 2.1: Calculate the projections of the input vector iX  on 

fir st m axes, denote them as1iy , 2iy , …, and imy . 

Step 2.2: Use the 1st principal component of iX  to search 
the nearest codeword in the codebook. Denote the nearest 
codeword as ( min_idxcX ) and idx_min is the corresponding 

index of iX . 

Step 2.3: Calculate the squared Euclidean distance 2e of iX  
and min_idxcX . Set idx_L = idx_min - 1，idx_U = idx_min + 1, 
codebook_num = codebook size, and  L = U = 1. 

Step 2.4: If L = 0，go to step 2.9. 
Step 2.5: From (10)，if  22

11_ )( eyy iLidxc >−  then L = 0 ( i.e, 
discard the codewords range from idx_L to  1 in the codebook), 
go to step 2.9. 

Step 2.6: From (13)，if 2

1

2
_ )( eyy

m

j
jijLidxc >∑ −

=
, then discard 

the idx_L-th codeword in the codebook，go to step 2.8. 
Step 2.7: Calculate the squared Euclidean distance 2en of 

iX  and LidxcX _ . If 22 een < then set the index of iX as 

idx_L，and 22 ene =  
Step 2.8:  idx_L = idx_L - 1，if  idx_L < 1，set  L=0。 
Step 2.9: if U = 0，go to step 2.14. 

Step 2.10: From (10)，if 22
11_ )( eyy iUidxc >− then set U 

= 0 (i.e, discard the codewords range from idx_U to  
codebook_num in the codebook)，go to step 2.14. 

Step 2.11:  For (13)，if 2

1

2
_ )( eyy

m

j
jijUidxc >∑ −

=
 then discard 

the idx_U-th codeword in the codebook，go to step 2.13. 
Step 2.12: Calculate the squared Euclidean distance2en of 

iX  and UidxcX _ . If 22 een < then set the index of iX as 

idx_U，and  22 ene =    
Step 2.13: idx_U = idx_U + 1，If idx_U > codebook_num，

then set  U=0. 
Step 2.14: If (U + L) > 0，go to step 2.4. 
Step 2.15: Check if there is any input vector to be encoded, if 

true, go to step 2.1. 
Step 2.16: End of the process. 
 

C. Fast Encoding Algorithm II based on HT 

Let nW  be the nn 2*2  Hadamard matrix with elements in the 
set {1,-1}, and 

1W =
2
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Similarly, a vector X  with dimension k after HT can be 
expressed as WXY = , where the row vectors of W constitute 
an orthonormal basis. For vectors1X , 2X , their corresponding 
vectors after HT are denoted as 1Y , 2Y , respectively and the 
distance of vector 1X , 2X  can also be expressed as (8). If one 
codeword zcX in the codebook satisfies (9), then it is 

considered as a possible nearest codeword. Otherwise, zcX is 

rejected in encoding process. In this approach, refer to (9), let m 
= n = 1, we have 

eyyey izci +≤≤− 111            (14) 

Next, substitute (n = 1, m = k/2) and (n = k/2+1, m = k) to (9), 
respectively, then we get 
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During the encoding process, the search range in the codebook 
is firstly defined by (14), and each codeword located in this 
search range is evaluated by (15) and (16) to determine whether 
it will be removed or not. In this approach, the row vectors of a 
16-dimensions Hadamard matrix used are shown as below. 

W1=1/4*(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 
W2=1/4*(1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1) 
W3=1/4*(1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1) 
W4=1/4*(1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1) 
W5=1/4*(1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1) 
W6=1/4*(1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1) 
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W7=1/4*(1, 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1) 
W8=1/4*(1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1) 
W9=1/4*(1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1) 
W10=1/4*(1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1) 
W11=1/4*(1, 1, -1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1) 
W12=1/4*(1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1) 
W13=1/4*(1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1) 
W14=1/4*(1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1) 
W15=1/4*(1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1) 
W16=1/4*(1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1) 
In summary, the proposed HT-based algorithm is illustrated 

as below. 
1. Off-line preprocessing 
Step 1.1: According to various codebook sizes, select a 

suitable Hadamard matrix H. 
Step 1.2: Calculate the projections of the codewords in a 

codebook on each axis. According to the projection value on the 
first axis, rearrange them in the ascending order. 

2. On-line processing 
Step 2.1: Calculate the projections of the input vector iX  on 

each axis, denoted 1iy ， 2iy ，…and iky . 

Step 2.2: Use the first element of iX  to search the nearest 
codeword in the codebook. Denote the nearest codeword as 
( min_idxcX ) and idx_min is the corresponding index of iX . 

