
A Handling Management System for Freight with
the Ambient Calculus

Toru Kato, Masahiro Higuchi

Abstract—This paper proposes a freight management sys-
tem that ensures the correctness of container handling during
shipping. The system determines the correctness by compar-
ing container handling, which is sensed by IC tags, with
formal models (formulae) written in the ambient calculus.
The ambient calculus is a formal description language that is
suitable for expressing freight systems with nested structures
that dynamically change. The management system generates
formulae automatically from several documents used in real
freight systems. An implementation of the system and the
results of a simple experiment using it are presented.

Keywords—Ambient Calculus, Formal Model, Freight
System, Logistics, RFID

I. INTRODUCTION

IN the field of distribution, the increase in cargo
handling errors is a serious problem as the amount

of freight circulation increases. To deal with this prob-
lem, several systems using IC tags have been developed
to manage distribution. For example, [1] shows an
experiment by the Japanese government that used GPS
to trace the land routes of trucks carrying luggage with
IC tags. Reference [2] details a cooperative experiment
by the Japanese and US governments that tried to trace
the location of 100 containers with the Marine Asset
Tag Tracking System (MATTS) during navigation from
Yokohama Port to the Port of Los Angeles.

The information that those systems try to track is,
however, restricted to the location of cargo. We focused
on the nested structure of freight systems, that is,
packages (e.g. containers) containing smaller packages
(e.g. luggage) that are accommodated by a larger entity
such as a container ship (Fig. 1). Using information
about this type of nested structure, we are able not only
to trace the route of containers but also to recognize
their movement more precisely, including their loading
(or unloading) onto (or from) ships.

We are researching a distribution management sys-
tem based on descriptions of freight systems in the
ambient calculus. The ambient calculus [3] (AC) is a
formal description language originally developed for
describing the nested structure of the Internet or the

Manuscript received June 30, 2009.Toru Kato and Masahiro
Higuchi are with the Department of Informatics, Kinki University,
Kowakae 3-4-1, Higashiosaka, Osaka, Japan (phone: +81–6–6730–
5880; fax: +81–6–6727–2024; e–mail: kato@info.kindai.ac.jp).

luggage
container

container ship

Fig. 1. Nested structure of a freight system

behavior of mobile agents whose nested structure dy-
namically changes. The ambient calculus is suitable for
modeling freight systems, which also have a dynami-
cally changing, nested structure.

Modeling logistics have been investigated for many
purposes, such as estimating the economic effect of
constructing railway logistics [4] or dry harbors [5]
and for distribution optimization [6]. When logistics for
railways or ports are developed, many factors influence
decisions about the choices of routes or locations.
Simulations of the logistics based on the formal model
proposed in [4] and [5] can support such decisions.
Reference [6] proposed a way of optimizing distributed
logistics based on a multi–agent system for supply
chain management.

A way of modeling freight systems is proposed in
this paper. The purpose of the model is not to simulate
or optimize the freight system, but to serve as a basis for
constructing a handling management system. Currently
the correctness of the handling of containers in freights
depends largely on human labor, though the increase
of the amount of freight has made handling more
difficult. Our handling management system confirms
the movement of containers automatically.

The implementation of the system consists of two
components: a system that automatically generates AC
formulae and another system that manages the actual
freight. The former system generates formulae that
express the transportation routes of containers based on
several trading documents such as shipping invoices,
B/L instructions, container packing lists, and routing
plan tables of ships. The latter system senses the
movement of real objects such as ships or containers
and checks their consistency with the corresponding
formulae. We also present the results of a simple

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 179

experiment to show the effectiveness of these systems.
This paper is organized as follows. Section II shows

the freight systems we concentrated on and the docu-
ments used in actual trade. In Section III, we review
the syntax and the operational semantics of AC. Section
IV explains how freight systems are expressed by AC
formulae. In section V, we explain the configuration of
our freight system. The results of an experiment on the
system are given in Section VI.

II. FREIGHT SYSTEMS AND DOCUMENTS

In freight systems called full container load (FCL),
each container is occupied by the luggage of one
owner. The FCL procedure is as follows. Containers
that have already been packed by each sender wait in
the container yard of a port to be loaded. After the
arrival of the container ship, the containers are brought
from the container yard to the ship. The ship leaves the
port for its destination port after all its containers are
loaded. Several hundred to 8,000 containers (40-foot
type) can be loaded on one ship. The containers are
unloaded and carried to a container yard after the ship
arrives at its destination port. The ship leaves that port
after the containers are unloaded there.

