
 

 

  

Abstract—Under realistic conditions, the chemotaxis of 

Escherichia coli, and other bacteria, is under the influence of noise 

within the cells and from the environment. While the cells have their 

own mechanisms to filter intra-cellular noise and chemical ligand 

binding noise, external filters are required for environmental noise. 

The stability of the chemotaxis of E. coli to external noise has been 

analyzed here through the Lyapunov exponents of the concentration 

of CheR, a key chemosensory protein. Based on earlier studies, 

environmental noise was considered to have a Gaussian distribution 

characterized by the Fano factor, F. Four algorithmic filters and an 

auto-associative neural filter have been compared for their ability to 

filter the noise and restore stability to noise-distorted chemotaxis; this 

was measured by the largest Lyapunov exponent of CheR. All filters 

helped to remedy the distortions within limited ranges of F, with a 

neural filter being better than all algorithmic filters. Each filter 

displayed peak effectiveness at two values of F, thus corroborating 

and expanding the stochastic resonance reported with just intra-

cellular and ligand binding noise. The effectiveness of the neural 

filter suggests the possibility of further improvements through other 

network architectures. 

 

Keywords—Escherichia coli, Chemotaxis, Stability, External 

noise filter, Stochastic resonance.  

I. INTRODUCTION 

In the absence of any stimulus, cells of Escherichia coli 

and other bacteria move randomly in an undisturbed uniform 

environment. As a result, a population of cells shows no net 

migration in any preferred direction. However, when a 

chemical stimulus is present, the cells sense the stimulus and 

reorient their movements such that they are biased dominantly 

either toward or away from the chemical. This is called 

chemotaxis, and it has been observed in many natural as well 

as created situations [1-3]. Most applications of chemotaxis 

pertain to chemical attractants (or chemoattractants), where the 

cells move toward the stimulus since that serves as a source of 

their metabolism. 

Although a chemoattractant induces the cells to move 

toward it, this movement is not a direct traversal. The 

movements consist of alternate short periods of straight-line  

 
P. R. Patnaik is with the Institute of Microbial Technology, Sector 39-A, 

Chandigarh-160 036, India (corresponding author; phone: 91-172-2690223; 

fax: 90-172-2690132/585/632; e-mail: pratap@ imtech.res.in).  

 

motion (a “run”) and a change of direction (a “tumble”). A 

typical run is of about 1s, whereas the tumbling interval is a 

tenth of that [4]. The tumbles provide periodic corrections to 

the directions of the runs so that a population of cells stays 

broadly on course toward the attractant. 

 During chemically induced motility, the cells are often 

under the influence of a number of sources of noise, some 

from within the cells and some from outside. Intra-cellular 

noise arises because cellular events involve molecules, such as 

DNA, mRA and gene-encoded proteins, that are present in low 

concentrations and participate in probabilistic collisions that 

are inter-dependent [5,6]. There are two main sources of extra-

cellular noise. One is the noise associated with the binding of a 

ligand of a chemoattractant to a corresponding receptor cluster 

on the cell surface. This is the first step in a chain of events 

that leads to recognition of the attractant and consequent 

reorientation’s of cell motility [7]. The second source is noise 

from the environment in which the cells navigate. This is 

manifested as fluctuations in the macroscopically observed 

variables [8,9]. 

 Bacterial cells have inherent mechanisms to filter intra-

cellular noise and chemical ligand binding noise. These 

mechanisms have been described in various studies [5,6,10]. A 

common noise-attenuating mechanism is through negative 

feedback, which is known in control theory to impart stability 

and thereby counteract the destabilizing effects of excessive 

noise.  Bacterial chemotaxis uses a sophisticated form of 

negative feedback called integral feedback; this provides not 

only stability but also robustness [11]. Models for chemotaxis 

under the influence of intra-cellular noise have also been 

reviewed [12-14].  

