
 

A  STUDY OF CHOLERA MODEL WITH ENVIRONMENTAL FLUCTUATIONS  

Gazi N. H., Das K. , Mukandavire Z., Chiyaka C., Das P. *

Abstract--The study focuses on randomly fluctuating phenomena 
of cholera deterministic model by incorporating white noise 
stochastic perturbation. For the deterministic model, stability of the 
equilibria and persistent aspects of population are discussed. 
Variances of population are evaluated for the model system at the 
endemic equilibrium. We conclude from the study that the inclusion 
of environmental fluctuation does not change substantially the 
dynamical behaviour of the system although it induces some initial 
random oscillations.  
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I. INTRODUCTION 
recent study on cholera [1] reveals that local 
environmental parameters are intensely associated with 
cholera dynamics. In particular, increase in ocean 

chlorophyll concentration, sea surface temperature and river 
height play a significant role on the occurrence of cholera and 
the magnitude of the epidemic. Cholera, a man-environment 
disease is transmitted through drinking water which is 
contaminated from improper treatment of sewage. Further, it 
may be noted that if the degree of infectivity increases, 
sociological or other mechanisms which tend to saturate the 
effect that a large number of infectives may have often come 
into play [2]. Therefore we are interested in exploring the 
effects of environmental fluctuations by considering the 
saturation incidence term . It is important to 
note that the form  tends to a close 

approximation of the term  when is small and 
approaches the form  for very large value of

/ (1 )kSI k I′+
/ (1 )kSI k I′+

kSI k′
/kS k′ I . In this 

study we revisit the carrier dependent cholera model already 
studied in [3] to investigate the effect of random fluctuation to 
the model system. 
1

II. DETERMINISTIC  MODEL 

Consider  be the total population density, which is 
divided into two subclasses: the susceptible class  and 
the infective class . It is assumed that all susceptible are 
affected by the carrier population density , which is 

)(tN
)(tS

)(tI
)(tC

                                                           
Manuscript received October 9, 2010: Revised version received July , 2010 

Gazi N. H. is with St. Xavier’s College, 30,  Park Street, Kolkata -
700016, India. (email: nursha@rediffmail.com) 

Das K. is with School of Advanced Sciences, Dept. of Mathematics, VIT 
University, Vellore- 632 014, Tamil Nadu, India. (kalyandas@rediffmail.com) 

Mukandavire Z., Chikaya C. and Das P. are associated with Department of 
Public Health and Institute of Biostatistics, 91 Hsueh-Shih Road, Taichung, 
Taiwan 40402. 

* Correspoding author 
 

governed by a general logistic law. The mathematical model is 
as follows: 

mSISC
Ik

kSIA
dt
dS

−+−
′+

−= µλ
1

 

ImSC
Ik

kSI
dt
dI )(

1
++−+

′+
= αµλ                      (1)           

CsCsnN
dt
dC )( 100 −−+= ,  

where ISN += . Here A  is the constant immigration rate of 
human population from outside the region under 
consideration. The parameters  and k λ  are the transmission 
coefficients due to infective and carrier population 
respectively. Further m  is the natural death rate, α  is the 
disease related death rate and µ  is the recovery rate. The 

constant  is the death rate coefficient of carriers due to 
natural factors as well as by control measures. We may note 
that if the growth rate and death rate of carrier population are 
balanced then it may approach to zero. Here,

1s

00 ,, snk ′ are 
constant. All the parameters are assumed to be positive. The 
rate-coefficients of parameters have dimensions of time-1. It is 
evident that system (1) is well-posed and bounded also. 

III. LINEAR  ANLYSIS 
To analyze model system (1), we consider the following 
reduced system (since ISN += ): 

ImCIN
Ik

IINk
dt
dI )()(

1
)(

++−−+
′+

−
= αµλ  

ImNA
dt
dN α−−=       (2) 

CsCsCnN
dt
dC

1
2

00 )( −−+= . 

We now state the results obtained in [3] without the proof 
before proceeding to look at the effects of stochasticity in the 
cholera model system (1). 

