
 

 

  

Abstract—It has become well known that simulation can be used 

to investigate complex biomedical systems in situations where 

traditional methodologies are difficult or too costly to be used. In this 

paper, Monte Carlo cellular automaton simulation is employed to 

study heterodimerization of receptor proteins. A computer program, 

based on a simple random walk of receptor molecules over a fixed 

lattice, has been written to simulate the diffusion and association of 

receptors over a two-dimensional membrane. The interaction and 

dynamics of these particles is in the form of the lattice Hamiltonian. 

The formation of two-dimensional clusters of receptors in a defined 

area of surface membrane is investigated. In particular, we measure 

the number of dimers throughout the dynamics and try to define the 

power law that governs the process. 

 

Keywords—Monte Carlo simulation, heterodimerization, 

membrane receptors, signal transduction. 

I. INTRODUCTION 

n general, cells may communicate with each other via direct 

contact, over short distances, or over large distances, and 

they may require electrical signal, inorganic or organic 

substances to be messengers in their communications. Some 

signaling molecules such as neurotransmitters, cytokines, 

growth factors, although all of which are called receptor 

ligands, are unable to permeate the hydrophobic cell 

membrane. Cells receive such information from an external 

environment through a class of proteins known as receptors 

which are located on the surface membrane. To initiate 

intracellular signals, binding of ligands to receptors is needed 

[1]. 
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Many types of receptors such as GABA, neurotransmitter 

gamma-aminobutyric acid receptors, and Dopamine receptors, 

are activated by ligand binding individually, but some of them 

are activated after ligand-induced dimerization or 

oligomerization [2-3]. Moreover, the investigations of 

intracellular signal transduction pathways have revealed that 

the activities of several components in these pathways are also 

regulated by dimerization. 

There are several examples in which activation of receptors 

are invoked after ligand-induced dimerization. The EFG 

receptor was the first protein-tyrosine kinase receptor to be 

shown to dimerize after ligand binding. The receptor for 

platelet-derived growth factor (PDGF), PDGF is classified as a 

receptor tyrosine kinase (RTK), which is the other type of cell 

surface receptors dimerized upon activation by PDGF The 

other examples might be seen in a good review paper by 

Heldin [3]. 

The essential roles of ligand binding are different in 

different systems. In the case of stem cell factor (SCF) 

receptors, the bridging between two receptors, involving 

epitopes located outside the ligand-binding domains, are 

important for stabilization of receptor dimers. The ligand 

binding may work closely with related ligands and provide 

docking sites for downstream signal transduction molecules in 

heterodimeric complexes between ErbB2 and ErbB3 or ErbB4 

[4]. In insulin-like growth factor 1 (IGF-1) receptor family, 

ligand binding does not induce receptor dimerization, but 

presumably causes a conformational alteration in the 

preformed dimeric receptor, which leads to receptor activation 

These evidences can be found in the review of Heldin [3]. 

The human Tumor-Necrosis-Factor-Receptor-Type 1, 

TNFR1, which was demonstrated to be activated specifically 

by agonist or antibodies and to initiate a signal for cellular 

cytotoxicity, especially cell death, is another example of 

ligand-induced clustering of receptors [5-6]. This kind of 

receptors also plays a significant role in well known 

mechanism of apoptosis, or programmed cell death. In the 

signal transduction pathway (STP), forming oligomers of 

adapter proteins is an important process [7]. It is known that 

TNFR1 will not associate itself unless it is activated by TNF 

because the intracellular inhibitor, the silencer of death domain 

(SODD), which binds with TNFR1, will prevent its clustering 

[5, 8]. In addition, some molecules which block the clustering 
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process are binding with receptor molecules at extracellular 

domain [9-10]. When TNF binds TNFR1 together, any two 

receptors can move closer [2]. The clustering of receptors 

makes SODD, which is bound to a receptor in the intracellular 

domain, become loose from the receptor [8]. Therefore, a 

death receptor can bind with an adapter protein which will 

attach itself to a receptor molecule. The stable clustering of 

receptors as well as successful downstream signal responses 

can thus occur. 

Because of the great significance of receptor dimerization, 

many different computational studies have been undertaken to 

elucidate various mechanisms and intermediate processes that 

can, in principle, give rise to such non-uniform receptor 

distribution or predict a success of downstream signaling [11]. 