Although the effects of environmental noise have been 

analyzed for different bacterial cultures [9,15], these have been 

for production systems, where the interest was in generating 

more of cell mass or a particular protein and not in 

chemotaxis. Since all sources of noise interact and influence 

cell motility, it is important to filter these noises appropriately 

so that chemotaxis is not impaired. Since E. coli has its own 

filtering mechanisms for intra-cellular noise and ligand binding 

noise, which have been analyzed earlier [5,10], this 

communication analyzes different strategies to filter external 

noise in conjunction with the cell’s own filtering mechanisms. 
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II. CHEMOTAXIS MODEL AND ITS ANALYSIS  

Barkai and Leibler [16] present a seminal analysis of 

bacterial chemotaxis that has been the forerunner of many 

other studies, which have expanded and refined their model. 

The present work is based on one such model proposed by Rao 

et al. [17]. This was chosen because it incorporates the 

essential features of the chemosensory system without being 

too complicated. The starting entities in their model are the 

chemoreceptors, which detect chemical signals and transmit 

them into the chemosensory system. E coli has five 

chemoreceptor genes, aer, tap, tar, trg and tsr, each with its 

own receptor complex [7]. According to Barkai and Leibler 

[16], each such complex may exist in either an active state 

(T
A
) or an inactive state (T

I
).

 

 Methylation and demethylation of the receptor complexes 

is a key factor that controls signal transduction and robust 

adaptation of the chemosensory system [18,19]. Let Ti be the 

concentration of receptors with i residues methylated, and 

αi(L) the probability that the complex Ti is active when the 

concentration of chemoattractant is L. Then, simple mass 

balances lead to: 
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 Detection of a signal starts a chain of events that results in 

either clockwise (CW) or counter-clockwise (CCW) rotation 

of motors embedded in the cell wall. These motors are 

attached to long helical flagella protruding outward, whose 

movements propel the cells through the surrounding 

medium[4,7]. CW rotations cause tumbles and CCW rotations 

generate runs. The translation of chemical signals from the 

chemoreceptors to the rotations of the flagellar motors 

involves the phosphorylation of three essential chemosensory 

proteins --- CheA, CheB and CheY --- and a motor switching 

protein FliM. Rao et al. [17] presented the equations given 

below for their rates of change. 
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 The native and phosphorylated forms of the Che proteins 

are related as [20]:
 

 A + AP = 5 

 B + BP = 2 

 M + MP = 5.8 

 Y + YP + MP = 17.9 

 

 Since Eq.(3) contains T
A
, which in turn depends on Ti (i = 

0, 1, 2, 3, 4), the rates of change of each Ti are also required. 

They may be expressed as [17]: 
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 It may be seen that Eqs. (7) and (9) have only two terms 

each whereas Eq. (8) has four. This difference reflects the fact 

that chemoreceptors that are partially methylated (i = 1, 2, 3) 

can be both demethylated and methylated further, whereas 

unmethylated receptors (T0) can only be methylated and fully 

methylated ones (T4) can only get demethylated. Equations 

(7)-(9) also incorporate the mechanistic feature [7,10,17] that 

CheB is responsible for demethylation and CheR for 

methylation. Their rates follow Michaelis-Menten kinetics. 
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Given Eqs. (10) and (11), the rate of methylation of the 

receptor Ti is 

 

 rM = rR (1-αi(L))Ti               (12)  

 

and its rate of demethylation is 

 

 rD = rBαi(L)Ti                     (13) 

 

 The probabilities αi(L) also follow similar expressions. 
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 This model has been analyzed earlier, both without 

external noise [10] and with noise but no filtering [21]. The 

latter work analyzed the system through its sensitivity 

coefficients. Here we employ the Lyapunov coefficient since 

previous studies [22,23] have shown this to be a reliable and 

informative single index of microbial culture performance in 

the presence of noise. The Lyapunov exponent is briefly 

introduced later. 

 In many situations the environmental noise experienced 

by the cells may be described by a Gaussian distribution 
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[21,24,25]. The noise may be characterized by the ratio of its 

variance and its mean, referred to as the Fano factor [26], 

which is the ratio of the variance to the mean: 
 

 w

2

w /µσF =                  (15) 

 

Here w is the time window of observation. 