 
3.1. Equilibria  
Equilibria of the model system are presented in the following 
theorem: 
Theorem 1.  There exists following equilibria of system (2) 
(i) Disease-free equilibrium, . 0 0, / , 0( )A mE =

(ii) Carrier-free equilibrium, )0,,(1 NIE = , 

A 
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where 
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(iii) Endemic equilibrium,  

where,

),,( ***
2 CNIE

* *( )I A mN /α= − ,  provided  and  * /N A m<
* *

0 1(C N n s= + − 0) / s , provided .  *
01 Nns +<

Now (a) is unique if the inequalities ),,( ***
2 CNIE

1 0 0 0min{ / , ( ) / }s n A m n s mµ α λ< + + + +  and 

0 1/ [ ( / ( ))]mks k A ms mA mλ α α′< + + + +  are 
satisfied.  
(b) multiple endemic equilibria exist if either of the following 
conditions are satisfied: 
I. , at least one of  is negative and 

. 

03 >a 21 , aa
04 32 <+ HG

II. ,  and , 

where , ,
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2
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λA− 0 1{ (Ak mk n s )}],α ′ ′+ − −

)}](){([ 0
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3.2. Local Stability  
We now state the theorem on local asymptotic stability criteria 
of the disease-free, carrier-free and endemic equilibrium in the 
following. 
Theorem 2. (i) The disease-free equilibrium,  is locally 

asymptotically stable if 
0E

( )k m m A/µ α< + + , 

. Again  is unstable if either 1 0 /s n A m− > 0E
( )k m m A/µ α> + + , or . 1 0 /s n A m− <

(ii) The carrier-free equilibrium,  is locally asymptotically 

stable if 
1E

Nns >− 01  and is unstable if Nns <− 01 . 

(iii) Suppose that .  Further assume 

that either (a) or (b) of Theorem 1 hold. If   

and 

*
1 0 /s n N A m− < <

6,5,4,0 => iiδ

0654 >−δδδ then endemic equilibrium,  is locally 
asymptotically stable where, 
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Here, the term “ 01 ns − ” biologically represents the negative 
“net rate of growth” of the carrier population, i.e. “net rate of 
decay” of carrier population. It is to be noted here that  
becomes stable when the intrinsic growth rate of the carrier 
population at the equilibrium density is negative otherwise it is 
unstable. 

1E

 
3.3. Global Stability  
Global stability behaviour of the carrier-free and endemic 
equilibrium points are given here in the following theorem. 
Theorem 3.  (i) The carrier-free equilibrium  is globally 
asymptotically stable in the I-N plane if 

1E

1 0 /N s n A m< − < . 

(ii) Suppose Nns <− 01 . Then the endemic equilibrium 

 is globally asymptotically stable if the inequalities 2E

0
1 ,

4
s

m
>

*
*
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2 2
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A
m

     (3) 

are satisfied. Now from Theorems 1-3, we may observe that if 
 is locally asymptotically stable then  is not feasible 

whereas when  is feasible then  is unstable. If  is 

unstable then  is globally asymptotically stable provided 

0E 1E

1E 0E 1E

2E
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(3) holds and if  is stable then  may not be globally 
asymptotically stable. 

1E 2E

 
3.4. Persistence 
We now state a result that guarantees the survival of all 
populations. 

 
Theorem 4. Suppose Nns <− 01 . Then system (2) is 
uniformly persistent.  
 
Biologically this situation reflects that net rate of decay of 
carrier population is under a certain value, i.e. number of 
carriers within the system are under control. 
 

IV. THE STOCHASTIC MODEL  
We now extend our model system (2) to consider the effect of 
the random fluctuation. The parameters of the model equations 
fluctuate about their average values due to random fluctuation. 
We incorporate such randomness to the model equations (2), 
by following the method of incorporating additive white 
noises to the model system.  

 
For any parameter, the white noise perturbation on it will 
change to  of the model system (2) is given by 1p

)(1 tpp αξ+= , where α  is the amplitude of the random 
noise and )(tξ is a Gaussian white noise process at time t. 
With this effect model equations (2) become  

*
1 1

( )( ) [ ( ) ( ) ]
1

( ( ) ) ( ),

k N I IdI s N I C m I dt
k I

I t I dW t

λ µ α

α

−
= + − − + +

′+
+ −

*
2 2

( ) [ ]
( ( ) ) ( ),

dN t A mN I dt
N t N dW t

α

α

= − −

+ −
         (4)  

2
0 0 1

*
3 3

( ) [( ) ]

( ( ) ) ( ),

dC t N n C s C s C dt

C t C dW tα

= + − −

+ −
 

so that the deterministic model and the stochastic system have 
the same equilibria. The above system for the randomly 
fluctuating driving forces on three populations when additive 
noise considered reduces to  