Step 2.3: Calculate the squared Euclidean distance 2e of 

iX and min_idxcX . Set idx_L = idx_min - 1，idx_U = idx_min + 

1, codebook_num = codebook size and  L = U = 1. 
Step 2.4: If L = 0，go to step 2.9. 
Step 2.5: From (14)，if  22

11_ )( eyy iLidxc >−  then L=0 ( i.e, 

discard the codewords range from idx_L to 1 in the codebook), 
go to step 2.9. 

Step 2.6: From (15)，if 22
_

2/
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2
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j
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=
, then 

discard the idx_L-th codeword in the codebook，go to step 2.8. 
Step 2.7: Calculate the squared Euclidean distance 

∑ −+=
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2 )( of iX  and LidxcX _ . If 

22 een <  then set the index of iX as idx_L, and 2e  = 2en  
Step 2.8: idx_L = idx_L - 1，if  idx_L < 1，set  L=0。 
Step 2.9: if U = 0，go to step 2.14. 
Step 2.10: From (14)，if 22

11_ )( eyy iUidxc >− then set U = 

0 (i.e, discard the codewords range from idx_U to 
codebook_num in the codebook)，go to step 2.14. 

Step 2.11: From (15)，if 22
_

2/

1

2
1 )( eyye jijUidxc

k

j
>−∑=

=
 then 

discard the idx_U-th codeword in the codebook，go to step 2.13. 
Step 2.12: Calculate the squared Euclidean distance  
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2 )( of iX  and UidxcX _ . If 

22 een < then set the index of iX as idx_U，and 2e  = 2en   

Step 2.13: idx_U = idx_U + 1, If idx_U > codebook_num，
then set  U = 0. 

Step 2.14: If (U + L) > 0，go to step 2.4. 
Step 2.15: Check if there is any input vector to be encoded, if 

true, go to step 2.1. 
Step 2.16: End of the process. 
 

D. Fast Encoding Algorithm III based on HWT 

According to the algorithm of discrete orthogonal wavelet 
decomposition [23]-[24], an image fA j 12 + with resolution 

12 +j can be decomposed into four sub-images with resolutionj2 , 
i.e., fA j2

, fD j
1
2

, fD j
2
2

, fD j
3
2

. Here, fA j2
denotes the 

low-frequency part of fA j 12 + , fD j
1
2

denotes the vertical 

high-frequency part of fA j 12 + , fD j
2
2

 denotes the horizontal 

high-frequency part of fA j 12 + , and fD j
3
2

 denotes the highest 

frequency part of fA j 12 + , respectively. The block diagram of 

decomposition scheme is shown as Fig. 1. By repeatedly 
performing this decomposition scheme, we obtain the 2-D 
wavelet transform of an image. In other words, for any J > 0, an 
image can be decomposed into 1*3 +J  sub-images such 
as 01

3
2

2
2

1
22

,)),,(,( >−=<=<−− JjJfDfDfDfA jjjJ . For a vectorX , 

its corresponding transformed vector Y  with dimension k after 
HWT can be expressed as WXY = , where W  is an 
orthonormal Haar wavelet matrix and the row vectors of 
W constitute an orthonormal basis. The first element of Y is 
represented as fA J−2

, the first segment of Y  ( K/4 elements) 

is denoted as 01
3
2

2
2

1
22

,)),,(,( >−<<=−− JjJfDfDfDfA jjjJ , the 

second segment of Y  ( K/4 elements) is denoted as fD1
2 1− , the 

third segment of Y  ( K/4 elements) is denoted as fD2
2 1− , and 

the forth segment of Y  ( K/4 elements) is denoted as fD3
2 1− , 

respectively. 

 
For vectors 1X , 2X , their transformed vectors after HWT are 

Gx 2↓

Gy 

Hy 

1↓

1↓

Hx 2↓

Gy 

Hy 

1↓

1↓

fD j
2
2

fD j
3
2

fD j
1
2

fA j2

fA j 12 +

Gx 

2↓
1↓

: convolve (row or column) with the 

: keep one column out of two 

: keep one row out of 
two 

rows                    columns  

Fig. 1 Orthogonal wavelet decomposition. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 5, 2011 12



 

 
 

denoted as 1Y , 2Y , respectively. And the distance of 
vector 1X , 2X  can be also expressed as (8). Similarly, for one 
codeword zcX in the codebook, if it satisfies (9), then it is 

considered as a possible nearest codeword. Otherwise, zcX is 

rejected in encoding process. Also from (9), let m = n = 1, the 
lowest-frequency part of the image is used, i.e., fA J−2

, we 

have 
eyyey izci +≤≤− 111            (17) 

In other words, during the encoding process, if the 
lowest-frequency part of a codeword did not fall into the range 
indicated as (17), this codeword should be discarded. 

