
Applications of Genetic Algorithms

in Electrical Engineering

Marius-Constantin O.S. Popescu, Nikos E. Mastorakis, Liliana Popescu- Perescu

 Abstract: - In this paper were presented the main directions

of genetic algorithms. There is a large class of interesting

problems that have not yet been developed fast algorithms.

Many of these problems are problems which occur frequently

optimized in applications. The studies of this work will allow us

to compare the results from different methods of determining

these parameters and especially those based on genetic

algorithms.

 Keywords:- Asynchronous motor, Genetic operators,

Genetic programming, Objective function.

1 INTRODUCTION

iving is a problem poorly optimized is always

possible to find an efficient algorithm whose

solution is almost optimal [2], [3], [9], [11]. For

some stupid problems we can use optimized

algorithms probabilistic. These algorithms do

not guarantee optimal value, but the elections random

enough weaknesses of errors can be made so that we can

overcome them. There are many practical problems for

such optimized algorithms for a high quality became

available. In general, any abstract process to be

accomplished can be thought of as a problem-solving,

which, in turn, may be perceived as a search space with

potential solutions. How are we looking for the best

solutions, we can look at this task as a process optimized.

For small spaces, classical methods are sufficient

executive, large spaces for special techniques of artificial

intelligence should be taken into account.

 Genetic algorithms are among these techniques, they

are stochastic algorithms whose search methods molds

some natural phenomena [1]. The idea behind genetic

algorithms is to do what nature does. Some fundamental

principles of genetics are borrowed and used artificially to

build search algorithms that are robust and require

minimum information about the problem. Genetic

algorithms were made using the process of adaptation.

They operate, in particular, with binary strings and use a

recombination operator and a mutation.

Marius-Constantin O.S. Popescu is currently an Associate Professor

at the Faculty of Electromechanical and Environmental Engineering,

Electromechanical Engineering Department, University of Craiova,
ROMANIA, e.mail address popescu.marius.c@gmail.com.

 Nikos E. Mastorakis is currently a Professor in the Technical

University of Sofia, BULGARIA, Professor at ASEI (Military Institutes
of University Education), Hellenic Naval Academy, GREECE, e.mail

address mastor@wseas.org.

 Liliana Popescu-Perescu is currently a Teacher in the ”E.Cuza”
College of Craiova, ROMANIA, e.mail address lpopi2001@yahoo.com

Mutation by changing a (gene) from a chromosome, and

by crossing change genetic material between two parents,

if parents are represented by strings of five bits, for

example (0, 0, 0, 0, 0) and (1, 1, 1, 1, 1), crossing two

vectors can result in descendants (0, 0, 1, 1, 1) and (1, 1,

0, 0, 0) (this is an example of such called cross-point with

a notch). The fitness of an individual is assigned in

proportion to the value function corresponding to the

individual criteria, individuals are selected for the next

generation on the basis of their fitness. We stated

previously that genetic algorithms work with strings of

bits representing the parameters and not the parameters

them selves. After created a new series (a new solution)

through the genetic operators must evaluate it. In most

cases, the fitness is just the criterion function for that

solution. If our objective is to minimize the criterion, then

we say that a solution is better than another, if the fitness

of the two is greater [4], [5]. PMODZ4KCCKDNH

II. STRUCTURE OF A GENETIC ALGORITHM

 In 1990 Koza proposed such a evolution system,

genetic programming, to search for the best computer

program to solve a particular problem. The program

structure development is shown in Fig.1.

Fig.1: Structure of a genetic algorithm after [8] and [15]

Thus, attempts to improve the population of chromosomes

within the time available, the meaning of closeness as

much as the optimal solution. Generation 0 is chosen

completely randomly, and the remaining operations and

use them to generate random numbers. Consequently, the

result of execution of such algorithm will also depend on

chance, and, moreover, will be run at each other. To better

explain how the algorithm works, we choose a concrete

problem, namely, "Determination of a maximum function

f(x) on interval [a, b]". This problem has the advantage

that allows us to evaluate whether the algorithm easily

leads us to the solution or not, although there is a

procedure evolutionary algorithm

t←0

Creation P(t)

Asseement P(t)

 While not subjet to termination

 t←t+1

 selection P(t) from P(t+1)

 change P(t)

 assessment P(t)

 end while

end procedure

G

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 356

significant example for using genetic algorithms [10].

