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     Abstract—A dynamic inventory model with deteriorating 

items in which  each of the production ,the demand and the 

deterioration rates,  as well as all cost parameters are assumed 

to be general functions of time is considered in this paper.  

Besides, shortages are allowed but are partially backordered. .  

Both inflation and time value of money are taken into 

account. The objective is to minimize the total net inventory 

cost . The relevant model is built , solved   Necessary and 

sufficient conditions for a unique and global  optimal solution 

are derived. An illustrative example is provided and 

numerically verified. 

 

     Keywords—General production lot size, Inventory, 
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I. INTRODUCTION 

NVENTORY is known as materials, commodities, 

products ,..etc, which are usually carried out in stocks in 

order to be consumed or benefited from when needed. 

According to Nahmias Book (Production and Operations 

Analysis (1997)), the investment in inventories in the 

United States held in the manufacturing, wholesale and 

retail sectors during the first quarter of 1995 was estimated to 

be $1.25 trillion . Therefore, there is a great need to perform 

special research on inventory control management for giant 

systems, in order to improve their efficiency and 

performance in such a way that the total of  relevant 

inventory costs is minimized.  Applying such research 

results are expected to save huge amounts of money that can 

be used for development, as it is the case in most first class 

countries. 

 

In fact, many classical inventory models concern with 

single item and with the so called Economic Order 

Quantity(EOQ) models. Among these are Grubstormt and 

Erdem [21], Giri  et al [19], And Sana and Chaudhuri [30]. 

An interesting problem, related to one of the assumptions of 

the classical Economic Production Quantity (EPQ) models, 

has received  
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some attention in the literature.  It concerns with the various  

unit costs involved, which are assumed to be known and 

constant. Among these are Cardenas and Barron [15], Resh 

et al [30], Hong et al [25], Chang [14], Lan et al [27], Chui 

[15] and Lai, et al [26]. A more dynamic inventory model 

was presented by Balkhi and Tadj [14], where they derived 

an EOQ model with deteriorating items and time varying 

demand rate, deterioration rate, and costs. Sugapriya and 

Jeyaraman [33] considered the variability of the holding 

cost in a non-instantaneous deterioration under a production 

inventory policy. Balkhi [5] conducted another study in 

which he treated the variability of parameters for an 

inventory model for deteriorating items under trade credit 

policy with partial backordering and an infinite time 

horizon. Changes in the values of the demand rate and 

production rate have been studied by Kumar et al [24] by 

assuming fuzzy values. Another form of variability in 

parameters of an EPQ inventory model is the learning 

phenomenon, which is a decrease in production costs of 

items as time progresses due to more familiarity with the 

production tools and procedures has been considered by 

Balkhi[9] . Alamri and Balkhi[1] considered forgetting 

phenomenon along with learning . Darwish [18] generalized 

the classical EPQ model by studying the relation between 

setup cost and length of the production cycle.  An inventory 

model in which products deteriorate at a constant rate and in 

which demand, production rates are allowed to vary with 

time has been introduced by Balkhi and Benkhrouf [7]. 

Subsequently, Balkhi [6], [8], [10], [11], and [13] and 

Balkhi et al [12]  have introduced several inventory  models 

in each of which , the demand , production , and 

deterioration rates are arbitrary functions of times ,and in 

some of which , shortages are allowed but are completely 

backlogged. In each of the last mentioned seven papers, 

closed forms of the total inventory cost was established, a 

solution procedure was introduced and the conditions that 

guarantee the optimality of the solution for the considered 

inventory system were introduced. Recently, Balkhi[2] has 

treated  a general (EPQ model with variable parameters. 

Also Balkhi and Foul [3] and [4]  have applied a multi-item 

production inventory model to the Saudi Basic Industries 

Corporation (SABIC) .Though some of the above 

mentioned papers don not account for deterioration, the 

importance of items deteriorating in inventory modeling in 

now widely acknowledged, as shown by the recent survey 

of Goyal and Giri[21] 
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 The goal of this paper is to generalize the models of the 

above mentioned papers in various ways.  First, the cost 

parameters in our model are general functions of time 

instead of being linear functions or constant. Second, each 

of the production, demand rates are assumed to be general 

functions of time. Third, shortages are allowed, so that part 

of these shortages is lost and the rest are backlogged.  The 

part of the shortage that is lost is proportional to the waiting 

time.  Fourth ,the on-hand inventories deteriorate while are 

effectively in stock, and the deterioration rate is a general 

function of time instead of being a linear function or 

constant. Fifth, we consider the effect inflation and the time 

value of money to on the total relevant cost. Sixth, we 

present practical examples to show how to implement the 

solution methodology to real problems. In general ,this 

paper deals with a very general (EPQ) inventory model for 

which many of the models available in the literature are 

special cases.  Our analysis deepens, broadens, and enriches 

the available theoretical studies, in particular the 

mathematical results related to (EPQ) inventory models.The 

rest of the paper is organized as follows. Following this 

introduction, we introduce the model assumptions and 

notations. The problem is formulated in section III. We 

solve the problem in section IV, and in sections V and VI, 

we prove the optimality and the uniqueness of the solution. 