Similarly, substitute n = 1, m = k/4 to (9). The low-frequency 
portion of the image is used, i.e., 

01
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2
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1
22 ,)),,(,( >−<<=−− JjJfDfDfDfA jjjJ , then we get 
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Substitute n = 1, m =2k/4 to (9). The low-frequency portion 
and the vertical high- frequency portion fD1

2 1− are used, and 

then we have 
2)4/(2

1)4/(
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Substitute n = 1, m =3k/4 to (9). The low-frequency portion, 
the vertical high-frequency portion fD1

2 1− and the horizontal 

high-frequency portion fD2
2 1− are used, and we have 

24/3

1)4/2(
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During the encoding process, the search range in the 
codebook is firstly defined by (17), and each codeword located 
in this search range is evaluated by (18)-(20) to determine 
whether it will be removed or not. 

In summary, the proposed algorithm based on HWT is 
described as below. 

1. Off-line preprocessing 
Calculate the projections of each codeword in a codebook on 

each axis, i.e., all the sub-images of each codeword, 

21
3
2

2
2

1
22 ,),,(,( =−<=<=−− JjJfDfDfDfA jjjJ .  According to the 

projection value on the first axis (the lowest frequency), 
rearrange them in the ascending order. 

2. On-line processing 
Step 2.1: Calculate the projections of the input vector iX  on 

each axis, denoted as1iy , 2iy , …and iky . 

Step 2.2: Use the first element of iX  to search the nearest 
codeword in the codebook. Denote the nearest codeword as 
( min_idxcX ) and idx_min is the corresponding index of iX . 

Step 2.3: Calculate the squared Euclidean distance 2e of 
iX and min_idxcX . Set idx_L = idx_min - 1, idx_U = idx_min + 

1, codebook_num = codebook size and L = U = 1. 

Step 2.4: If L = 0, go to step 2.11. 
Step 2.5: From (17), if 22

11_ )( eyy iLidxc >−  then L=0 ( i.e, 

discard the codewords range from idx_L to  1 in the codebook), 
go to step 2.11. 

Step 2.6: From (18), if 22
1 ee > , then discard the idx_L-th 

codeword in the codebook, go to step 2.10. 
Step 2.7: From (19), if 22

2 ee > , then discard the idx_L-th 
codeword in the codebook, go to step 2.10. 

Step 2.8: From (20), if 22
3 ee > , then discard the idx_L-th 

codeword in the codebook, go to step 2.10. 
Step 2.9: Calculate the squared Euclidean distance 

∑ −+=
+=

k

kj
jijLidxc yyeen

1)4/3(

2
_

2
3

2 )( of iX  and LidxcX _ . If 

22 een < then set the index of iX as  idx_L, and  2e  = 2en  
Step 2.10: idx_L = idx_L - 1, if  idx_L < 1,set  L=0. 
Step 2.11: if U = 0, go to step 2.18. 
Step 2.12: From (17), if 22

11_ )( eyy iUidxc >−  then set U = 

0 (i.e, discard the codewords range from idx_U to 
codebook_num in the codebook), go to step 2.18. 

Step 2.13: From (18), if 22
1 ee >  then discard the idx_U-th 

codeword in the codebook, go to step 2.17. 
Step 2.14: From (19), if 22

2 ee >  then discard the idx_U-th 
codeword in the codebook, go to step 2.17. 

Step 2.15: From (20), if 22
3 ee >  then discard the idx_U-th 

codeword in the codebook, go to step 2.17. 
Step 2.16: Calculate the squared Euclidean distance 

∑ −+=
+=

k

kj
jijUidxc yyeen

1)4/3(

2
_

2
3

2 )( of iX  and UidxcX _ . If 

22 een <  then set the index of iX as  idx_U, and 2e  =  2en   
Step 2.17: idx_U = idx_U + 1, If idx_U > codebook_num, 

then set  U = 0. 
Step 2.18: If (U + L) > 0, go to step 2.4. 
Step 2.19: Check if there is any input vector to be encoded, if 

true, go to step 2.1. 
Step 2.20: End of the process. 
 