1 1
( ) ( ) ( ) ( )
1

dI k N I I N I C m I t
dt k I

λ µ α α ξ−
= + − − + + +

′+
,

)(22 tImNA
dt
dN ξαα +−−=  ,                             (5) 

)()( 331
2

00 tCsCsCnN
dt
dC ξα+−−+= , 

where, iα , i=1,2,3, are real constants and 

))(),(),(()( 321 tttt ξξξξ =  is a 3D Gaussian white noise 

processes satisfying ,0)( >=< tiξ  and 

( ) ( ) ( )tttt ijji ′−= δδξξ , , , < > denotes 

ensemble average, 

2,1, =ji

ijδ  is Kronecker delta and ( )t t′δ −  is 

the Dirac delta function. Although the true white noise does 
not occur in nature, however, by studying the spectra of the 
white noise, thermal noise in electrical resistance, the force 
acting on Brownian particle and climate fluctuations, 
disregarding the periodicities of astronomical origin etc. are 
white to a very good approximation. Thus the introduction of 
white noise to the biological system is appropriate.   

 
4.1 Fourier Transform: Spectral density  
In the present study we focus on the behaviour of the system 
at endemic equilibrium point only. Consequently we compute 
the population intensities of fluctuations around the endemic 
equilibrium point , according to the method 
introduced in [4]. The method was successfully applied in    
[5, 6, 7]. By changing the variables  

, , we centre (5) on 

 and retaining only the linear terms and the 
effect of linear stochastic perturbations. Hence system 
equations (5) reduce to  

),,( ***
2 CNIE

,)()( *
1 ItItx −=

*
2 )()( NtNtx −= *

3 )()( CtCtx −=

),,( ***
2 CNIE

)()()()( 11321
1 ttxCtxBtxA

dt
dx
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)()()( 2221
2 ttxEtxD

dt
dx

ss ξα++= ,                      (6) 

3
s 2 s 3 1 3

dx F x (t) G x (t) (t)
dt

= + +α ξ , 

where mC
Ik

IkINkAs −−−−
′+

′−−
= αµλ *

2

2***

)1(
)2(

, 

*
*

*

1
C

Ik
kIBs λ+
′+

= ,  ,  )( ** INCs −= λ α−=sD ,  

mEs −= ,  ,   . *CFs = 1
*

00
* 2 sCsnNGs −−+=

Taking Fourier transform of the equations (6), we obtain 
~ ~ ~

1 2 311 ( ) ( ) ( ) ( ) ( ),s s si A x B x C x
~

α ξ ω ω ω ω ω= − − −
~ ~ ~

1 222 ( ) ( ) ( ) ( ),s sD x i E xα ξ ω ω ω ω= − + −
~ ~ ~

2 333 ( ) ( ) ( ) ( ),s sF x i G xα ξ ω ω ω ω= − + −   

where is the Fourier transform of the 

function  The above algebraic system can be written in 
the matrix form  

∫
∞

∞−

−= dtetXX tiωω )()(
~

).(tX

)()()(
~~
ωξωω =xM                                  (7) 
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Therefore, the solution of the equation (7) is given by 

          (8) )()()())(()(
~

~
~

1
~

ωξωωξωω PMx == −

where , inverse of the matrix 1))(()( −= ωω MP )(ωM . 
We have assumed that the matrix )(ωM is non-singular so 
that the inverse exists. The components of the solution (8) are  

)()()(
3

1

~
ωξαωω jj

j
iji Px ∑

=

= ,  i=1,2,3,  

where )(ωijP  are the elements of the matrix )(ωP . These 

quantities  are the mean values of the populations. )(
~
ωix

For a random function  with zero mean, the fluctuation 
intensity (variance) of  within the frequency interval 

[

)(tf
)(tf

ωωω d+, ] is given by ωω dS f )(  where )(ωfS  is the 

spectral density defined by [4], 

T
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The inverse transform of )(ωfS  is the autocovariance 

function  
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The corresponding variance of fluctuation of  is 
given 

)(tf

∫
∞

∞−

== ωω
π

σ dSC fff )(
2
1)0(2 . 