Clearly, for the best results, you should consider as many

values for the variable x in the interval [a, b]. I noted with

no number of such values. All values that we choose will

be quantified in the form of chromosomes. Chromosome

is a sequence of k binary positions, each position being a

gene. Therefore we have no chromosome with k genes

each. First step is to choose randomly the NR

chromosome, generating one sequence of random gene k

(values of 0 or 1). To convert a chromosome into a real

variable in [a, b], a division of the field in the 2
k
 intervals

and assigned to chromosome a↔ 00...000 and

b↔ 111...111 chromosome, the rest being distributed

proportionally.

 To obtain the solution to first consider the

chromosome as NR: c1,c2 …,cNR. To assess the population

of chromosomes, will calculate the following values:

 - First, objective function)(ii cfv = , thereby convert

each chromosome into a real value, namely the function

whose maximum ill want point in the chromosome but ci;

 - Calculate the amount the objective function

∑=
=

NR

i
ivS

1

; (1)

 - For each chromosome we calculate the probability of

selection

{ }NRi
S

v
p i
i ...2,1; ∈= ; (2)

 - For each chromosome is calculated cumulative

probability of selection

∑=
=

j

i
ij pq

1

; (3)

the observation series q1,q2…qNR will be increasing, the

last value being 1.

As ci+1 but contains a value for which to obtain a higher

value for the objective function, both with difference

between qi+1 and qi will be higher. Thus, row cumulative

probability selection is a division of the interval [0.1]. To

create an intermediate population of chromosomes, select

NR uniform random numbers in the interval (0, 1]. If a

number is located in the (qi, qi+1], but then chromosome

ci+1 is selected. It can be seen that the probability that a

chromosome is selected to be much higher as the (qi, qi+1]

is greater. I showed in the previous paragraph as the

length of this interval is much higher as the objective

function for the chromosome is larger. Consequently,

there is a greater probability that a chromosome “best” to

be selected, but does not warrant its selection. In addition,

a chromosome can be selected several times in the

intermediate population [14].

 The next step is mating between chromosomal

populations of intermediate. Here is a problem, namely

how to choose chromosome pairing. First, if you choose

none, there is the possibility to obtain a solution better

than the present, and if you choose all too much risk

destroying the entire population of chromosomes, so that

after pairing time resulting population may be better or

worst. In the below read from a computer keyboard, and

for each chromosome generate a random number in the

interval (0, 1]. If the number is smaller than pc, that will

be subjected to chromosome pairing time. An acceptable

value for pc is 0.1 (10% of chromosome pairing time will

be subjected). Technical crosses is the following:

 - Cross first chromosome selected for mating with the

second, third fourth etc (if selected for mating to an odd

number of chromosomes, is the last drop);

 - The crossing is in exchange between the two genes at

chromosome, where t is chosen randomly in (0, k).

 After crossing two chromosomes are obtained us:

 - The first new chromosome will contain the first gene

of the first t chromosome old and last k-t genes of the

second chromosome old;

 - The second new chromosome will contain the first

gene t of the second chromosome old and the last k - t

genes of the first chromosome.

Finally, the intermediate population of chromosome is

subjected to simple mutations. For this, we read from the

keyboard probability of occurrence of mutations simple ps,

which should have a small value (close to 0). For each

gene of each chromosome is randomly choose a number

between (0,1], and particularly if the number is less than

ps, gene content change of 0 or 1 in reverse. Following

these operations, to obtain a new population of

chromosomes and returned to the stage of assessing the

population. The algorithm runs in limited time available,

which is read as a parameter from the keyboard. Note

huge similarity between genetic algorithms and everyday

life. Although chromosomal values have higher chances to

reach a new population, there is the possibility that some

of them to lose. Important chromosome is not so, but the

population of chromosomes. It must evolve.

 We illustrate the working of genetic algorithms using a

simple problem: designing a box of cans. We consider a

cubic box of canned food, with only two parameters: the

diameter d and height h (obviously, can be considered and

other parameters such as thickness, material properties,

shape, but just enough are the two parameters to illustrate

with genetic algorithms). To believe that this box of

canned food should have a volume of at least 300 ml and

the project objective is to minimize the cost of materials

used in the manufacture of cans.