An illustrative example is presented and verified in section 

VII.  Section VII concludes the paper. 

 

II. ASSUMPTIONS AND NOTATIONS 

  The inventory model assumptions and notations are as 

follows: 

1. A single item is produced at the beginning of the cycle 

and held in stock. 

2. Shortages are allowed but only a fraction of the stock out 

is backordered and the rest are lost. 

3. All costs are affected by inflation rate and time value of 

money. We shall denote by r1 the inflation rate and by r2 

the discount rate representing the time value of money so 

that  

r = r2 – r1 is the discount rate net of inflation  

The parameters of the model are general functions of 

time and are denoted as follows:  

D(t): Demand rate at time t. 

P(t): Production rate at time t. 

θ(t): Deterioration rate at time t.  

I(t): Inventory level at time t. 

c(t): Item production cost at time t. 

h(t): Holding cost per unit per unit of time at time t. 

b(t): Shortage cost per unit per unit of time at time t for 

backordered items. 

l(t): Shortage cost per unit per unit of time at time t for lost 

items. 

k(t): Setup cost at time t. 

𝛃(Ʈ) = e
-Ʈ

, is the rate of backordered items and Ʈ = T3 – t is 

the waiting time up to the new production where shortages 

start to be backlogged. Note that, 𝛃(Ʈ) is a decreasing 

function of Ʈ, which reflects the fact that less waiting time 

implies more backordered items.  

The proposed inventory system operates as follows. The 

cycle starts at  time t = 0 and the inventory accumulates  at a 

rate P(t) - D(t) - θ(t) I(t)  up to time t= T1 where the 

production stops. After that, the inventory level starts to 

decrease due to demand and deterioration at a rate  D(t) - 

θ(t)I(t) up to time t = T2, where shortages start to 

accumulate at a rate 𝛃(Ʈ) D(t) up to time t=T3 .Production 

restarts again at time t = T2  and ends at time t = T with a 

rate P(t)-D(t) to recover both the previous shortages in the 

period [T2,T3] and  to satisfy demand in the period [T3,T4] 

. The process is repeated. In this respect and in order to 

recover the backordered items within the period 
],[ 32 TT
 and 

to satisfies the demand in the period 
],[ 43 TT

we require 

that: 

)()](1[)()](1[)( 3 tDtDtTtP  
 .The behavior of 

the inventory levels is shown in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. PROBLEM FORMULATION 

The changes of the inventory level I(t) is governed 

by the following differential equation  

)()()()(
)(

tIttDtP
dt

tdI
 ; 

10 Tt    (1)  

)()()(
)(

tIttD
dt

tdI
 ; 

21 TtT            (2) 

)()(
)(

tD
dt

tdI
 ; 

32 TtT              (3)  

)()(
)(

tDtP
dt

tdI
 ; 

43 TtT            (4) 

With the boundary conditions I(0)=0, I( 2T
) = 0, 

Inventory Level   I(t) 

T1 

T2 T3 

T4 

0 

Fig 1.The Behavior of a General and Dynamic Production Lot 

size Inventory Model 

Time  t 
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 I( 2T
) = 0, I( 4T

) = 0 respectively. 

The solutions of the above differential equations are  

  

t

ugtg dueuDuPetI
0

)()( )}()({)( , 
10 Tt                            (5) 




2

)()( )()(

T

t

ugtg dueuDetI ; 
21 TtT                                (6) 


t

T

dttDtI

2

)()()(  ; 
32 TtT                                              (7) 

 
4

)}()({)(

T

t

duuDuPtI , 
43 TtT                              (8) 

Respectively, where g(t) = θ(t)  g(t) =  dtt)(  with g(0)=0. 