We could categorize these computational simulation 

techniques in two main groups: a deterministic approach and a 

stochastic approach. Well known techniques such as molecular 

dynamics calculations, reaction-diffusion equations, numerical 

integration of differential equations, and master equations can 

be classified as deterministic. These calculations reveal 

information on the variables in those equations. In the same 

situation, however, one may want to learn about spatial 

characteristics of molecules interaction, and the structure of 

products, in which case the stochastic approach offers a better 

tool. The stochastic method, especially the Monte Carlo 

simulation, can even deal with complex systems, and examples 

of its applications may be found in [12-14]. 

Receptor clustering due to an interaction between nearest-

neighbor receptors appears to be a cooperative process in a 

statistical mechanics point of view [2]. Recently, based on the 

thermodynamics model for receptor clustering, the lattice 

Hamiltonian of receptor dynamics was proposed by Gua and 

Levine in [2] and Fricke and Thomas in [15]. Their ideas can 

be a prototype model to simulate the dimerization process 

among receptors induced by ligand binding. We believe that 

the dimerization process of receptors induced by ligand 

binding is similar to a process described by an aggregation 

limited diffusion [16] plus the Ising model [17] in which the 

reaction of each particle is governed by a lattice gas 

Hamiltonian. Moreover, the scaling law which is a good theory 

to describe a diffusion process should still be applicable 

throughout the dimerization of receptors. 

In order to examine these hypotheses further, we have 

written a computer program that simulates the diffusion and 

association of receptors over a two-dimensional membrane. 

The program is based on a simple random walk of receptor 

molecules over a fixed lattice. The interaction and dynamics of 

these particles is in the form of the lattice Hamiltonian which 

is proposed by Guo and Levine [2]. A Metropolis algorithm 

[18] is used to determine which configurations are lower in 

free energy and therefore favored. We use this program to 

examine the formation of two-dimensional clusters in a defined 

area of surface membrane containing receptor molecules of 

different types (unliganded receptors and liganded receptors). 

In particular, we measure the number of dimers throughout the 

dynamics and try to define the power law that governs the 

process. Moreover, we investigate the outcomes of two initial 

configurations: random and rectangular-like distribution of 

receptors. Finally we interpret our results with biological 

application. 

II. MODEL OF DIMERIZATION PROCESS 

To simplify the model for the dimerization process, we have 

made several assumptions. Our first step toward the ultimate 

goal is to provide a system of Hamiltonian that can be easily 

simulated and possesses the common characteristics of all 

dimerization processes of receptors induced by ligand binding. 

This work is based on a thermodynamics model of receptors 

which was proposed by Guo and Levine in 1999 [2]. 

According to this work, the dimerization of receptors is the 

result of ligand binding. After binding of a ligand to an 

unliganded receptor, a free receptor, the state of the receptor is 

changed to that with a lower energy level, and it is able to be 

induced to form a heterodimer with other unliganded 

receptors. Therefore, the total number of all species of interest 

in our simulation is three: a liganded receptor, an unliganded 

receptor, and a free space. 

We focus our attention on the heterodimerization process 

only (schematically presented in Fig. 1.). For the sake of 

simplicity, each receptor will be affected by the nearest 

neighbor receptors, called a short range interaction. Here, a 

clustering of receptors can be explained by means of a simple 

lattice Hamiltonian: 

 
0 IH H H= +  (1) 

where 
0H  is the potential energy of the receptor in each 

lattice site, and IH  is the interaction Hamiltonian between 

two receptors. 

 

 

 

 

 

 

Fig. 1. Schematic representation of different forms of dimeric 

complexes of typical receptors after ligand binding. (a) a 

homodimeric complex; (b) a heterodimeric complex of two receptor 

subunits. 

 

A collection of receptors is assigned to each lattice 

site, ( , )i j , which has either one or zero receptor molecules. 