 We formulate our problem as follows:

π+

π
= dh

d
chdf

2
),(

2

, (4)

to minimize the function where c is preserved material

cost per cm
2
, and the expression in brackets is the area

preserved. Function f is called and the criterion function

(or objective function). Have met and provided that the

box is at least 300 ml and we will make it so:

.300
4

),(
2

≥
π

=
d

hdg (5)

The parameters d and h can vary between certain limits.

The first step in using a genetic algorithm is to establish a

codification of the problem. Binary encoding is the most

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 357

common techniques of coding, it is easy to handle and

gives robustness problem. Binary representation can

encode almost any situation, and operators do not include

knowledge of the field problem. It's why a genetic

algorithm can be applied to very different problems. If

binary encoding, each value is mean by a string of

specified length which contains the values 0 and 1. In

some situations it is necessary to use encoding "natural"

problem, instead of binary representation. An example

would be the natural coding actual coding, which uses real

numbers for representation. To use genetic algorithms to

find optimal values for parameters d and h, which satisfies

the condition in the form and function g to minimize the

function f, we will first need to represent the binary strings

in the parameters (we use therefore a binary encoding of

the problem). Genetic algorithms require not only values

the whole of a given interval, in general, we can choose

any real value or by changing the length binary string.

III. GENETIC OPERATORS

 We further describe using genetic operators, usually in

a genetic algorithm.

 Selection. An important role in a genetic algorithm is

occupied by the selection operator. The operator decides

wich of the population individuals will participate in

forming the next population. The purpose of selection is to

provide more reproductive opportunities to the most

performant of the individuals in a given population.

Through selection we aim to maximize individual

performance.we will briefly present the most important

selection mechanisms in the following

 a) Proportional selection. In proportional selection

case, the likelihood of selecting an individual depends on

the performance thereof. Suppose you have a lot of

chromosomes x1,x2,…,xn. For each chromosome we

calculate xi performance to f(xi). Should be provided that

f(xi)≥0. The performance sum for all chromosomes of the

population will be the total performance and we will note

it with F.

 b) Selection based ordering. This selection is to

calculate (for each generation) the fitness function values

and to arrange the individuals in a descending order of

these values. It will assign each i individual a selection

probability pi that depends on its rank in series.

Probabilities now depend only on the chromosome

position. The most promising individual has probability is

1.

 c) Selection through contest. Selection through

competition or selection lists are based on direct

comparison of two chromosomes and selecting the best

performing. The operations involved are:

• are chosen at random two chromosomes;

• calculating performance chromosome selected;

• best performing chromosome is selected (copied in the

population over which interim apply genetic operators).

 Other mechanisms for selecting another type of

selection is elitist selection. In this case, every generation

we keep the most promising or the most promising

individuals. Another idea would be that every generation,

to be replaced only a small part of the population.

 The reproduction operator. Operator reproductive role

is to maintain the promising solutions of the population

and to eliminate the less promising, keeping constant the

population size. This is done as follows:

• identifying promising solutions of the population;

• to create multiple copies of promising solutions;

• be deleted less promising solutions of the population so

that multiple copies of promising solutions can be placed

in the population.

There are several ways to do this. The most common

methods are proportional selection, the tournament

selection and selection by order.it is easily seen that the

promising solutions have more than one copy in the

intermediate population.

 The crossing operator. The meeting is applied on

individuals in the population between. In our example,

will be applied to the binary representation of the six

elements that we have people in between. The cross acts

in the following way: they are two randomly chosen

individuals from intermediate population (which is also

called and cross the pool) and some portions of the two

individuals are interchangeability. The operator mimics

natural interchromosome crossing. It is used by operators

of cross type (2,2), ie, two parents give birth to two

descendants. Crosses made an exchange of information

between the two parents. Descendants produced by

crossing will have characteristics of both parents. Given

the importance of crossing were proposed several models

of interbreeding. We enumerate here some of those used

when binary coding.

 Crossing point with a cleft. R be the length of

chromosomes. A notch point is an integer k∈{1,2,..., r-1}.

The number k indicates the position of the chromosome

sequence where chromosomal breaks that are produced

segments to recombine with other segments from other

chromosomes. We consider two chromosomes:

 x=x1x2...xk xk+1...xr and y=y1y2...ykyk+1...yr.

Following recombinations change chromosomes between

the two sequences in the right notch point k chromosomes

will be: x'= x1x2 ... xk yk+1 ... yr and y'= y1y2 ... yk xk+1… xr.