 

III. THE LYAPUNOV EXPONENT VIS-A-VIS 

CHEMOTAXIS 

The Lyapunov exponent, λ, provides a convenient 

quantitative measure of the stability of a system after a 

disturbance. This is done by quantifying the rate of divergence 

of the disturbed trajectory of system performance from its 

initial path. Since chemotaxis involves frequent changes in the 

path of motion, a convenient basis to compare the two 

trajectories is the average distance traversed by a cell over a 

span of time since this distance is sensitive to the prevailing 

conditions [10,21,27]. 

 Let x0 be the average distance for noise-free chemotaxis 

and x(t) the distance under the effect of Gaussian noise. In 

general, both x0 and x may vary with time but previous studies 

[10,21,28] indicate that x0 is reasonably constant, a feature 

consistent with robust perfect adaptation [17,19]. Even if x0 is 

constant, x will vary with time and so will the differential 

distance ∆x. In fact, ∆x may also depend on x0; let ∆x(x0, t) 

denote this value at a given time t and ∆x(x0, 0) the initial 

separation. A dynamic system is then stable if the separation of 

the disturbance-free path and the disturbed path does not 

increase with time; this condition may be written as: 

 

 RC );xtexp(C)t,x(xsup 00 ∈∆λ≤∆       (16) 

 

 The number λ is called the Lyapunov exponent. A multi-

variable system may obviously have more than one Lyapunov 

exponent; then the largest exponent, λmax, is sufficient to 

characterize stability [29]: 
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 If λmax < 0, the (chemotactic) process is stable, i.e. it will 

return to its initial state after the disturbance is removed. This, 

of course, implies robustness [5,16,17,19]. In the limit λmax→ -

∞, the process is said to be superstable, i.e. it is robust to a 

disturbance of any magnitude. A positive λmax( > 0) signifies 

an unstable process, for which a disturbance can cause a 

permanent change of behavior. A very large λmax can result in 

even a small disturbance upsetting bacterial motility 

sufficiently severely to cause chaotic behavior. 

 The boundary between stable and unstable behavior, i.e. 

λmax = 0, has intrinsic importance. Strictly, λmax = 0 denotes 

neutral stability, i.e. the altered process is not far from its 

initial state and remains stable. Sometimes this may be 

acceptable. In a practical sense, however, λmax fluctuates 

around zero for a noise-affected process. If the fluctuations are 

small enough, depending on F, the chemotaxis remains stable, 

a condition described as marginal stability. Since a certain 

degree of fuzziness is a feature of many microbial processes in 

realistic situations, marginal stability is practically more 

relevant than neutral stability. 

IV. INTRODUCTION TO THE NOISE FILTERS 

Noise in the chemoattractant concentration was filtered by 

each of five devices: (i) first-order low pass Butterworth filter 

(LPBF(1)), (ii) second-order LPBF (LPBF(2)) (iii) extended 

Kalman filter (EKF), (iv) cusum filter (CF), and (v) auto-

associative neural filter (ANF). These filters were chosen on 

the basis of previous investigations [15,22,23] that revealed 

their effectiveness for microbial cultures. The first four are 

algorithmic in the sense that they operate through 

mathematical models of the process and the filter. The ANF 

does not strictly require a process model. Even though 

chemotaxis has been represented here by a model comprising 

Eqs. (1)-(12), it may well be replaced by either the 

performance data alone or, for instance, an artificial 

intelligence depiction such as another neural network. Since 

these filters are described in detail elsewhere [30], they are 

briefly introduced here. 

 

(i) Low pass Butterworth filter (LPBF) 

Different orders of the LPBF are possible. The simplest, the 

first order LPBF, receives input signals kx  at the k-th instant 

of time and, based on the filtered values 1kx~ −  at the previous 

point of measurement, generates the current filtered signals 

kx~  according to the equation: 
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Tf is the filter time constant and Ts is the data sampling 

interval. Filters of higher orders are created by placing two or 

more first order LPBFs in series; however, there are only 

marginal improvements beyond two orders. 

 

(ii) Extended Kalman filter (EKF) 

The EKF provides efficient recursive estimates of the past, 

present and future states of a system even when a precise 

model is not available. Its performance equation is: 

 

1k1k1kkk wW)xx~(Ax̂x~ −−− +−+=          (19) 

Here 
kx̂  are the values from a process model and 

1kw −  is 

the vector of process noise. Other variables have the same 

meanings as in Eq.(16). 
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The process model may be expressed as: 

 

 )u,x̂(fx̂ k1kk −=                (20) 

 

where uk contains the forcing functions. A is the Jacobian 

matrix of f with respect to 1kx̂ −  and W is the Jacobian with 

respect to wk-1. 