The movement of all the containers and the ship-
ping vessel for a shipment are specified by several
documents such as shipping invoices, B/L instructions,
container packing lists, and routing plan tables of the
ship. Some examples of these are shown in Figs. 2 and
3.

Fig. 2. Example of shipping invoice

TOKYO CY

SHIP v1 TOKYO, JAPAN

KOBE, JAPAN KOBE CY

Fig. 3. Example of B/L Instruction

The purpose of the management system presented is
to automatically check whether containers are carried
accurately in accordance with these documents during
transportation from a departure container yard to a des-
tination container yard. To do so, we generate a formal
model of the freight system from those documents so
that machine checking is possible.

III. AMBIENT CALCULUS

This section reviews the syntax and the semantics
of AC originally defined in [3]. We assume there are
infinite sets of names ranged over by n. Capabilities
and processes are ranged over by M, N and P, Q,
respectively.

Definition 3.1 (Syntax):
n names
M,N ::= capabilities
in n can enter n
out n can exit n
open n can open n
ε null
M.N path ¤

P,Q ::= processes
0 inactivity
P |Q composition
n[P] ambient
M.P action
(νn)P restriction

The capability “in n” means the ambient that encloses
it can enter the ambient “n[]”. The capability “out n”
means the ambient that encloses it can exit the ambient
“n[]”. The capability “open n” dissolves the ambient
“n[]”. These actions are prescribed in the reduction
rules in Definition 3.2.

Definition 3.2 (Reduction: →):

n[in m.P | Q] | m[R] → m[n[P | Q] | R]
m[n[out m.P | Q] | R] → n[P | Q] | m[R]
open n.P | n[Q] → P | Q

P → Q ⇒ P | R → Q | R
P → Q ⇒ (νn)P → (νn)Q
P → Q ⇒ n[P] → n[Q]
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ ¤

In the first rule of Definition 3.2, the capability “in m”
leads the ambient “n[]” into the ambient “m[]” and the
capability is consumed.

This reduction happens when there are ambient “n[]”
and ambient “m[]” in parallel positions, otherwise,
ambient “n[]” waits for ambient “m[]” to appear in
such a position. This rule enables us to express syn-
chronous actions of objects in a simple way such as
that containers are loaded just after a ship arrives at a
port.

The syntax of AC originally defined in [3] has x
variables, (x) (input), 〈M〉 (output) and !P (replication) that
are omitted in Definitions 3.1 and 3.2 because we do
not use them for representing the behavior of freight
systems in this paper.

IV. MODELING FREIGHT SYSTEMS BY AC

Formulae of AC that represent the behavior of freight
systems are automatically generated by the system from
Excel files of the types of trading documents shown in
Section II.

These formulae represent the current state of the
freight system and the possible future behavior of

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 180

objects (ships, ports, container yards, and containers).
The formulae are composed of two kinds of ambients:
physical ambients and control ambients. The former
represent real objects such as ships, ports, container
yards, or containers and the latter are used for con-
trolling the movement of physical ambients. In our
system, the reduction concerning a control ambient
occurs immediately when it is enabled whereas that
of a physical ambient occurs when it is enabled and
movement of the corresponding real object is sensed.

This section shows how freight systems are modeled
by these ambients and explains the role of control
ambients.

A. Ship Ambient

We define the general form of a ship ambient as (1).

SHIP vn[in PORT1.open cnt.out PORT1
.in PORT2.open ucnt.out PORT2
|open lcomp am.cnt[]
|open ulcomp am.ucnt[]].

(1)

The ambients with capitalized names are physical
ambients and the others are control ambients. “PORT1”
is the place holder for the name of a loading port and
“PORT2” is for that of an unloading port. SHIP, vn,
and am are the place holders for the name of a ship,
the voyage number of a ship, and the container’s ID,
respectively.

We use (1) as a template for generating a ship ambi-
ent. All place holders are replaced with the real names
written in the trading documents, and the number of
capabilities “open cnt”, “open ucnt”,“open lcomp am”,
and “open ulcomp am” and the number of control
ambients “cnt[]” and “ucnt[]” are decided according
to the number of containers loaded onto the ship in
a real shipment. The name “(u)lcomp” represents the
completion of (un)loading a container. An example of a
ship ambient generated using the template is (6) shown
in IV-E.