      Next, we derive the present worth for each type of cost: 

Present worth of holding cost (PWHC). Items are held in stock 

in the two periods [0,
 1T ] and [

1T ,
2T ].so we have 

 
1

0

)(
1 )}()()]{()([

T

tg tdetDtPtHTHPWHC
 

dtetDTHtH

T

T

tg

 
2

1

)(
1 )()]()([

                                            (9) 

Where  

H(t) = 
 dteth tgtr )()()(                                                       (10) 

With H(0)=0 

     Present worth of shortage cost for backordered items 

(PWSCB). Shortages occur over two periods, [T2,T3] and 

[T3,T4]. Which we denote by
1PWSCB  and

2PWSCB  

respectively. Now ,  

dttIetbPWSCB

T

T

rt )()(
3

2

1 
  

dtduuDuTetb

T

T

t

T

rt ))()(()(
3

2 2

3     . 

 Integrating by parts, we get: 

 
3

2

)()()]()([ 331

T

T

dttDtTtBTBPWSCB                               (11)  

Similarly dttIetbPWSCB

T

T

rt )()(
4

3

2 
  

   
4

3

4

))}()({()(

T

T

T

t

rt dtduuDuPetb  

Integrating by parts, we get: 

 
4

3

)}()()]{()([ 32

T

T

dttDtPTBtBPWSCB   (12) 

     Present worth of storage cost for lost items (PWSCL). 

 In a small time period (dt) we lose a fraction 

dttD )()](1[  , hence: 

  
3

2

)()](1[)( 3

T

T

rt dttDtTetlPWSCL                            (13) 

Present worth of item production cost (PWPC). Since production 

occurs during the two periods [0,
 
T1] and [T3,T4],we have: 

PWPC =  
 

1 4

30

})()()()({

T T

T

rtrt dtetPtcdtetPtc  (14) 

     Note that the last cost includes both consumed and 

deteriorated items. 

     Present worth of the set-up cost (PWSUC) .The set-up of new 

production occurs twice during any cycle, the first is at t = 0, and 

the second is at t = T4. Therefore, the present worth of the set-up 

cost  

PWSUC = 3)()0( 3

)0( rTr eTkek
   

= 3)()0( 3

rT
eTkk


                                                               (15) 

     Hence, the total relevant cost per unit time as a function of 

4321 ,,, TTTT  which we shall denote by TCU(
4321 ,,, TTTT )is 

given by 

}

{
1

2

121

4

PWSUCPWPCPWSCLPWSCB

PWSCBPWHCPWHC
T

TCU



   

)16(
)()0(

)()()()(

)()](1[)(

)}()()]{()([

)()()]()([

)()]()([

)}()()]{()([{
1

3

1 4

3

3

2

4

3

3

2

2

1

1

3

0

3

3

33

)(
1

0

)(
1

4

rT

T T

T

rtrt

T

T

rt

T

T

T

T

T

T

tg

T

tg

eTkk

dtetPtcdtetPtc

dttDtTetl

dttDtPTBtB

dttDtTtBTB

dtetDTHtH

dtetDtPtHTH
T

TCU





















 















 

     Our problem is to find the optimal values of  
4321 ,,, TTTT  

that minimize TCU(
4321 ,,, TTTT ) given by (16) subject to the 

following constraint: 

43210 TTTT                                                             (17) 

 
  
3

2

4

3

)]()([)()( 3

T

T

T

T

dttDtPdttDtT      
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



2

1

1
1

1 )()(

0

)()(
)()}()({

T

T

tgTg
T

tgTg
dtetDedtetDtPe  

Which are, respectively, equivalent to 

  
3

2

4

3

0)]()([)()(: 31

T

T

T

T

dttDtPdttDtTC                                (18)  

 

  
1 2

0 0

)()(

2 0)()(:

T T

tgtg dtetDdtetPC                                            (19) 

     Note that constraint (17) is a natural constraint since 

otherwise our problem would have no meaning. Constraint (18) 

comes from the fact that, the inventory levels given by (6) & 

(8) must be equal at 
3Tt   whereas constraint (19) comes from 

the fact that the inventory levels given by (2) & (4) must be 

equal at 
1Tt     

Thus, our problem (call it (P)) is given by 

Minimize TCU(
4321 ,,, TTTT )  subject to  

(17), (19) & (19)                                    (P) 

  

 

IV. PROBLEM SOLUTION 

     To solve problem (P), we first ignore (17). This can be 

justified by the reasons that; if (17) does not hold, then the 

whole problem would have no meaning. However, we shall not 

consider any solutions that do not satisfy (17).  Thus, our new 

problem is: 

Minimize TCU(
4321 ,,, TTTT )    subject to (18) & (19)            (P1) 

     Note that (P1) is an optimization problem with two equality 

constraints, so it can be solved by the Lagrange Techniques . 