 

(iii) Cusum filter (CF) 

Traditional filters such as those described above reduce the 

noise in the measurements but do not remove it; thereby some 

control action is still influenced by noise. The cusum (or 

cumulative sum) filter is statistically based with the operating 

equation: 

 

∑
σ

−
= −

x

1kk

ˆ

)x~x~(
Cusum              (21) 

where 
xσ̂  is the (estimated) standard deviation of .x~ 1k−  

 If the process has not changed, and noise is independent 

at each sampling point, then Cusum will be a random walk 

variable with an initial value of zero. However, if the process 

has shifted, then the norm of Cusum will grow with each 

sampling. For N sampled points, if 

 

 N3Cusum >                (22) 

 

control action is initiated. The constant 3 corresponds to 

99.73% confidence level in the decision; statistically it can be 

shown that 95.00% confidence is represented by 2 and 99.99% 

by 4.  

 

(iv) Auto-associative neural filter (ANF) 

Under the nonideal conditions of large bioreactor 

operations, both process models and filtering methods have to 

be sufficiently simple, flexible and ‘intelligent’ enough to learn 

from usage and adapt to changing unknown conditions. Owing 

to their strong dependence on the process model and equation-

oriented approach, algorithmic filters such as those outlined 

above find it difficult to accomplish this efficiently and 

optimally [15,22,23]. In such situations, neural networks have 

worked effectively in different fermentation systems. While 

different configurations of neural networks are possible, the 

auto-associative network is both germane to filtering functions 

and performs efficiently. A typical associative network has the 

configuration shown in Fig. 1. It receives a set of inputs at a 

particular sampling instant t and generates outputs of the same 

variables at the next sampling point. This predictive capability 

enables anticipatory control or corrective action to be taken 

ahead of any detrimental effect of a disturbance. This 

anticipatory action adds to the learning ability, robustness and 

model-independence of an autoassociative filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Topology of a typical autoassociative neural 

network. Qj(t)=value of the variable Qj at time t; Ij=j-th input 

neuron; Hj=j-th hidden neuron; Oj=j-th output neuron. 

 

 

 

 

Figure 2. Variation of the largest Lyapunov exponent with the 

Fano factor without any filter and with different noise filters. 

LPBF(1)=low pass Butterworth filter (LPBF) of the first kind; 

LPBF(2)=LPBF of the second kind; EKF=external Kalman 

filter; CusumF=cusum filter; ANF=auto-associative neural 

filter. 
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V. APPLICATION AND DISCUSSION 

A previous analysis [20] has revealed that the sensitivities of 

phosphorylated CheA, CheB, CheY and the FliM-CheY 

complex, which control the chemical signal transduction 

processes [7,10,17], increase monotonically with the 

concentration, L, of the chemoattractant. Since no aberrations 

in the monotonicity were observed, a representative value of L 

= 2 was chosen for the present study. With this value, Eqs. (1)-

(12) were solved for different values of the Fano factor, F, 

signifying different distributions of the external Gaussian 

noise; the values of the parameters and initial conditions are 

listed in Table 1. From the time-domain plots thus obtained, 

the largest Lyapunov exponents, λmax, were calculated 

according to Eq.(17) for each of the variables. 

 The objective of this communication being to obtain 

preliminary insight into the performances of different noise 

filtering devices, as a prelude to the selection of one or two for 

detailed applications, attention was focused on one critical 

variable. Briefly, in the chemosensory mechanism of E. coli, 

changes in the frequency of CheY phosphorylation govern the 

frequency of switching of the flagellar motors between CW 

and CCW rotations. These changes occur in response to 

changes in the signals provided by the chemoreceptors; in the 

present case, the changes are triggered by noise-induced 

fluctuations in the chemoattractant concentration. The 

fluctuations cause corresponding variations in the methylation 

of glutamate residues in the chemoreceptors, a process that is 

regulated by CheR [7,31]. Thus, CheR is a critical 

intermediate that determines the efficiency of E. coli 

chemotaxis. 