We denote the number of molecules in each site by 0
i

n =  or 

1. If a lattice site ( , )i j  is not occupied by any receptor, we 

identify this situation with 0
i

n = . On the contrary, 1
i

n =  

represents an existence of a receptor at that lattice site. The 

lattice was occupied by two species of receptors, t , { , }t L U∈  

where L  denotes a liganded receptor and U  denotes an 

unliganded receptor. In our case study, we assume that a ligand 

will only bind with a surface receptor, then called a liganded 
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receptor. We let the chemical potential of the ligand be 
L

µ and 

that of the receptor be
R

µ  , while 
L

g−  is the binding energy 

between the ligand and the receptor. Their chemical potential 

contributes to the effective Hamiltonian of the system: 

 
0
( , ) ( )

i i

i

H n t nτ µ= −∑  (2)

where ( )
R

Uµ µ=  and ( )
R L L

L gµ µ µ= + + . The 

summation is over all lattice sites. 
Besides the chemical potential affecting the Hamiltonian, 

the dimerization between receptors also changes the 

Hamiltonian. One might write an interaction Hamiltonian in 

the form 

 ( , )I ij i j i j
ij

H J a t t n n
< >

= −∑  (3) 

We further assume a short range interaction. Here, a nearest 

neighbor condition is to set 1ijJ =  only when ,i j< >  is the 

nearest neighbor site and 0ijJ = otherwise. 

The function ( , )i ja t t  represents how each receptor interacts 

to other receptors or how much energy is required for 

dimerization. It is clear that this function should depend on the 

state of a receptor. For example ( , )a U U  is the energy 

between an unliganded receptor and an unliganded receptor, 

( , ) ( , )a U L a L U=  is energy between an unliganded receptor 

and a liganded receptor, and ( , )a L L represents the energy 

between a liganded receptor and a liganded receptor. 

The functions ( , )a U L  and  ( , )a L U  can be viewed as bond 

energy between these two receptors. In this simple model of 

dimerization, we are particularly interested in dimerization 

between different types of receptors. Moreover, the dimer 

arises via weak interaction (one or two hydrogen bonds). We 

will set the effective bond strength ( , )a U L  in the order of 

3
E B

g k T= [15]. 

In the ligand inducing dimerization, we assume that the 

dimerization between similar types of receptors will rarely be 

formed. For the sake of simplicity, we set ( , ) ( , ) Ea U U a L L g≈ ≈− . 

An example of these receptors is rhodopsin which prefers to 

form a dimer only in some arrangements [19]. In eq. (3), we 

can rewrite the interaction Hamiltonian as 

 T
1 1

1 1
E jI ij i j i

ij

H J g n n τ τ
< >

−
= −

−

 
 
 

∑  (4) 

where the summation is over all lattice sites. We further define 

the states of receptors: 

 
1

0
τ =

 
 
 

 for it L=  and 
0

1
τ =

 
 
 

 for it U=  

The full form of our Hamiltonian can be written 

as T
1 1

( , ) [ (1) (2)]
1 1

i i i i ij E i j i j

i ij

H n t n J g nnµ µ τ τ τ
< >

− 
= − −  − 

∑ ∑  (5) 

III. MONTE CARLO SIMULATION 

Cell membranes were modeled using a square lattice of n  

sites with periodic boundary condition, used to reduce the 

finite size effect. In general, cell membrane contains many 

kinds of particles which may move around the membrane. At 

the equilibrium state, any part of the membrane should have a 

constant flux of particles. Therefore, the periodic boundary 

condition is appropriate for this system. Each site on the lattice 

represents a possible receptor location, and each receptor’s 

size is one lattice site. No two molecules are allowed to 

occupy the same lattice site. To illustrate a simple statistical 

model of receptor dimerization, we performed Monte Carlo 

simulations with the conventional Metropolis algorithm [18]. 

For the sake of simplicity, the number of receptors was 
assumed to be conserved throughout the time evolution. 