For example, if you have a possible representation of the

two chromosomes:

descendants will be:

 Cross with more notch points. If more notch points, the

segments are obtained by combining the rule again. We

consider two crossing notch points. This type of crossing

is done according to schedule below. Of chromosomes:

will give two descendants of the type:

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 358

In the case of three notch points, descendants will form:

Returning to our example, we consider the crossing with a

single gash point. For example, the crossing of two

solutions represented by the box that has the fitness 23, h

=8 d =10 and the box with the fitness 26, h=14 and d=6,

will give two descendants who will have the fitness 22,

h=10 and d=6, respectively the fitness 38, h=12 and d=10

model below:

Fig. 2: Explanation of the application with a single

crossing point cut.

It should be noted that the crossing not randomly

generates descendants. Although it is unlikely that the

cross between two solutions of the population to generate

“sons” solutions most promising than the parent solutions,

however, it shortly becomes clear that the chance to create

more promising solutions is higher than in random search.

From crosses with a single notch point of a pair of binary

strings, it can only create two different pair strings who

will have in its composition combining bits from both

parents; son solutions being created are, probably, strings

at least as promising. Therefore, not every meeting can

create solutions as promising, but will not be less

promising than their parents. If a less promising solution

was obtained, then it will not appear when the next

reproduction operator will be applyed and thus it will have

a short life. If a more promising solution is created, then it

is likely that she has more copies when the following

reproductive operator implementation. To keep such a

string selection promising During the reproduction

operator application, not all strings of the population are

used to cross. The crossing operator is primarily

responsible for the search aspect of genetic algorithms,

while the mutation operator is used for other purposes.

The mutation is the second operator in the genetic order of

importance and its use. The effect of this operator is the

change of a single position from chromosome. By

mutation other individuals are introduced in the

population who could not be obtained through other

mechanisms. The mutation operator is acting on bytes

whatever of their position in chromosome. every bit of the

chromosome may suffer a mutation. In a chromosome

may exist, in conclusion, more positions that undergo

mutation. The Mutation is a probabilistic operator (ie does

not apply safely). We consider an n population of

individuals (chromosomes), each having length r. Each bit

has the same probability pm to suffer the mutation. There

are several variants of the mutation operator. One of them

would be the mutation into the strong form. In this case it

proceeds as follows: it generates a random number q in

the [0, 1) interval. If q<pm, then the respective position

mutation runs changing position 0 in 1 or 1 In 0.

Otherwise, the position does not change. Returning to our

example, if we apply the mutation operator to an obtained

solution in the process of cross-breeding,to the solution

that has fitness 22, we get a solution that will have fitness

16.

Fig. 3: Explanation of the application of the operator to

move.

The solution obtained is more promising than the original

solution. In consequence, the reproduction operator selects

the most promising rows, cross operator combines two

strings substring from the promising form to the most

promising substring and mutation operator changing

strings locally, also to improve the solution.

IV. EVOLUTIONARY STRATEGIES

 Evolutionary strategies have been developed as a

method for solving optimization problems

parameters. First evolutionary strategy was based on a

population consisting of a single guy. It is also used a

single operator in the process of evolution: mutation. This

is in line with the biological concept that small changes

occur more frequently than big changes. Ussualy this

strategy that a parent gives birth though mutation to a

single descendant is known as evolutionary strategy 1+1.

The way that this algorithm practically applys is simple: a

solution is generated randomly on the search domain and

mutations are made to it. The best of parent and

descendants is chosen. The mutation operator is applied

repeatedly until a solution is reached. Another type of

strategy is the strategy (µ+λ): µ parents produce λ

descendants. New population (temporary) of (µ+λ)

individuals is reduced again - through a selection process -

to µ individuals. On the other hand, in the strategy (µ, λ),

µ individuals produce λ descendants (λ>µ) and through

the selection process a new population of µ individuals is

choosen only from the crowd of λ descendants. Thus, the

life of each individual is limited to one generation.

 A. Evolutionary Programming. Original evolutionary

programming techniques have been developed by

Lawrence Fogel [6]. He sought a development of artificial

intelligence in the sense of developing the ability to

predict changes in an Environment. Environment was

described as a sequence of symbols and evolving

algorithm supposed to obtain a new product, namely a

new symbol. The symbol will maximize the final function

who will measure the accuracy of predictions. For

example, we can consider a series of events marked a1, a2,

..., an, an algorithm will determine the next symbol (1

year), based on known symbols a1, a2 ,..., year. The idea

behind evolutionary programming is to develop an

algorithm. As in evolutionary strategies, in evolutionary

programming technique descendants are created first and

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 359

then the individuals are selected for the next generation.