Figure 2 portrays the variation of the largest Lyapunov 

exponent, λmax, with the Fano factor, F, without any filter and 

with the filters studied. With no filter, chemotaxis is distorted 

very soon (for F > 0.14) while an ANF is able to maintain 

stable performance over a much wider noise spectrum (up to F 

= 0.4). All algorithmic filters are inferior to the ANF, an 

observation supported by studies of other microbial cultures 

too [15,22,23]. The order of merit of the filters also agrees 

with these studies, including the observation that the CF and 

the EKF are only marginally different. These similarities are 

not unexpected because, even though refs. [15,22,23] did not 

address chemotaxis directly, they pertain to bioreactors where 

access to the substrates and nutrients depends on chemotaxis. 

To gain more insight in filtering efficiencies, two measures 

of the performances may be defined. One is the performance 

of the process for each type of filter relative to that without a 

filter; this may be defined as: 
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The other index, γ, evaluates the j-th filter with reference to 

that immediately inferior to it i.e. the (j-1)-th filter: 

 

 

 

Figure 3. Variation of the absolute filtering index β with the 

Fano factor without any filter and with different noise filters. 

See Eq. (16) for the definition of β, and the title of Fig. 1 for 

the abbreviations. 

  

 

Figure 4. Variation of the relative filtering index γ with the 

Fano factor without any filter and with different noise filters. 

See Eq. (17) for the definition of γ, and the title of Fig. 2 for 

the abbreviations. 
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Figure 3 presents the variation of β with changes in F. A 

conspicuous feature is that each filter has a positive peak and a 

negative trough. The differences in the signs arise because in 
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certain regions of F both values of λmax have the same sign 

whereas in other regions they are different. Regardless of the 

sign, an important implication of the presence of the optima is 

that filtering performance is most effective for these two 

values of F. The bimodal distributions persist even for the 

relative filtering index γ (Fig. 4), suggesting that it is not an 

artifact. 

Although a bimodal distribution of the effect of noise is 

uncommon, it is not unknown. Xu and Tao [25] recently 

reported a similar observation for an auto-regulatory genetic 

network with external Gaussian noise. By contrast, many 

analysts [32-34] have observed single peak distributions with  

only intra-cellular noise. The bimodality observed here and by 

Xu and Tao [25] may be explained by extending their 

argument. The single peaks were attributed to stochastic 

resonance, a possibility strengthened by examples of resonance 

between two sources of noise entirely within the cells [9,35]. 

As illustrated in Fig. 5, two sources may resonate at one 

particular frequency, whereas resonance between three sources 

may be expected to occur at up to three frequencies and thus 

generate a maximum of three optimum points. The presence of 

two optima in place of three in Figs. 3 and 4 indicates that two 

of the resonance points are practically coincident. This may be 

expected because genetic noise and ligand binding noise have 

similar Gaussian distributions [5,10,24], which differ from that 

of environmental noise [9,15,25]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Schematic representations of interactions between 

two (above) and three (below) noise sources, generating one 

and two points of resonance respectively.  

 

 

The likelihood of extra-cellular and intra-cellular noise 

resonating at different Fano factors is strengthened by the 

observation that the optima in Figs. 3 and 4 occur at F-values 

that are one to two orders of magnitude smaller than for intra-

cellular noise only [32-34]. For promoting controlled 

stochastic resonance, therefore, the external filter(s) employed 

and the cell’s internal noise filters have to be tuned differently 

but compatibly. This is a nascent area of research but there are 

indications [27,36] that neural networks may be effective in 

such situations, thus supporting the choice of the ANF in this 

and previous studies [15,22,23]. 

While describing the Lyapunov exponent, it was stated that 

a negative λmax signified stability, and that this implied 

robustness in the case of chemotaxis [16,17,19]. The present 

results however show that not always is the process robust. 

This might seem to be at variance with the accepted view that 

E. coli chemotaxis exhibits robust adaptation [5,10,18,19]. To 

explain this apparent contradiction, it may be mentioned that 

certain other properties of the chemosensory network, such as 

the steady state concentrations of phosphorylated CheY and 

the adaptation time, are not robust [17,18,28]. Thus, the λmax 

values are compatible with the known behavior of E. coli. 