Receptors were initially distributed according to a given 

distribution function (random distribution or rectangular 

distribution), but became associated as their independent 

random movements brought them into contact. At each time 

step of the algorithm, n  randomly chosen sites in the lattice 

were selected for possible update. If the selected site, is , 

contained a receptor, then an attempt was made to randomly 

bring the receptor to a new nearest neighbor site, 
j

s . In 

accordance with the Metropolis Monte Carlo algorithm [18], 

the move is automatically accepted if it results in a decreased 

energy for the system, and is accepted with a probability of 

 

 min[1, ]
H

P e
β− ∆=  (6) 

where 

1

B
k T

β ≡ , 

B
k  is the Boltzmann constant, and T  is the absolute 

temperature. If the target site was already occupied, then no 

move was made. The difference of the Hamiltonian could be 

calculated as described in the last section. It is important that 

the moves in the algorithm satisfy the detailed balance in the 

transition probabilities, 

 
i j H

j i

P
e

P

β→ − ∆

→

=  (7) 

which is guaranteed by the Metropolis rule. The steady state of 

macroscopic properties of the Monte Carlo ensemble then 

corresponds to the thermodynamics equilibrium state of the 

system. 

 

We might write a pseudo algorithm for this simulation as 

consisting of the following few steps. 

1 Initialize each parameter 

2 Monte Carlo step-loop. 

3 Trial loop. In each trial, a particle will be randomly chosen 

to offer a chance of moving to a new position. 

3.1 Choose a particle randomly. 

3.2 Evaluate Hamiltonian 
1

H  of the selected particle. 
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3.3 Offer a new position randomly which is close to the current 

position of the chosen receptor. The chosen receptor is 

allowed to move if the new position is free. 

3.4 Assume that the chosen receptor moves to the new position 

already. Then evaluate Hamiltonian
2

H . 

3.5 Calculate a transition probability of the event in step 3.3 by 

means of the Metropolis algorithm. The transition probability 

is defined by 

 

min[1, ]
H

P e
β− ∆= . 

 
3.6 Pick a number from uniform random number generator. If 

the random number is greater than the probability 

min[1, ]
H

P e
β− ∆= , the chosen receptor is allowed to move to 

the new position. If it is not greater than P, the event is 

rejected. 

4 Repeat step 3, the trial loop, up the number of particles in 

the system. 

5 Repeat steps 2 and 3, the Monte Carlo step-loop, until the 

system reaches a steady state. 

 

Throughout our simulation, we are interested in the 

heterodimerization of receptors. We consider the evolution of 

the system as it undergoes dimerization process. We 

qualitatively monitor the temporal evolution of a dimering 

parameter (or disordering parameter), 

 

 { }1 ( , )i j ij

i j

n n JδΑ = −∑∑  (8) 

where 1
ij

J =  only when ,i j are nearest neighbors and is 0 

otherwise, and the summation is done over all lattices i  and 

j . The delta function ( , ) 1
i j

n nδ =  if 
i

n  is the same as 
j

n , 

and ( , ) 0
i j

n nδ = otherwise. 

First, both types of receptors are located at different lattice 

sites with periodic boundary condition. In the simulation, a 

filled circle and an open circle represent a liganded receptor 

and an unliganded receptor, respectively. A particle will be 

randomly selected in each trial to offer a chance of moving to 

a new position. 

If a chosen particle lives without other receptors in its 

nearest neighborhood, it moves like a free diffusion. The 

unliganded receptor in Fig. 2a, which is denoted by the filled 

circle, is offering an opportunity to move to the right. Clearly, 

the Hamiltonian of this particle,
1

H , is equal to 
0

H . If it has 

already moved to the new lattice site (Fig. 2b), the new 

Hamiltonian,
2

H , must be evaluated and is equal to 
0

H . After 

that, a transition probability min[1, ]
H

P e
β− ∆=  will be calculated. 

In this case, one sees that 1P =  which means that the particle 

will definitely move to the lattice site on the right as in Fig. 2b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Series of snapshots showing possible events which might 

occur in the simulation. An open circle denotes an unliganded 

receptor and a filled circle represents a liganded receptor. 

 

In the same situation, a liganded receptor, a filled circle, 

appears at a right most lattice site (Fig. 2c) and is moving to 

the right. Because of the periodic boundary condition, that 

particle will move to the leftmost lattice site within the same 
row (Fig. 2d). We note that the periodic boundary condition is 

used to reduce a finite size effect, applicable when the spatial 

scale of the membrane is very large compared to those of the 

receptors. 