The ship actions we are concerned with are entering a
port, loading and unloading containers, and leaving the
port. The action of entering a port is simply expressed
by the enter capability “in PORT1” in (1).

The action of loading containers is controlled by the
capabilities of container ambients, explained in IV-C.

A ship must not leave a port until all the containers
that must be loaded at the port are loaded, thus, we
need an elaborate formula for expressing the action of
leaving a port as follows. The “out PORT1” capability
in (1) is blocked by the preceding capability “open
cnt”. The control ambient “cnt[]” is also preceded
by the “open lcomp am” capability that will be con-
sumed after the container ambient “CO am[]” comes
into the “SHIP vn[]” ambient and the control ambient
“lcomp am[]” appears in the “SHIP vn[]” ambient (see
IV-C).

Similarly, the capabilities “open ucnt”, “open ul-
comp am”, and the control ambient “ucnt[]” in (1) are
used to prevent the “SHIP vn[] ambient from leaving
the ambient “PORT2” before unloading the container.

B. Port and Container Yard Ambient

The template for a loading port ambient is (2).

PORT1[
load vn[in SHIP vn.out SHIP vn.in CY]
|CY []].

(2)

A loading port ambient contains a control ambient
and the container yard ambient “CY[]”. The control am-
bient “load vn[]” waits for the “SHIP vn[]” ambient
to enter the port ambient, and after confirming it, the
control ambient enters the “CY[]” ambient in order to
notify container ambients in the container yard ambient
that the ship ambient entered the port ambient.

The template for an unloading port ambient is (3).

PORT2[uload vn PORT2[in SHIP vn]
|CY[ulcomp am[in CO am.out CO am

.out CY.in SHIP vn]]].
(3)

When the “SHIP vn[]” ambient enters the port ambi-
ent, the control ambient “unload vn PORT2[]” enters
the ship ambient to notify container ambients that the
ship ambient entered the unloading port ambient. After
the notification, container ambients are ready to exit the
ship ambient and enter the container yard ambient.

As soon as the container ambient “CO am[]” en-
ters the container yard ambient, the control ambient
“ulcomp am[]” enters the ship ambient to notify the
ship ambient that the container ambient entered the
container yard ambient. After the notification, the ship
ambient is ready to exit the port ambient because
the capability “open ucnt” in (1) that blocks the “out
PORT2” capability is consumed.

C. Container Ambient

The template for a container ambient is (4). When a
container ambient is generated using the template (4),
it is placed in a container yard ambient generated using
(2).

CO am[in load vn.out load vn.out CY
.in SHIP vn.lcomp am[out CO am]

|in uload vn PORT2.out uload vn PORT2

.out SHIP vn.in CY

.ulcomp am[out CO am.out CY
.in SHIP vn]].

(4)

The capabilities “in load vn.out load vn” are con-
sumed when the control ambient “load vn[]” in (2)
appears in the ambient “CY []” in (2), then the capa-
bilities “out CY.in SHIP vn” become executable. This
means when the ship arrives at the port, containers are

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 181

allowed to be brought out from the container yard to
the ship.

As soon as the container ambient enters the ship
ambient, the control ambient “lcomp am[]” exits the
container ambient and appears in the ship ambient.
These reductions express the notification to the ship
that the container has been loaded onto the ship. Then,
as explained in IV-A, the capability “out PORT1” of
the ship ambient in (1) becomes executable.

The “out SHIP vn” capability is blocked by the
capabilities “in uload vn PORT2.out uload vn PORT2”
that are consumed after the ship ambient enters
an unloading port ambient and the control ambient
“uload vn PORT2[]” in (3) enters the container ambient.
Then the capability “out SHIP vn.in CY” of the con-
tainer ambient becomes executable. This means when
the ship arrives at the unloading port, containers are
allowed to be brought out from the ship and into the
container yard of the port.

As soon as the container ambient enters the container
yard ambient, the control ambient “ulcomp am[]” in
(4) exits the container ambient and container yard
ambient and enters the ship ambient. These reductions
express the notification from the port to the ship that
the unloading of the container has been completed.

When the control ambient enters the ship ambient,
the capabilities “ulcomp am” and “ucnt” in (1) are
consumed and the capability “out PORT2” of the ship
becomes executable. This means the ship is allowed
to leave the unloading port after the unloading of the
container has been completed.

D. SEA Ambient

The template for a sea ambient is (5). When a
handling checking starts, the sea ambient generated
using the template (5) is placed in the PC of a port
to check the movement of the ship.