Each parent produces a single descendant, so intermediate

population size doubles (as in evolutionary strategy (n, n),

where n is the size of the population). The descendant is

created by a random mutation of the parent (it is possible

to apply more than one mutation to an individual). A

number of individuals (the most promising) equal to the

size of the population are retained for the new generation.

In the original version this process is repeated to obtain a

new symbol which is available. Once obtained a new

symbol, it is added to the list of symbols known and the

whole process is repeated. Recently, evolutionary

programming techniques have been used for solving

numerical problems of optimization and many other

purposes.

 B. Genetic Programming. Another interesting approach

was discovered relatively recently by John Koza [8]. Koza

suggests that the desired program will evolve himself

during a process of evolution. In other words, instead of

solving a problem and instead of building a progressive

program to solve the problem, we try to find a source code

to solve. Koza developed a new methodology which

provides a way to make this search. By example,we want

to obtain a program Pascal or C++ to solve the problem of

the Hamiltonian road or exit from a maze. So, we are not

interested to get a solution to a set of some data, but

rather, we are interested to get a source to generate a

correct solution for any given entry. In other words, we

are interested to get as result a similar program to which

that we could have writen if we knew to solve the

problem. In terms of evolutionary the approach to such

problems is generating a lot (population) random source

codes, which are then selected based on function and

fitness evolved through specific genetic operators. Most

importantly we must assign a function of quality (fitness

function)to each generated program. The fitness function

should reflect the performance of the program of which it

is attached. Usually the attaching of a fitness function is

made running the program and measuring the solution

quality in relationti with the solution which is known to be

optimal. A program will have a higher quality if its

generated solution will be similar to the correct solution.It

is not bad if an optimum solution Is not known

previously, because we want to achieve solutions with a

fitness as a high as it can be (or as small as it can be). The

evolution of the source program is done through specific

genetic operators. For example, a recombination operator

can mean the merging of sequences from a source code

with sequences from another source code. A mutation

operator could mean the insertion of new instructions in

the source code, deleting of instructions, processing

instructions. Obviously, after aplying those genetic

operators a source code is generated that contains syntax

errors. Also, useless source code sequences are generated.

In what follows this will solve a problem using genetic

algorithms. It is considered M a lot of n and a number S.

To determine of lot set M which has the sum of the

number closer to S. Determination of lot amount of time a

problem is NP-complete. This means that it is not known

whether or not there is an algorithm of polynomial

complexity to solve this problem. Until now, the

algorithms used have exponential complexity, and some

cases have pseudo-polinomial complexity. For example,

we can reasonably solve this problem if the input data

satisfy the following conditions: they are no more than

100 natural numbers, the amount not exceeding 500

numbers (more precisely, the number of numbers and

their sum must not exceed the maximum allowable size

for the allocation a matrix (we assume that it is statically

allocated). If these conditions should be fulfilled, we

could easily solve this problem using dynamic

programming, using an algorithm of complexity O(n•S).

However, if the numbers would not be whole but real, or

their sum would be greater than 500, or differences

between them would be so great. Then the algorithm by

dynamic programming can not be used. I have listed here

only cases, but can be imagined and other difficulties. For

these reasons we will solve this problem using a genetic

algorithm. We need to find a representation of the solution

and also a function of fitness. How we represent our

solution is given even stated the problem: it requires a lot

of M whit n elements. So, a solution of the problem is a

lot. We encode a lot by a string of length n which contains

only values 0 and 1. If an item will have value k is 1, then

lot will include the Mk (the k-th element of M crowd), and

if position k is 0, then the item does not belong of lot [13].

The calculation of the fitness (quality) of a solution (of

lot) is simple. Calculate sum of lot and fitness will be the

difference (in absolute value) of the amount obtained and

the number of S. Under these conditions the fitness will be

minimized, because we want to determine an amount for

which of lot elements is as close time value of S. The

proposed genetic algorithm for solving this problem has

been described above. We will use the tournament

selection to obtain intermediate population. Genetic

operators used are specific binary coding (turning a single

point of scission, with mutation probability pm=0.1).

 Allocation of fitness. I have stated previously that

genetic algorithms work with strings of bits representing

the parameters and not the parameters them selves [12].