Fig. 2e shows an unliganded receptor, an open circle, 

surrounded by three liganded receptors, filled circles. This 

simulation considers only the short range interaction; 

therefore, the interaction between the farthest filled circle 

particle and the open circle particle is omitted. The 

Hamiltonian of the open circle particle is equal 

to
1 0

3
E

H H g= + . If it is moving to the right, Fig. 2f, the new 

Hamiltonian will be equal to
2 0 E

H H g= + . The lower energy 

renders the particle with the tendency to move to the right with 

the transition probability
2

min[1, ]Eg
P e

β−= . 

IV. RESULTS AND DISCUSSION 

Throughout, a number of simple Monte Carlo simulations 

were first conducted in order to verify that thermodynamically 

expected behavior is reproduced in a simple system and two-

dimensional aggregates are produced. All simulations were 

performed with two types of receptors, liganded receptors (L) 

and unliganded receptors (U), on a square lattice with the 

periodic boundary condition. 

Fig. 3. shows the result of a typical simulation. Both 

receptors were initially distributed at random positions (Fig. 

3a.), but became associated as their independent random 

movements brought them into contact. After 104 steps (Fig. 

3c.), many dimers had formed. 

As the simulation continued, the number of dimers or 

clusters seemed to slightly fluctuate. We assessed the extent of 

dimerization by counting the number of broken bonds, a term 

used as a dimering parameter (Fig. 4., open circles 

corresponding to AB-Bonds). Other measurements were also 

made such as the number of similar bonds, bonds between the 

same species (Fig. 4., filled circles), the mean cluster size, and 

the number of monomeric molecules. 
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Fig. 3. Sequence of snapshots showing the dimerization process of a 

80 80×  system with [ ] [ ] 5%L UC C= = . The filled and opened 

squares represent liganded receptors and unliganded receptors, 

respectively, and the white region denotes the free space. The 

configurations were recorded at 0, 10, 102, 103, 104, 105, 106, and 107 

MCS. 

 

This study was concerned with the kinetics, rather than the 

equilibrium state. From Fig. 4., we focused on the intermediate 

regime, but the simulation was still performed until the time 

step of 
7

10  at which the system had reached the steady state. 

The numbers of both types of bonds are constant beyond this 

time step. To obtain the smooth curves and small fluctuations, 

the simulations under typical conditions were repeated several 

times. We then used these averaged results in our analysis. The 

straight reference line which appears in the second regime (I) 

has slope 0.252 0.001±  and the saturation curve in the last 

regime (S) yields to the number of the broken bonds at 

equilibrium state which is 252 5± . We also found that the 

crossover time 
L

t  is 353 5± . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Plot of the broken bond (AB-Bond) and the similar bond (AA-

Bond) against Monte Carlo Step (MCS) for a 80 80×  system with 

concentration of liganded and unliganded receptors:[ ] [ ] 5%L U= = . 

We observe the emergence of an early region (E), an intermediate 

region (I), and a late or saturation region (S). The line of AB-Bonds 

appears almost symmetrical to that of AA-Bonds. 

 

The formation of the number of broken bonds is influenced 

by a large number of factors, and it is almost impossible to 

identify all of them. Nevertheless, we might initially guess that 

the number of broken bonds mainly depends on four 

quantities: the lattice size L , the concentration of liganded 

receptors
L

C , the concentration of unliganded receptors
U

C , 

and time t̂ . It is not unreasonable to expect that there is a basic 

law which determines the number of broken bonds in terms of 

these factors. In the fractal concepts [10], the relationship 

between the number of the broken bonds ˆ( , , ; )
L U

A L C C t  and 

the time step in the intermediate regime can be assumed as 

 ˆ ˆ( , , ; ) ~L UA L C C t t β  (9) 

The exponent β , which we call a dimering exponent, 

characterizes the time-dependent dynamics of the 

heterodimerization process. However, the dynamics of the 

system does not only depend on a time step t̂ , but also 

conditional on the lattice size L . 

 

4.1 Effect of System Size on Receptor Dynamics 

We performed a series of simulations in which the 

equilibrium state was measured for different starting 

parameters, especially the system size. We varied the system 

size by letting 40 40,60 60,80 80,L L× = × × ×  and 200 200× . 

Even though the system size changes, the concentrations of 

liganded receptors and unliganded receptors are fixed: 

[ ] [ ] 5%
L U

C C= = . The other parameters and conditions are 

similar to those in the previous section. 
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Fig. 5. Data on the number of heterodimer (AB-Bond) versus Monte 

Carlo Step at the lattice sizes 40 40,60 60,80 80× × × , and 

200 200× . 