III.  EXPERIMENTAL RESULTS 
To evaluate the performance of the proposed methods, three 

gray images (Fig. 2, Lena, Pepper, Baboon)[25] with the size of 
512*512 are used in the experiment. The platform for 
computation we used is a general–purpose PC (Pentium D 
3.00/3.00Ghz CPU, 512MB RAM). The vector dimension is 16 
(image blocks of 4*4). The codebook is produced by LBG 
algorithm with ”Lena” as the training image. We also compare 
this algorithm with previous remarkable algorithms, e.g., FS 
algorithm, ENNS algorithm, DHSS algorithm, Pan’s algorithm, 
Lu’s algorithm, Hwang’s algorithms, and Lai’s algorithms in 
terms of the average number of distance calculations and the 
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computational time. 
With various codebook sizes, the average number of distance 

calculations and the computational time are shown in Table I 
and Table II, respectively. The performance comparison is 
described as following: 

(A) Fast Encoding Algorithm (based on PCA): From Tables I 
and II, it is clear that even the average number of distance 
calculations is reduced, but its computational time is not always 
smaller than others. The reason is that extra computation time is 
often needed for removing the unlike codewords such that total 
time consuming is increased. In the experiment, when the test 
images is “Lena” or ”Pepper”, and three principal components 
are adopted, the proposed algorithm have the best efficiency 
compared with previous algorithms in various codebook size. 
Otherwise, more principal components are required for  
“baboon” image which has much more details than the other 
images. More specifically, comparing with the DHSS algorithm, 
this proposed algorithm reduces the computational time by 
7.14% to 19.64%. Comparing with the PAN’s algorithm, the 
proposed algorithm reduces the computational time by 47.67% 
to 64.86%. Comparing with the LAI’s algorithm the proposed 
algorithm reduces the computational time by 28.57% to 36.36%. 
When seven principal components are used, our algorithm has 
the best efficiency compared with previous algorithms in 
various codebook sizes for three test images. That is, comparing 
with the DHSS algorithm, when codebook size is 256, 512, and 
1024, the proposed algorithm reduces the computational time 
by 0% to 39.46%. Comparing with the Pan’s algorithm the 
proposed algorithm reduces the computational time by 38.91% 
to 56.76%. Comparing with the Lai’s algorithm the proposed 
algorithm reduces the computational time by 15.79% to 
36.36%. 

(B) Fast Encoding Algorithm (based on HT): As illustrated in 
III(A), even the average number of distance calculations is less, 
but its computational time is not always smaller than others. In 
the experiment, the proposed algorithm has the best efficiency 
compared with previous algorithms in various codebook sizes 
for three test images. More specifically, comparing with the 
DHSS algorithm, the proposed algorithm reduces the 
computational time by 25% to 61%. Comparing with the Pan’s 
algorithm, the proposed algorithm reduces the computational 
time by 60% to 70%. Comparing with the Lu’s algorithm the 
proposed algorithm reduces the computational time by 20% to 
40%. Comparing with the Lai’s algorithm the proposed 
algorithm reduces the computational time by 42% to 55%. 

 (C) Fast Encoding Algorithm (based on HWT): From the 
Table I, this algorithm has the best performance among the 
previous approaches in removing non-similar codewords. From 
the Table II, this algorithm in computation time has the best 
efficiency compared with previous algorithms in various 
codebook sizes for three test images. More specifically, 
comparing with the DHSS algorithm, the proposed algorithm 
reduces the computational time by 31% to 61%. Comparing 
with the Pan’s algorithm, the proposed algorithm reduces the 
computational time by 62% to 75%. Comparing with the Lu’s 

algorithm the proposed algorithm reduces the computational 
time by 27% to 44%. Comparing with the Hwang’s algorithm 
the proposed algorithm reduces the computational time by 21% 
to 45%. Comparing with the Lai’s algorithm the proposed 
algorithm reduces the computational time by 48% to 58%. 

From the above comparison with the proposed three 
algorithms, it is clear that the computation time of the 
HWT-based approach is less than all other algorithms in all 
cases. It not only reduces the search range for codebook, but 
also the dimension of the input vector and the complexity. 

 

     
(a)Lena      (b)Pepper      (c)Baboon 

Fig. 2 Test images. 

 
Table I. Comparison of the average numbers of distance computations. 