Now ,let L(
4321 ,,, TTTT ,

21, ) be our Lagrangian then, 

L(
4321 ,,, TTTT ,

21, )=  

TCU(
4321 ,,, TTTT ) + 

2211 CC        (20) 

     The necessary conditions for having optima are: 

(21)0,0

,0,0,0,0

21

4321





 d

dL

d

dL

dT

dL

dT

dL

dT

dL

dT

dL

          

From (16), (18) & (19) we have: 










2

1

1

1

)()(
1

)()('
1

)]()()[('[
1

11

4

)(

1

4

0

)(

1

41

T

T

rTtg

T

tg

TPTce
T

dtetDTH
T

dtetDtPTH
TdT

dL

 

0)(0.
)(

121
1 

Tg
eTP                                                   (22)  

From (19)we have: 

0)()()(
1 )(

1211

4

11 
 TgrT

eTPTPTce
T

  

 

4
)(

1
2

1

1 )(

Te

Tce
Tg

rT

 , or 

4

)(
1

2

11)(

T

eTc
TgrT 


                                                 (23) 

2dT

dL  
)(

212

4

2)()]()([
1 Tg

eTDTHTH
T

 

)()()]()([
1

22323

4

TDTTTBTB
T

   

(24)0)()()(

)()](1)[(
1

)(
222231

2232

4

2

2






Tg

rT

eTDTDTT

TDTTTle
T




       

The above equation can be simplified as follows: 

)()]()([
1

)]()([
1

2323

4

)(
12

4

2 TTTBTB
T

eTHTH
T

Tg
 

 

(25)0)()](1)[(
1 )(

223132

4

22 
 TgrT

eTTTTle
T

   

0
1

3

2
2

3

1
1

343


dT

dC

dT

dC

dT

dW

TdT

dL
  .  

Recalling the constraint C1 and noting that 

)(

)(;)(;)(

3

)(

3

)(

3

)(

3

3

33

tTe

tTetTetT

tT

tTtT












 ,  

the last equation is equivalent to 









 dttDtTtle
T

dttDtBTBtT
T

T

T
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T

T

)()()(
1

)()]()([)(
1

3

2

3

2

3

4

33

4




 

 







3

2

3
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)()([)(
1

)('
1

)()(
1
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4

3

4

33

4

T

T

rT

rTrT

dttDtTeTrk
T

eTk
T

TPTce
T



 

0)]()(2 33  TPTD                                                          (26) 

To facilitate computations of 

4dT

dL  ,let  

4T

W
TCU   ,then from(16),(18)&(19)we have  

0
4

2
2

4

1
12

4

4

4

4






dT

dC

dT

dC

T

wT
dT

dw

dT

dL
  

This gives: 
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Which in turn gives 
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
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 Which leads to 

(28))]()([)()(

)]()()][()([

444144

4434

4

4 TDTPTTPTce

TDTPTBTB
T

w
TCU

rT




 

       

      Where w is taken from (16). Note that , (28) gives 

 the minimum total cost in terms of  
431 &, TT  

     Equations (18),(19),(23),(25),(26),(28), are 6 equations 

with 6 variables .Namely  
4321 ,,, TTTT ,

21,  so that the 

solution of these equations ( if it exists) gives the critical 

points of L(
4321 ,,, TTTT ,

21, ) from which (
4321 ,,, TTTT ) is  

the corresponding critical point of TCU(
4321 ,,, TTTT ). 

 

V. OPTIMALITY OF SOLUTION 

     In this section, we derive conditions that guarantee the 

existence, uniqueness, and global optimality of solution to 

problem (P) For that purpose, we first establish sufficient 

conditions under which the Hessian matrix of the Lagrangean 

function L )T,T,T   ,(T
*

4

*

3

*

2

*

1
 , calculated at any critical  point  

)T,T,T   ,(T
*

4

*

3

*

2

*

1
of L , is positive definite. To compute the 

Hessian matrix of L we consider the following notations  
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L
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,    i,j=1,2,3,4 

Then the related computations showed that L )T,T,T   ,(T
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has he following form 
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 By Balkhi and Bebkherouf [7]Stewart [32] and Emet(19) ,this  

symmetric matrix is positive semi-definite if  

4121
2

1
TTTTT

LL L                          (29) 

3221
2

2
TTTTT

LL L                          (30) 

4332
2

3
TTTTT

LL L                          (31) 

4341
2

4
TTTTT

LL L                           (32) 

Thus, the above arguments lead to the following theorem .  