 

From the plots in Fig. 5 of the number of broken bonds against 

Monte Carlo steps, for four sizes of the lattice, it may be seen 

that all curves display similar behaviors. They go through a 

relaxation period in the first regime (E). Then the numbers of 

broken bonds grow steadily. Finally they become constant in 

time. 

When the system reaches the equilibrium state, the number 

of broken bonds depending on the system size could be 

expressed as [10] 

 ( , , ; ) ~L UA L C C t Lα→ ∞  (10) 

whereα  was the disordering exponent. According to Fig. 5., 

the staurated exponent α  was found to be 2.010 ± 0.004 for 

all the sizes considered. 

The simulation results and the power law assumption in Eq. 

(9) and (10) can be combined into a finite-size scaling 

expression of the form 

L

( , , ; ) ~ ( )
t

L U

t
A L C C t L f

α  (11) 

where ( )f x  is a scaling function defined by 

for 1,
( ) ~

constant   for 1,    

x x
f x

x

α <<

>>





 

To test this assumption, we plotted ( , , ; ) /
L U

A L C C t L
α

 

against 
L

/ tt  for several values of the system size. Fig. 6 shows 

that, with the chosen parameter values, the data points are 

collected along a single curve, supporting the validity of the 

scaling assumption in (11). 

 

 

 

 

 

Fig. 6. The data in Fig. 5. re-plotted with
L( / t )L f t

α
. Here, 2.0α =  

and Lt 370=  have been used to collapse all of the data points onto a 

single curve. 

 

4.2. Effect of Substrate Concentration 

We now turn our attention to different initial concentrations of 

liganded and unliganded receptors. For each case, four 

different lattice sizes, 40 40, 60 60,80 80,× × × and 200 200× , 

are stud- ied. The other parameters, such as the coupling 

energy, and the square lattice size, are the same as in the 

previous simulations. Either liganded receptors or unliganded 

receptors are equivalent in terms of the physical meaning. 

They are symmetric variable. The outcome from using the 

concentrations of liganded and unliganded receptors of 5%  

and 10% , or 10%  and 5% , respectively, is the same. The two 

cases could have been interchangeable. 

The influence of the system size and the substrate 

concentration on the same set of parameters is shown in Fig. 7. 

With the same concentrations of both types of receptors, the 

dimerization process gradually progess in the same way. 

Curves in each panel seem to differ in the y-values only. The 

dynamics of the system were obviously discernible if we 

compared the results with other panels. For fixed value of the 

system size while changing the number of receptors, the level 

of the broken bond counts might increase or decrease. The 

more number of receptors, the higher the curves. The 

dimerization process was clearly reflected in the broken 

bond ( , )L tΑ . As seen in Fig. 7., one could also obviously 

identify three separate regions which have already been 

observed. It should be noted that the I and S regions emerge 

only in a finite system. We evaluated the exponents ,α β  and 

the crossover time 
L
t  and show them in Table 1. 
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Fig. 7. Simulation in investigation of the effect of both concentration 

of receptors and lattice size on the receptor dynamics.  In each graph, 

the number of the broken bonds corresponding to the same 

concentration of substrate was plotted against the Monte Carlo Step.  

We studied the eight cases of concentrations of receptors. In figure 

(a) to (h), the concentrations of liganded receptors and unliganded 

receptors are shown in the number pairs ([ ], [ ])
L U

C C  as (10,5), 

(10,10), (15,5), (15,10), (15,15), (20,5), (20,10), (20,15), (20,20), 

respectively. 

 

Lattice Saturated no. of Dimering Crossover 

size broken bonds exponent (β) time (tL) 

40 61.01 0.246 ± 0.003 392.39 

60 140.27 0.248 ± 0.002 384.98 

80 251.53 0.252 ± 0.001 353.19 

200 1581.30 0.247 ± 0.001 375.96 

 

Table 1. Parameter values from the simulation data shown in Fig. 5, 

giving the saturated number of the broken bonds, the staurated 

exponent (β), and the crossover time (tL). 