SEA[PORT1[] |SHIP vn[] | PORT2[]]. (5)

E. Examples of Ambients

We give examples below of formulae generated by
the system to represent a shipment of 500 containers
from Tokyo Port to Kobe Port.

SHIP v1[in TOKYO
.open cnt. · · · .open cnt
.out TOKYO.in KOBE
.open ucnt. · · · .open ucnt.out KOBE
|open lcomp a1.cnt[]

| · · · |open lcomp a500.cnt[]
|open ulcomp a1.ucnt[]

| · · · |open ulcomp a500.ucnt[]].

(6)

TOKYO[
load v1[in SHIP v1.out SHIP v1.in CY]
|CY[
CO a1[in load v1.out load v1.out CY

.in SHIP v1.lcomp a1[out CO a1]
|in uload v1 KOBE.out uload v1 KOBE

.out SHIP v1.in CY

.ulcomp a1[out CO a1.out CY
.in SHIP v1]]

| · · · | CO a500[· · ·]]].

(7)

KOBE[uload v1 KOBE[in SHIP v1]
|CY[ulcomp a1[in CO a1.out CO a1

.out CY.in SHIP v1]
| · · · | ulcomp a500[· · ·]]].

(8)

Formula (6) represents a ship that will enter Tokyo
Port, load containers there, and carry them to Kobe
Port. The formula (7) represents Tokyo Port and its con-
tainer yard where 500 containers CO a1 · · ·CO a500
wait to be loaded. Formula (8) represents Kobe Port.
As described in IV-D, all of the formulae are in the
ambient “SEA[]”.

F. Handling Homogeneity of Container Ambients

We could simplify (1) as (9).

SHIP vn[in PORT1.open lcomp am
.out PORT1.in PORT2
.open ulcomp am.out PORT2].

(9)

Then, the ship ambient generated using the template
(9) that expresses a ship loading 500 containers would
be simpler than (6) as (10).

SHIP v1[in TOKYO
.open lcomp a1. · · · .open lcomp a500
.out TOKYO.in KOBE
.open ulcomp a1. · · · .open ulcomp a500
.out KOBE].

(10)

The formula (10) is based on the assumption that
containers are loaded in order of their container IDs,
though in real freight systems, container loading does
not necessarily follow ID order. The homogeneous
expression concerning containers in (6) enables us to
check the handling of container loading in any order.
Besides, homogeneity of container ambients in (6) is
inevitable for a partial order reduction in the model
checking of freight systems.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 182

V. FREIGHT MANAGEMENT SYSTEM

The freight management system maintains the for-
mulae representing the current state of the freight
system. The system determines whether the container
handling is valid by sensing the movement of con-
tainers by RFID and checking whether the reductions
representing the movement are possible in the current
formulae.

A. AC processing system

The AC processing system [7] reduces processes
(formulae) according to Definition 3.2 on distributed
environments. Each processing system contains several
ambients (a part of the entire formula) and refers remote
ambients if necessary.

In the processing system, physical ambients and con-
trol ambients are reduced in different ways as follows.

Physical ambients: when the processing system is
notified of the movement of a real object (ship or con-
tainer), the system checks whether the corresponding
reduction is enabled for the formula representing the
object. If it is enabled, the system confirms that the
movement is valid and reduces the formula. If not, the
system issues a warning.

Control ambients: the reductions related to control
ambients are made in the processing system as soon as
they are enabled.

B. System Configuration

The devices used in our system are shown in Fig. 4.
We will set up a PC with an AC processing system in

r

Fig. 4. System configuration

the office of each port, in each container yard, and in
the cargo room of each ship. RFID reader/writers are
connected to the PCs in the container yards and the
ship cargo rooms. An IC tag is put on each container.

We put the formulae generated from the trading
documents into the appropriate PCs and IC tags. The
formulae are decomposed and distributed into the PCs

and IC tags. When, for example, containers are shipped
from Tokyo Port to Kobe Port, the formula (7) is
decomposed into the formulae (11), (12), and 500
formulae like (13). Then they are distributed to the PC
in Tokyo Port, the PC in the container yard of Tokyo
Port, and the IC tags of the containers.

TOKYO[
load v1[in SHIP v1.out SHIP v1.in CY]
|CY []].