After he created a new series (a new solution) by genetic

operators should evaluate it. In most cases, the fitness is

just the criterion function for the solution. If our goal is to

minimize the criterion, then we say that a solution is better

than another, if the fitness of the two is greater. In another

example of the problem, it is proposed to minimize one of

the five features proposed by Ken DeJong in 1975, F1

(area):

 () ∑=
=

3

1

3

i
ixxf , []12.5;12.5−∈ix . (6)

The global minimum in f(0,0,0)=0. After all calculations

were performed for 100 generations, the results will be

displayed [13]:

GA running

GA terminated

Fitness function value:

 2.4109846667385811E-4

Optimization terminated:

average change in the fitness value

less then options.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 360

Also, during the evaluation can be seen in real time as

parameters vary elected (Fig. 4). It is noted that as

chromosomal approaching optimal, tend to behave like,

because they are influenced by its predecessors. They say

that they evolve to the optimum. To avoid congestion on

the graphics will set a maximum value of 3.

a)

b)

c)

d)

Fig. 4: Variation of parameters considered example.

In general, any abstract task to be performed, could be

seen as solving a problem, which in turn, can be seen as a

search in the potential solutions. As always, seek the best

solution, we can look at this process as one of

optimization. For small spaces, classical methods are

comprehensive enough, for large spaces can be used

special techniques of artificial intelligence. The best

known techniques of the evolutionary computation class

are the genetic algorithms, evolutionary strategies, genetic

programming and evolutionary programming. There are

other hybrid systems incorporating various properties of

the above paradigms, moreover, the structure of any

evolutionary computation algorithm is largely the same

[14].

V. THE PARAMETERS IDENTIFICATION OF THE

ASYNCHRONOUS MACHINE

 The parameters necessary to simulate the operation of

the machine are divided into electromagnetic and

mechanical parameters. Further we show that the required

electromagnetic parameters are (Rs, τs, τr et σ). An

asynchronous machine, given the source, is not able to

provide information on the value of its equivalent rotor

resistance. So we can’t determine its rotor time constant.

As part of this work, we implement genetic algorithms for

parameter identification of the asynchronous machine.

The tests are performed on two machines described

below:

- Machine 1. Nameplate: Manufacturer: CEN U;

220/380V, In:21/12A,Ωn=1420 tr/mn, Pn=5,5 kW.

 - Machine 2. Nameplate: manufacturer ABB, U:

220/380V, In: 4,5/2,6A, Ωn=2850 tr/mn, Pn=l,l kW.

We have chosen the methods that take into considerations

both electrical and mechanical transient behaviour of the

machine. Thus, we used the methods described in [3]. The

test consists of a machine start, in vacuum, at full voltage.

There are speed, voltage and current of phase “a”. We

determine the initial phase of the voltage in order to

introduce it in the simulation. We observe a voltage drop

at startup that we model through a sigmoid function (2).

This voltage reduction is due to the presence of an

autotransformer. The genetic algorithm developed to

optimize the model parameters of the machine is

integrated with the simulation software “MATLAB” [8].

The fitness function used is as follows:

Erreur
Fitness

1
= , (1)

() ()
∑

+

−⋅+Ω−Ω⋅
=

−

Ω

)0(

2
exp

2
exp

1
ttA

assimasasIsim

e

IIFF
Erreur , (2)

with FΩ =1 and FIas =5. These are the factors that can

weigh the importance of a measure compared to the other.

In this case, we give more importance to the curve

adjustment of the stator current identified as the speed’s

one. Similarly, to accelerate the convergence of the

algorithm we have promoted, using a sigmoid function

(parameters A and t0 in the previous formula), the steady

regime to the start of the transitional regime. We use the

sigmoid function when we want to obtain the passage

from one state to another in a non-linear way, very

pronounced but continue[12]. First identification for

machine 1 [6]:

 Tab. 1: Parameters vector 1 [3].

Rs=2,25Ω, Rr=0,7Ω

Ls=0,1232H, Lr=0,1122H

M=0,1118H

τs=0,0546s, τr=0,160s

σ=0,09

J=0,038 kgm
2

(single machine)

a2=0,049 Nm s/rd

Jf=0,0124kg m2

 Second identification for machine 1: the

electromagnetic parameters are the result of a genetic

algorithm optimization on a vacuum start.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 361

Tab. 2: The mechanical parameters are derived from an

identification on a slow curve.