 

Theorem 1. Any existing solution of (P1) is a minimizing solution 

to (P1) if this solution satisfies (29) through (32). 

 

Next we shall show that any minimizing solution  of (P1) is 

unique. To see this, we note, from (21), that each of  
4321 ,,, TTTT  

can implicitly be determined as a function of 1T , say                      

)(,1)(,)(, )( 1441331221111 TfTTfTTfTTTfT    

Our argument in showing the uniqueness of  

the solution is based on the idea that the general 

 value of  TCU  given by ( 16  ) must coincide 

 with the minimum value of TCU  given by  

( 28  ).That is we must have 

W( )(,)(,)(, 1413121 TfTfTfT )/ )( 14 Tf - 

TCU(
1413121 (,1)(,)(, TfTfTfT ))=0    

 (33) 0=))  )(,)(,)(,).TCU((

- ) )(,)(,)(,W(

141312114

1413121

TfTfTfTTf

TfTfTfT   

where  W( )(,)(,)(, 1413121 TfTfTfT )/ )( 14 Tf  is  

taken from (28 ) and TCU(
1413121 (,1)(,)(, TfTfTfT )) 

 is taken from (16).  

Note that any minimizing solution of (P1) (if it exists) is unique 

(hence global minimum) if equation (33), as an equation of T1, has a 

unique solution. This fact has been shown by Balkhi([5] ,[8] ,[9]  and 

is illustrated by Fig 2 .Hence , the above arguments lead to the 

following theorem 

Theorem 2. Any existing solution of (P1) for which 

 (29) through (32.hold is the uniqueand global 

optimal solution to(P1) . 

     Next we shall verify our model by the following illustrative 

example 

 

VII. ILLUSTRATIVE EXAMPLE AND ITS VERIFICATION 

We have verified our model by the following illustrative 

example 

0)( aattD  ,  )(t , pteptP 0)(  ,
1)0( kk  , 

23)( kTk  , ctectC 0)(  , htehth 0)(  , 

btebtb 0)(  , lteltl 0)(  , )(
3

3)(
tT

etT


  

     In order to verify the theoretical results of introduced model, 

twenty different numerical sets of the parameter values were 

chosen to  be verified for this example 
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 The numerical results are shown by the two tables below , 

namely Table I & Table II. The first table displays the values 

of the parameters, whereas the second table shows the optimal 

solution that correspond to these values. These twenty sets are 

arranged in an increasing order of the total net relevant cost in 

order to facilitate the sensitivity analysis. From the above 

numerical results, one can easily deduce the following. 

Production rate and the cost parameters  have the major 

influence on the value of TCU. Also, the difference between 

production and demand rates also has major influence on the 

value of TCU. The influence of inflation and deterioration rate 

on the TCU is minor compared to the influence of other 

parameters, but they are cannot be ignored. 

        VIII. CONCLUSION 

In this paper, we have considered a general production lot size 

inventory model in which each of the demand, production, and 

deterioration as well as all cost parameters are known and 

general functions of time. Shortages are allowed but are 

partially backordered. Both inflation and time value of money 

are incorporated in all cost components. The objective is to 

minimize the overall total relevant inventory cost. We have 

built an exact mathematical model and introduced a solution 

procedure by which we could determine the optimal stopping 

and restarting production times in any cycle. Then, quite 

simple and feasible sufficient conditions that guarantee the 

uniqueness and global optimality of the obtained solution are 

established. An illustrative example which explains the 

applicability of the theoretical results are also introduced and 

numerically verified .Most of previously related models that 

have been introduced by previous authors are special cases of 

our model. This seems to be the first time where  

such a general (EPQ) is mathematically treated and numerically 

verified.  
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Table-I . Twenty Different Sets of the Model Parameters' Values 