They are also compatible with the observation that robust 

complex systems also tend to be fragile [37]. Fragility implies 

that a system that is robust may be sensitive to perturbations 

far away from those it has experienced. Noise that is far 

outside the Fano window of marginal stability is of this kind, 

and Fig. 2 illustrates how chemotaxis can then get destabilized 

in spite of noise filters. 

 

VI. CONCLUSIONS 

Noise is a ubiquitous feature of bacterial chemotaxis. It is 

present inside the cells (genetic noise), in the binding of 

chemical ligands to corresponding cell surface receptors, and 

in the concentration of the chemoattractant. Bacteria have 

internal mechanisms to filter genetic and ligand binding noise 

but not for external (or environmental) noise. Hence different 

types of filters were employed to study their effectiveness in 

filtering environmental noise. 

 Four of the filters were algorithmic and one was a neural 

network. Each was applied under two sets of conditions: one 

where external noise altered but did not destabilize the 

chemotaxis and the other where it did. The stability was 

measured by the largest Lyapunov exponent, λmax, of the 

chemosensory protein CheR for a range of Fano factors, F, 

characterizing the noise. For both sets of conditions, the neural 

filter maintained stable chemotaxis over a wider range of 

values of F than the algorithmic filters. The cusum and 

external Kalman filters were somewhat inferior and the low 

pass Butterworth filters were the least effective. These results 

and the lack of dependence of a neural filter on a process 

model favor its use for noise-distorted chemotaxis. An 

interesting feature of all filters was the existence of two 

optima, indicative of two points of stochastic resonance. 

 

NOMENCLATURE 

L

ii a,a  Parameters in the equation for αi(L) 

A   Concentration of CheA 

AP  Concentration of phosphorylated CheA 

A B
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B C

A-B interaction

B-C interaction
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B   Concentration of CheB 

BP  Concentration of phosphorylated CheB 

kb   Reaction rate constant for rB 

KB  Michaelis-Menten constant for rB 

KL  Equilibrium constant in the equation for αi(L) 

kr   Reaction rate constant for rR 

KR  Michaelis-Menten constant for rR 

L   Concentration of chemoattractant 

M   Concentration of FliM 

MP  Concentration of FliM complex with  

phosphorylated CheY 

rB   Rate of reaction of CheB in demethylation 

rR   Rate of reaction of CheR in methylation 

R   Concentration of CheR 

Ti   Concentration of receptor complexes with  

i methylated residues 

T
A
  Total concentration of active receptors 

T
I
   Total concentration of inactive receptors 

Y   Concentration of CheY 

YP  Concentration of phosphorylated CheY 

αi(L) Probability that Ti is active at a chemoattractant  

concentration of L 

β, γ  Filtering indexes as defined by Eqs. (16) and (17) 
0

maxλ  Largest Lyapunov exponent without a noise filter 

f

maxλ  Largest Lyapunov exponent with a noise filter 

f

max,jλ  Largest Lyapunov exponent with the j-th noise filter 
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Table 1: Values of the parameters and initial conditions 

[17,20]. 
 

PARAMETER UNITS VALUE VARIABLE UNITS INITIAL 

VALUE 

a0 

a1 

a2 

a3 

a4 
L

0a  

L

1a  

L

2a  

L

3a  

L

4a  

kb 

KB 

KL 

kr 

KR 

R 

-- 

-- 

-- 

-- 

-- 

-- 

 

-- 

 

-- 

-- 

 

-- 

sec
-1

 

nM 

nM 

sec
-1

 

nM 

NM 

0 

0.1 

0.5 

0.75 

1 

0 

 

0 

 

0.1 

0.5 

 

1 

0.5 

5.5 

10 

0.255 

0.251 

0.3 

AP 

BP 

MP 

YP 

T0 

T1 

T2 

T3 

T4 

nM 

nM 

nM 

nM 

nM 

nM 

nM 

nM 

 

nM 

 

0 

0 

0 

0 

5 

0 

0 

0 

0 
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