Code- 
book size 

Algorithm image 
Lena Pepper Baboon 

 FS 128 128 128 
 ENNS 9.63 8.51 17.03 
128 PAN 2.58 2.34 4.80 
 DHSS 3.2 2.88 7.80 
 LAI 1.85 1.71 2.77 
 HTPDE 2.42 2.28 5.07 
 WTPDE 2.43 2.31 5.21 
 Proposed(PCA 3pc) 2.25 1.86 9.51 
 Proposed(PCA 7pc) 1.67 1.46 5.52 
 Proposed(HT) 5.71 5.14 10.72 
 Proposed(HWT) 1.47 1.41 2.03 
 FS 256 256 256 
 ENNS 17.94 15.91 46.2 
256 PAN 3.97 3.94 12.07 
 DHSS 4.72 4.50 20.03 
 LAI 2.72 2.63 6.90 
 HTPDE 3.88 3.77 13.12 
 WTPDE 3.89 3.82 13.67 
 Proposed(PCA 3pc) 3.73 3.00 19.47 
 Proposed(PCA 7pc) 2.51 2.13 10.54 
 Proposed(HT) 10.27 9.33 28.67 
 Proposed(HWT) 2.07 2.09 4.04 
 FS 512 512 512 
 ENNS 33.84 30.27 92.68 
512 PAN 6.32 5.97 21.35 
 DHSS 7.78 7.72 39.49 
 LAI 4.2 3.93 12.13 
 HTPDE 6.34 6.24 25.18 
 WTPDE 6.45 6.36 26.80 
 Proposed(PCA 3pc) 6.04 5.51 35.54 
 Proposed(PCA 7pc) 3.72 3.65 18.25 
 Proposed(HT) 18.80 17.17 57.05 
 Proposed(HWT) 2.65 2.69 6.10 
 FS 1024 1024 1024 
 ENNS 61.32 60.55 170.92 
1024 PAN 10.41 11.05 35.1 
 DHSS 12.80 14.43 72.18 
 LAI 6.80 7.05 19.96 
 HTPDE 10.63 11.58 45.05 
 WTPDE 10.83 11.85 48.84 
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 Proposed(PCA 3pc) 10.12 10.61 66.19 
 Proposed(PCA 7pc) 5.35 5.94 27.32 
 Proposed(HT) 33.47 33.51 98.82 
 Proposed(HWT) 3.58 4.04 9.10 

 

Table II. Comparison of the computation time in milliseconds . 
Code- 
book size 

Algorithm Image              
Lena Pepper Baboon 

 FS 248 248 248 
 ENNS 20 17 30 
128 PAN 40 36 47 
 DHSS 16 15 27 
 LAI 21 19 28 
 HTPDE 15 14 23 
 WTPDE 14 13 21 
 Proposed(PCA 3pc) 14 13 35 
 Proposed(PCA 7pc) 17 16 31 
 Proposed(HT) 12 11 16 
 Proposed(HWT) 11 9 14 
 FS 456 456 456 
 ENNS 34 30 78 
256 PAN 49 46 81 
 DHSS 23 22 61 
 LAI 29 27 55 
 HTPDE 20 19 48 
 WTPDE 20 18 47 
 Proposed(PCA 3pc) 21 17 64 
 Proposed(PCA 7pc) 22 20 51 
 Proposed(HT) 16 15 30 
 Proposed(HWT) 13 13 27 
 FS 886 886 886 
 ENNS 58 51 164 
512 PAN 64 59 129 
 DHSS 35 33 110 
 LAI 43 39 95 
 HTPDE 30 27 78 
 WTPDE 31 28 84 
 Proposed(PCA 3pc) 29 27 107 
 Proposed(PCA 7pc) 29 28 80 
 Proposed(HT) 21 20 51 
 Proposed(HWT) 19 18 46 
 FS 1731 1731 1731 
 ENNS 98 100 263 
1024 PAN 91 89 202 
 DHSS 54 56 195 
 LAI 66 65 158 
 HTPDE 47 48 129 
 WTPDE 45 47 135 
 Proposed(PCA 3pc) 46 45 185 
 Proposed(PCA 7pc) 42 43 135 
 Proposed(HT) 30 31 77 
 Proposed(HWT) 28 28 76 

 
 

IV. CONCLUSIONS 
In this paper, three fast encoding algorithms based on 
orthogonal transform have been proposed to early reject 
unlikely codeword and increase the performance of VQ. That is, 
using the transformed vectors obtained by orthogonal transform, 
those non-similar codewords can be early removed and the 
computation time is then reduced. From the experimental results, 
the PSNR of this approach is the same as the full search method. 
Among these proposed algorithms, the one based on HWT has 
the best efficiency compared with previous algorithms in 

various codebook sizes for three test images. More specifically, 
comparing with the DHSS algorithm, this algorithm reduces the 
computational time by 31% to 61%. Comparing with the Pan’s 
algorithm, this algorithm reduces the computational time by 
62% to 75%. Comparing with the Lu’s algorithm, this algorithm 
reduces the computational time by 27% to 44%. Comparing 
with the Hwang’s algorithm, this algorithm reduces the 
computational time by 21% to 45%. Comparing with the Lai’s 
algorithm, this algorithm reduces the computational time by 
48% to 58%. In other words, the proposed approaches can 
significantly reduce the computation time and then speed up the 
search process in VQ. 
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