(11)

CY [CO a1[] | · · · | CO a500[]]. (12)

CO a1[in load v1.out load v1.out CY
.in SHIP v1.lcomp a1[out CO a1]

|in uload v1 KOBE.out uload v1 KOBE

.out SHIP v1.in CY

.ulcomp a1[out CO a1.out CY
.in SHIP v1]].

(13)

Similarly, formula (8) is decomposed to (14) and
(15).

KOBE[uload v1 KOBE[in SHIP v1]|CY[]]. (14)

CY[ulcomp a1[in CO a1.out CO a1
.out CY.in SHIP v1]

| · · · | ulcomp a500[· · ·]].
(15)

This means each of the processing systems in each
PC maintains a physical ambient, i.e., maintains all the
control ambients and the names of all the physical am-
bients in it. Distributed management like this enables us
to reduce the amount of traffic between PCs necessary
for managing freight systems.

The physical ambient for the sea that expresses the
current situation of the sea must be maintained in a PC
and we assign that role to the PC of a port. Thus, the
PC of the port has two AC processing systems, one
is maintaining the port ambient (11), and the other is
maintaining the sea ambient (16) that is generated using
the template (5). We call the former the processing
system for the sea and the latter the processing system
for Tokyo port.

SEA[TOKYO[] |SHIP v1[] | KOBE[]]. (16)

When we need to check the locations or the states of
all objects, all the PCs communicate and we can make
a formula representing the entire state of the freight
system.

C. Checking the Container Handling

Whenever a container is brought out from or into a
container yard or a ship, the RFID reader/writer there
reads the IC tag on the container and the management
system on the PC determines if that movement is valid.
The system can detect container handling errors and
incorrect ship movements as follows.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 183

Errors in handling of containers:
• bringing out containers from a container yard

before the arrival of a container ship
• loading containers onto the wrong ship
• unloading containers to the wrong port
Incorrect departure of ships:
• leaving containers behind at a loading port
• leaving containers in the ship at an unloading port
This subsection details how the system checks the

handling of bringing containers out from a container
yard to a ship.

1) Bringing Out Containers: Figure 5 is an example
of the system determining that the handling of a con-
tainer is not valid when the container CO a1 is brought
out from the container yard before the ship arrives at
Tokyo port.

CO_a1

CO_a1[in load_v1.out load_v1.out CY]

Tokyo port

Fig. 5. Checking movement (exiting container yard)

When the container CO a1 passes the gate of the
container yard, the RFID reader/writer reads the IC tag
and the processing system gets the formula (13). Then
the formula in the PC becomes (17).

CY[CO a1[in load v1.out load v1.out CY· · ·]
|CO a2[]| · · · |CO a500[]]. (17)

The processing system finds the corresponding
reduction is impossible because the capabilities
“in load v1.out load v1” are in front of the capability
“out CY”, so the management system issues a warning.
This means the ship SHIP v1 has not arrived and
bringing containers out from the container yard has not
been permitted yet.

After the ship arrives, the handling management
system confirms that containers can be brought out
from the container yard as follows. When the ship
SHIP v1 is about to enter Tokyo Port, the PC on the
ship sends the formula “SHIP v1[in TOKYO]” to the
PC maintaining the sea ambient. That is communication
(a) illustrated in Fig. 6.

As the AC processing system for the sea maintaining
(16) recognizes that the ambient “SHIP v1[]” and
the ambient “TOKYO[]” are in parallel positions in
the ambient “SEA[]”, (16) becomes (18), and (18) is
reduced to (19) in the processing system.

SEA[TOKYO[] |SHIP v1[in TOKYO] | KOBE[]]. (18)

SHIP_v1

TOKYO[SHIP_v1[] | CY []
|load_v1[in SHIP_v1

.out SHIP_v1

.in CY]]

(a)
(c) (b)

Fig. 6. Communication between PCs

SEA[TOKYO[] | KOBE[]]. (19)

The ambient “SHIP v1[]” disappeared in (19) be-
cause the inside of the ambient “TOKYO[]” is main-
tained by the processing system for Tokyo port. Thus,
the processing system for the sea sends the ambient
“SHIP v1[]” to the the processing system for Tokyo
port, and (11) becomes the formula shown in Fig. 6 in
the processing system for Tokyo port. Then the PC in
the port notifies the PC in the ship of the confirmation.
This is communication (b) illustrated in Fig. 6. Then
the processing system in the PC of the ship reduces (6)
to (20) by consuming the capability “in TOKYO”.