The spectral densities of  are given as follows: )3,2,1(, =ixi
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The variances of fluctuations of   (  ,3), are given by  ix ,1=i 2

( )∑ ∫∫
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Using (8), we have three variances of  (ix ,1=i  , 3) of the 
model system (5) as follows:      
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Here 
)(det
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ω
ω

ω
M
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ij = , i,j=1,2,3,  

2222
11 )()()( ssss GEGEG +++−= ωω , 

222
12 )()()( sss DGDG ωω += , 22

13 )()( ss FDG =ω ,  

222
21 )()()( sssss FCGBBG +−+= ωω , 

22222
22 )()()( ωωω ssss GAGAG +++−= , 
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23 )()()( sss FAFG += ωω , 

222
31 )()()( sss ECCG += ωω , 22

32 )()( ss DCG =ω , 

22222
33 )()()( ωωω ssssss EADBEAG ++−+−= .   

Here 2
2

2
1

22 )(det)( MMMM +== ωω , 

 and  ωω )(3
1 ssssss EAAGGEM +++−=

2
2 ( ) .s s s s s s s s s s s sM A E G B D G E G A C D Fω= + + + − −

. 
The expressions in (9) give three variances of the three 
populations. The integrations over the real line can be 
evaluated which give the variances of the populations. We can 
calculate the same numerically. 

 
 

V  NUMERICAL SIMULATION AND 
CONCLUSIONS 

The carrier dependent infectious disease cholera is studied 
here by incorporating environmental fluctuations through 
additive white noise. The analytical results and numerical 
simulation of deterministic model suggest that cholera is 
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generally endemic in nature and prevails in the society. The 
stable nature of the system shows this situation in Fig. 1.   
 
Further for stochastic model system population variances 
characterize the stochastic stability of the system. Numerical 
simulations exhibit that the trajectories of the system oscillate 
randomly with remarkable variance of amplitude with the 
increasing value of the strength of white noises initially but 
ultimately fluctuate at an average pace (see Fig. 2, Fig. 3 and 
Fig. 4). This indicates that trajectories approach towards a 
stable equilibrium in the long run with medium amplitude 
fluctuations around an asymptotic level. This is shown in Fig. 
5. Thus simulation results suggest that the disease cholera still 
remains endemic with this environmental fluctuations though 
the peak of the disease varying remarkably with time. Hence 
we conclude that inclusion of stochastic perturbation create no 
significance difference in dynamical feature of the system 
rather than unpredictable fluctuations into it. It should be 
noted that all these fluctuations are closely associated with the 
severity of the disease. Therefore by controlling the 
environmental fluctuations the severity of the disease can be 
checked. 
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Fig 1. The figure depicts orbits of the system 
for

and 

1 1k 1 day , k ' 10, 0.02 day ,− −= = λ = 11 day ,−µ =
1 1 1

0 0 10.2 day , n 1,s 20, m 0.5, A 10 day ,s 10 day− − −α = = = = = =
I(0) 10,= N(0) 1000,= C(0) 2000= . 
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Fig 2. The figure depicts orbits of the system  for 

  1 1k 1 day , k ' 10, 0.02 day ,− −= = λ = 11 day ,−µ =  
1 1

0 00.2 day , n 1,s 20, m 0.5, A 10 day ,− −α = = = = =
1 1

0 0 1n 1,s 20, m 0.5, A 10 day ,s 10 day ,− −= = = = =  

1 2 32, 2, 2α = α = α = ,  I(0) 10,= N(0) 1000,C(0) 2000= = . 
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Fig 3. The figure depicts orbits of the system for 

1 1k 1 day , k ' 10, 0.02 day ,− −= = λ = 11 day ,−µ =  
1 1 1

0 0 10.2 day , n 1,s 20, m 0.5, A 10 day ,s 10 day ,− − −α = = = = = =

1 2 320, 20, 20α = α = α = , I(0) 10,=

N(0) 1000,C(0) 2000.= = . 
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Fig 4. The figure depicts orbits of the system for 

 

, I

1 1k 1 day , k ' 10, 0.02 day ,− −= = λ = 11 day ,−µ =
1 1

0 0 10.2 day , n 1,s 20, m 0.5, A 10 day ,s 10 day ,− −α = = = = = =

1 2 340, 40, 40α = α = α =

1−

(0) 10,=

N(0) 1000,C(0) 2000.= =  
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Fig 5. The figure depicts orbits of the system for 

 1 1k 1 day , k ' 10, 0.02 day ,− −= = λ = 11 day ,−µ =
1

0 0 10.2 day , n 1,s 20, m 0.5, A 10 day ,s 10 day−α = = = = = =

1 2 360, 60, 60α = α = α = I(0) 10,=

1 1− −

N(0) 1000,C(0) 2000= = . 
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