 

It is natural to ask whether the scaling forms found in the 

previous section still hold. We present the scaled plot of the 

number of broken bonds, 

( , , ; ) / ( , , ; )
L U sat L U

A L C C t A L C C t  

against 
L

/ tt , in Fig. 8. With the same concentration of 

receptors, we easily found that all graphs collapse down to a 

single curve which supported the scaling hypothesis. The three 

temporal regimes are well separated and easy to distinguish. In 

each intermediate regime the number of broken bonds follows 

different power laws. The slopes of the straight lines are 

shown in the Table 1. Unlike the last regions, the saturation 

number of the broken bonds is governed by the 
2

L  power law 

which is independent of receptor concentration. One might 

explain that this 
2

L  power law has been derived from the 2-

dimensional space. Even though the number of each kind of 

receptors increases as the lattice size increases, the 

concentration, the ratio of number of particles to the total 

lattice size, was constant. Each particle in the same 

concentration was aware of the same characteristic length 

scale. Therefore, the saturation number of the broken bonds 

increases relatively to the increasing number of particles, 

according to the 
2

L  power law. Due to the same characteristic 

length which each particle sees, the systems also reach the 

steady state at the same crossover time
L

t . 

Why is a scaling law still valid for the number of broken 

bonds in the system which has the same concentration? The 

key to this question is the interaction among particles in the 

system [20]. The interaction among particles directly defines 

the growth of the number of broken bonds. This interaction 

does not depend only on the lattice Hamiltonian, but also on 

how many receptors there are. However, for the systems with 

the same concentration, the same scaling law is still applicable. 

One assumption we have used is that receptors start with a 

random distribution. However, the real configuration of 

receptors on the cell membrane does not always appear in a 

random fashion. One possibility is that receptor molecules 

might cluster themselves into different distributions (Fig. 9a). 

Will the dynamics of the system be the same as those observed 

in the previous simulations? This could be examined by 

starting the simulation with receptors in different kinds of 

distribution. 
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Fig. 8. The data in Fig. 7. re-plotted with ( )

L

t
L f

t

α
. In all figures, the 

saturated exponent ~ 2.0α  and the corresponding crossover time 

L
t  have been used to collapse all of the data onto a single, unique 

curve ( )f x . The curves are increasing for 1x <  with ~ 0.24β , 

but constant for 1x > . 

 

4.3. Effect of Initial Configuration 

In this section, we will discuss simulations starting from a 

rectangular arrangement of homodimers. The two species are 

spatially segregated (shown schematically in Fig. 9a.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The visual impressions of the dimerization process of the 

system starting with a rectangular island distribution. The set of 

parameters used is the same as that of Fig. 4. The filled squares and 

the open squares represent liganded receptors and unliganded 

receptors, respectively, and the white region denotes the free space. 

The configurations are recorded after
2 3 4 5 6

0,10,10 ,10 ,10 ,10 ,10 , and 

7
10  MCS. 

 

The receptors are initially clustered horizontally in the 

middle of the lattice. Each group of receptors forms a smooth 

interface. We call this distribution a rectangular island 

distribution. To examine the dynamics of the system, we 

performed Monte Carlo simulations of receptor dimerization 

with two receptor species present. Quantitatively, the visual 

impressions of the dimerization process of such initial 

configuration is seen in Fig. 9. In this case, the initial interface 

at 0t =  is completely smooth. As time progresses, the 

interface begins to break up slowly as the receptors diffuse 

away to occupy the free space. As more particles diffuse to the 

opposite side, roughening of the interface begins. As time goes 

by, the degree of heterodimerization becomes larger and the 

interface fades away. Eventually, at steady state, the two 

receptor species appear well-mixed or become homogeneously 

mixed (Fig. 9h.). 
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Fig. 10. Comparison of snapshots of the system starting with a 

random distribution (left column) and the rectangular island 

arrangement (right column).  The figures on the left side and the right 

side were recorded at the same time steps for comparison. Figures (a), 

(c), (e), and (g) correspond to time steps of 
3 4

0,10 ,10 , and 
7

10 , 

respectively. 