SHIP v1[open cnt. · · · .open cnt.out TOKYO
.in KOBE · · · (same to(6)). (20)

After several reductions, the formula in the process-
ing system for Tyoko port is reduced to (21).

TOKYO[SHIP v1[]|CY [load v1[]]]. (21)

Since the PC in the container yard maintains the inside
of the ambient “CY []”, the PC at the port sends the
ambient “load v1[]” to the PC in the container yard.
This is communication (c) illustrated in Fig. 6. After
the communication, the formula (12) that is maintained
in the PC of the container yard becomes (22).

CY [load v1[]|CO a1[] | · · · | CO a500[]]. (22)

As a result, when a container with the ambient
“CO a1[]” passes the gate and the RFID reader/writer
reads the IC tag that contains (13), the formula in the
PC of the container yard becomes (23).

CY[load v1[]
|CO a1[in load v1.out load v1.out CY· · ·]
|CO a2[]| · · · |CO a500[]].

(23)

Now, the handling management system confirms
the container with the ambient “CO a1[]” should be
brought out from the container yard because the ca-
pabilities “in load v1.out load v1” are enabled and

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 184

consumed immediately and (23) is reduced to (24), in
which the capability “out CY ” is enabled.

CY[load v1[]|CO a1[out CY· · ·]
|CO a2[]| · · · |CO a500[]]. (24)

When the container is brought out from the container
yard, the RFID reader/writer writes the formula (25)
back to the IC tag of the container, which is the remains
of (13) after those reductions.

CO a1[in SHIP v1.lcomp a1[out CO a1]
|in uload v1 KOBE.out uload v1 KOBE

.out SHIP v1.in CY

.ulcomp a1[out CO a1.out CY
.in SHIP v1]].

(25)

2) Container Entering: Figure 7 shows a situation
where the container with the ambient “CO a1[]” is
about to be loaded into a ship with the ambient
“SHIP v1[]”.

SHIP v1

CO_a1

CO_a1[in SHIP_v1]

Fig. 7. Checking movement (enter ship)

When the container CO a1 passes the entrance of
the ship, the RFID reader/writer reads the IC tag on
the container and the processing system in the PC of
the ship gets formula (25). Then the formula on the PC
on the ship becomes (26).

SHIP v1[· · ·]|CO a1[in SHIP v1 · · ·]. (26)

Since formula (26) can be reduced to (27), the man-
agement system confirms the loading of the container.

SHIP v1[· · · |CO a1[· · ·]]. (27)

After the reduction, the RFID reader/writer writes
the ambient “CO a1[· · ·]” in formula (27) back to the
IC tag of the container.

When a container is about to be loaded onto the
wrong ship, for example a ship with the ambient
“SHIP v2[]”, the PC on the ship has formula (28)
that cannot be reduced any more, and the management
system rejects the loading by showing a warning on the
PC monitor.

SHIP v2[· · ·]|CO a1[in SHIP v1 · · ·]. (28)

D. Programs and Devices

All programs are written in Java and the sizes of the
programs are as follows.

AC formulae generating system: 24 Java Classes, 3.3
K steps

Container handling management system: 72 Java
Classes, 14.6 K steps

GUI: 28 Java Classes, 6 K steps
We use the following RFID devices.

RFID reader/writer: SkyeModule M1 (SkyeTek Co.,
Ltd) using 13.56 MHz, 50 cm communication distance.

IC tag: RF-T5M40 (Keyence Co., Ltd) with 1 Kb
memory.

VI. EXPERIMENT

This section describes a simple experiment simulat-
ing the transportation of five containers from Tokyo
Port to Kobe Port on one container ship.

First, we confirmed that the formula-generating sys-
tem generated the formulae (6), (11), (12), (14), (15),
(16) and five formulae like (13) for containers based on
the documents related to the shipping of five containers
from Tokyo Port to Kobe Port. (We also confirmed that
the system was able to generate formulae for more than
1,000 containers). We wrote each container formula

Fig. 8. Sensing an IC tag with a RFID reader/writer

(13) onto an IC tag that was put on a box representing
a container (Fig. 8) and deployed the formulae for the
ship (6), Tokyo Port (11) and its container yards (12),
Kobe Port (14) and its container yards (15) and the sea
(16) on their respective PCs.