Set a a0 p p0 c c0 h h0 k1 k2 l l0 b b0 r θ 

Set 1 1.5 10 0.22 20 0.5 1 0.25 0.15 50 150 
0.0
5 

0.2 0.2 0.3 0.01 0.08 

Set 2 
2 10 0.3 18 0.5 5 0.35 0.3 150 70 0.4 1 0.2 0.8 0.15 0.15 

Set 3 
2 10 0.3 18 0.5 5 0.35 0.3 200 200 0.4 1 0.2 0.8 0.15 0.15 

Set 4 
1 15 0.2 30 1 1 0.2 0.1 100 100 0.1 0.1 0.1 0.1 0.01 0.01 

Set 5 
1 15 0.2 30 1.5 1 0.2 0.1 100 100 0.1 0.1 0.03 0.1 0.01 0.01 

Set 6 
1.2 15 0.2 30 1 1 0.25 0.15 100 200 0.1 0.2 0.1 0.1 0.01 0.01 

Set 7 
1 10 0.22 20 0.5 3 0.25 0.15 200 150 0.2 0.2 0.2 0.3 0.05 0.08 

Set 8 
2 10 0.3 20 0.5 5 0.25 0.15 200 150 0.2 0.2 0.2 0.3 0.05 0.08 

Set 9 
3 10 0.4 18 0.5 8 0.35 0.3 150 70 0.4 5 0.2 0.8 0.15 0.15 

Set 10 
2 10 0.3 20 0.5 5 0.25 0.15 200 200 0.2 1 0.2 0.8 0.05 0.15 

Set 11 
28 23 0.9 40 0.3 40 0.35 15 800 600 0.4 8 0.2 10 0.03 0.15 

Set 12 
25 25 0.9 40 0.4 30 0.35 15 900 870 0.4 10 0.2 8 0.03 0.1 

Set 13 
28 23 1 35 0.3 45 0.3 10 800 600 0.6 8 0.2 10 0.03 0.15 

Set 14 
30 23 1 35 0.3 45 0.3 10 800 600 0.6 8 0.1 15 0.03 0.2 

Set 15 28 23 0.9 40 0.4 30 0.35 15 800 600 0.4 10 0.2 8 0.03 0.1 

Set 16 
10 30 0.4 50 0.5 20 0.35 15 300 270 0.4 10 0.2 8 0.05 0.1 

Set 17 30 23 1 35 0.6 45 0.3 10 
100

0 
500 0.4 8 0.1 5 0.08 0.15 

Set 18 10 30 0.4 50 0.4 30 0.3 25 
100

0 
870 0.4 10 0.2 8 0.05 0.1 

Set 19 25 25 0.4 50 0.4 30 0.3 15 
100

0 
870 0.4 10 0.2 8 0.05 0.1 

Set 20 30 23 1 35 0.6 45 0.3 10 
100

0 
500 0.3 8 0.1 15 0.03 0.2 
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             Table-II . Optimal Results for the Above Twenty Sets of Table I. 

Set λ1 λ 2 T1 T2 T3 T4 Net TCU 
Set 1 

0.5493 -0.459 0.6045 1.5236 1.5825 2.7912 122.73 

Set 2 
4.0028 -2.8773 0.72063 1.71409 1.76621 2.00714 184.288 

Set 3 
3.90886 -2.6899 0.86425 2.01963 2.05162 2.20951 204.186 

Set 4 
1.0054 -0.8441 0.4161 0.8832 1.0598 1.78133 205.36 

Set 5 
1.6018 -1.3971 0.4213 0.8943 1.0098 1.3353 238.42 

Set 6 
0.974 -0.8295 0.4815 1.0172 1.1564 1.9324 250.991 

Set 7 
1.6604 -1.3776 0.5062 1.3251 1.4397 2.6263 259.37 

Set 8 
4.09641 -2.838 0.55635 1.3144 1.62465 2.16453 299.762 

Set 9 
6.24315 -4.8429 0.57998 1.28339 1.51247 1.85507 327.971 

Set 10 
3.6712 -2.6755 0.50375 1.34669 1.64704 2.17368 332.141 

Set 11 
44.5251 -29.031 0.68049 1.10141 1.35123 1.49505 3454.83 

Set 12 
33.4422 -22.932 0.58976 0.92854 1.32596 1.53403 3710.8 

Set 13 
50.1382 -37.04 0.78139 1.17311 1.26675 1.33434 3782.58 

Set 14 
47.1033 -32.363 0.81915 1.23016 1.37762 1.47252 4428.88 

Set 15 
29.7952 -19.777 0.50374 0.81141 1.48881 1.73796 5034.47 

Set 16 
2.74969 -9.84316 0.060587 0.124855 0.917797 2.07541 6213.5 

Set 17 
58.7418 -37.338 0.80441 1.18413 1.47368 1.62303 8568.35 

Set 18 
2.64418 -11.1222 0.111335 0.227364 1.58336 2.77343 12560 

Set 19 
2.02763 -11.0667 0.229738 0.479007 1.90116 2.87108 13241.9 

Set 20 
50.457 -28.935 0.55234 0.8437 1.66743 1.90786 17143.1 
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