 

 

To compare the rectangular island arrangement with the 

random distribution, the sequences of snapshots of these two 

initial configurations are shown in Fig. 10. In both simulations, 

[ ] [ ] 5%, 3
L U E B

C C g k T= = = , and the lattice size = 80 80× . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The time evolution of the number of broken bonds. The 

system is identical to those in Fig. 7. The configurations in (a), (b), 

(c), and (d) are pictures taken at time steps of 
3 4

10,10 ,10 , and 
6

10 . 

 

While snapshots of simulation results are illuminating, it is 

also useful to obtain more quantitative measures of 

heterodimerization by calculating the number of broken bonds 

from snapshots and then averaging over ten iterations. In Fig. 

11. some visual impressions of the dimerization process and 

the number of broken bonds are presented as time evolution. 

From the graph, the dynamics of this system is obviously 

different from the system subject to an initial random 

distribution observed in the previous section. We divided the 

curve in Fig. 11. into three main regions in the same manner as 

in the Fig. 4: an early region (E), an intermediate region (I), 

and a saturation region (S). The first region (E) from the 

rectangular island distribution seems longer than that from the 

random distribution. Moreover, we even observe the shooting 

up peak in the intermediate region (I). These phenomena could 

give an intuitive understanding of the system. We can divide 

the interface region in Fig. 10b. into three interfaces labeled in 

the figure. In the early steps, Fig. 11a., the interface 2 is still 

unchanged as receptors at the interfaces 1 and 3 attempt to 

occupy the vacancy. The number of broken bonds remains 

constant. As the time went by, Fig. 11a, the interfaces 1 and 3 

disappear while the receptors at the interface 2 still are unable 

to move because of their neighbors. As more particles diffuse, 

the receptors at the interface 2 are free to move and they are 

likely to aggregate in big clusters. These islands cause the 

highest number of the broken bonds. After that the big clusters 

crack into small ones, and the curve goes down. Eventually, at 

steady state, the system becomes completely mixed as in the 

system that starts from a the random distribution. 
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Fig. 12. Time evolution of the number of broken bonds. The system 

was initiated with the rectangular island arrangement and the lattice 

size was 80 80× . The dynamics of receptors changed differently 

when the selected concentrations of liganded receptors and 

unliganded receptors are (in pairs of ([ ], [ ])
L U

C C ) (5,5), (10,5), 

(10,10), (15,5), (15,10), (15,15), (20,5), and (20,10), respectively. 

 

We now turn to our simulation that investigates the effect of 

substrate concentrations on the dynamics of the system with 

the rectangular island distribution. We counted the number of 

the broken bonds at each time step and plotted the results in 

Fig. 12. Comparing Fig. 12. to Fig. 7., they both share the 

same saturation level in the last region. In contrast to the 

system with the random initial configuration, here the early 

regime (E) takes longer time because the mobility of particles 

is limited by the initial configuration. The particles in the 

random distribution have more freedom than those in the 
rectangular island distribution. In addition, their initial 

distribution and the concentration of substrates directly affect 
the dynamics in the intermediate region (I). According to Fig. 

12., we can observe the shooting up peak in the low 

concentration cases. However this peak is not observed in the 

higher concentration. 

A reasonable explanation is that the big clusters at the 

interface 2 (Fig. 11c.) would be dominant only in the low 

number of receptors. When the number of receptors increases, 

that peak is lost due to the number of heterodimers in other 

regions. 

 

Fig. 13. The change in the number of broken bonds for the systems 

starting with a rectangular island distribution. Simulations were run 

for various lattice sizes: 40 40, 60 60, 80 80× × × , and 200 200× , 

while the concentration was kept at 5% . 

 

Finally, we varied the system size with the rectangular 

island arrangement at constant concentration. Fig. 13. presents 

the time evolution of the number of broken bonds for different 

system sizes, 40 40, 60 60,80 80,× × ×  and 200 200× . Here, 

the concentrations of the liganded receptors and the 

unliganded receptors are both 5% . Clearly, the shift of the 

crossover time is observed. The larger the system size, the 

higher the crossover time becomes. 

Apparently, the system in which the receptors are initially 

arranged in the rectangular distribution configuration is 

effected by the lattice size. In comparison to the system of 

receptors with the initially random distribution, the crossover 

time is shifted toward the right of the time axis. This is 

because the system of receptors with the initial rectangular 

distribution needs more time to rearrange itself to the same 

equilibrium as the system with the initial random distribution. 
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