Then we started checking. As shown in Fig. 8, we
moved the boxes (containers) by hand and made sure
the RFID reader/writers could read the formulae, the
processing system reduced those formulae, the PCs sent
the formulae, the management system determined the
validity of the movement, and the RFID reader/writers
wrote the formulae back onto the IC tags after the
reductions. In Fig. 9, the window of the GUI system
shows the contents of all formulae just after the experi-
ment started. Each rectangle in the window represents a

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 185

Fig. 9. Visual information for each ambient

real object such as a port or a ship. Clicking a rectangle
brings up a display of more precise information.

When we moved a container correctly, it took 7.8
seconds for the system to read the formula (13) from
the IC tag, confirm the movement, reduce the formula
to formula (25), and write the formula (25) back onto
the IC tag.

Fig. 10. Warning of a mistake

A warning dialog box appeared when we made the
ship leave the port before the completion of container
loading (Fig. 10). The Japanese messages in the dialog
read “you left something behind”, “list of the things
left behind [CO a4, CO a5]”, and “OK?”.

VII. CONCLUSIONS

The freight management system presented in this
paper confirms whether containers are handled cor-
rectly during shipping by comparing the handling to
formal AC formulae. The formulae are generated based
on documents used in actual trading, so, when the
system confirms the correctness of the treatment of
the containers, it means that the containers have been
handled in accordance with the instructions in the
documents. We confirmed that the system determined
the validity of the container handling in a practical
amount of time, so we think will be able to test the
system at a practical scale by using more efficient UHF
RFID devices.

In order to apply our system to real logistics, we
need (i) to be able to deal with a variety of container
shipments and (ii) to show the correctness of the
formulae generated by AC generating system.

(i) In real maritime logistics, there are many other
types of shipping patterns than are presented in this
paper. For example, a ship loads containers whose
destinations vary, a ship loads containers at several
ports, a container leaves a spoke port for another spoke
port via more than one hub port, etc. In order to treat
different kinds of shipping, we will have to modify the
AC processing system.

(ii) As the formulae are written in the ambient
calculus, ambient logic model checking is possible. The
ambient logic [8], [9] is a kind of temporal logic that
can express properties of ambient formulae such that
“the ambient CO[] will eventually appear in the ambient
PORT2[]”. In order to perform the model checking
for the shipping of more than 1,000 containers, we
need to solve the state explosion problem by the partial
order reduction [10] and more sophisticated formulae
than are presented in this paper. Such model checking
will enable us not only to ensure the validity of the
formulae but also to make sure that the containers will
be delivered to their destinations correctly in any case
before the transportation.

REFERENCES

[1] Ministory of Land Infrastructure Transport and Tourism,
“Demonstration driving experiment to develop a L and R route
in mekong Region,” http://www.meti.go.jp/english/newtopics/
data/nBackIssue20071018 09.html, 2007.

[2] Ministory of Land Infrastructure Transport and Tourism,
“Marine Asset Tag Tracking System (in Japanese),” http:
//www.mlit.go.jp/report/press/port02 hh 000006.html, 2008.

[3] L. Cardelli and A. D. Gordon, “Mobile ambients,” Theoretical
Computer Science, vol. 240, pp. 177–213, 2000.

[4] C. Caballini, P. P. Puliafito, R. Revetria, and F. Tonelli, “Sim-
ulation based design for a railway logistics re-engineering
project,” International Journal of Mathematics and Computers
in Simulation, vol. 2, pp. 195–205, 2008.

[5] A. D. Marco and C. Rafele, “System dynamics simulation: an
application to regional logistics policy making,” International
Journal of Mathematics and Methods in Applied Sciences,
vol. 1, pp. 253–260, 2007.

[6] N. Zoghlami and S. Hammadi, “Organization and optimiza-
tion of distributed logistics: estimation and patrolling approach
based on multi–agent system,” International Journal of Math-
ematics and Computers in Simulation, vol. 1, pp. 73–80, 2007.

[7] T. Kato, D. Ikeda, and Y. Okada, “The implementation of
ambient calculus with HORB for mobile agents,” in Proc. of
The 7th World Multiconference of Systemics, Cybernetics and
Informatics, vol. II, 2003, pp. 367–372.

[8] L. Cardelli and A. D. Gordon, “Any time anywhere modal
logics for mobile ambients,” in POPL’00. Proceedings of the
2000 ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2000, pp. 365–377.

[9] L. Cardelli and A. Gordon, “Deciding validity in a spatial
logic for trees,” Journal of Functional Programming, vol. 15,
pp. 543–572, 2005.

[10] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
Press, 2000.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 3, 2009 186