Rs=2,2513Ω

τs=0,06526s

τr=0,1975 s

σ=0,0423

J=0,059 kg.m
2
 (motor+brake)

a1=0 Nm s
2
/rad

2

a2=0,01438 Nm s/rad

a3=0,5012 Nm

The following results concern the identification of the

machine 2. Hence the equivalent dq model: τs=0.0752s, τr

=0.145 s and σ=0.0487.

Tab. 3: The parameters of the dq model are derived from an

optimization by genetic algorithm on a vacuum startup (speed

and stator current per 0.7 s).

Rs=7,828 Ω

τs=0,0833 s

τr=0,1415 s

σ=0,0466

J=0,006093 kg m
2

a1=0 Nm s
2
/rad

2

a2=0,000725 Nm.s/rad

a3=0 Nm

Tab. 4: The parameters of the model mesh are derived measures.

Rs=7,828 Ω

J=0,006093 kg.m
2

a1=0 Nm.s
2
/rad

2

a2=0,000725Nm s/

rad

a3=0 Nm

Radius=0,03575 m

Length=0,065 m

Gap=0,00025 m

Ns=160, Nr=16,LSl=0,018H

Rb sain=150.10
-6

Ω

Rb cassee=0,03Ω

Re sain=72.10
-6

Ω (total)

Lb=10
-7

H,Le=10
-7

H (total)

 In Figs 5, 6 and 7 are represented the results of the

experiment and simulation. These figures are followed by

an expansion of the evolution of the speed and current at

startup.

 As a result, the evolutions of the stator resistance (Fig.

9), the time constant stator (Fig.10), the rotor time

constant (Fig. 11), the coefficient of dispersion (Fig. 12),

the moment of inertia (Fig. 13) and coefficients of friction

(Fig. 14) are represented.

 Fig. 5: Startup optimization by genetic algorithm,

mechanical speed.

Fig. 6: Startup optimization by genetic algorithm.

Fig. 7: Startup optimization by genetic algorithm, voltage

source used.

 Fig. 8: Startup optimization by genetic algorithm

(Expansion).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 362

Fig. 9: The Rs evolution.

Fig. 10: The τs evolution.

Fig. 11: The τr evolution.

Fig. 12: The σ evolution.

Fig. 13: The J evolution .

Fig. 14: The evolution of coefficients of friction.

 We can observe a convergence of different estimated

parameters which requires a large number of generations

[9]. The evolution of parameters during the first 1,000

generations is represented in Figs.15-19.

Fig. 15: The "Fitness" evolution (Expansion).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 363

Fig.16 The τs evolution (Expansion).

Fig. 17: The τr evolution (Expansion).

Fig. 18: The σ evolution (Expansion).

Fig. 19: The J evolution (Expansion).

Fig. 20: The evolution of coefficients of friction.

(Expansion).

The results of this optimization come after 60,000

generations: Fitness = 1,00213.10
-4

 (Table 3). Obviously,

the values given here are numerical results of

optimization. The parameters can not be known with such

a precision. This vector of parameters from a global

optimization throughout the startup, is an “average” vector

of parameters. It is appropriate to simulate both the

stationary and the transitional regime. The following

results concern the identification of machine 1 (Table 1).

For this machine, we separated the identification of the

mechanical part of those of the electromagnetic

parameters. We conducted a test of slower overall

machine brake dust that allowed to calculate: D=0.059

kg/m
2
, a2 = 0.01438 Nm.s/rad, a3 = 0.5012 Nm (Table 2).

Regarding this machine, the wide range of variation of the

currents at stake made the acquisition process more

difficult. We used the end of the transitional and the

stationary regime after a start under rated voltage. We

obtain a set of parameters (Table 5) which should not only

start, but gives the currents and velocities corresponding

to different loads of the machine (Table 6).

 Tab. 5. The parameters of the model.

Rs=2,2513 Ω J=0,059 kg m
2

τs=0,06526 s a1 = 0 Nm s
2
/rad

2

τr =0,1975 s a2 = 0,0143 8 Nm s/rad

σ=0,0423 a3 = 0,5012 Nm

 Tab. 6. The loads of the machine.

 Experimental Simulation

Load Ias eff (A) Ω(tr/mn) Iaseff

(A)

Ω(tr/mn)

vacuum 4,6 1495,4 4,78 1496,6

Mr=10Nm 5,8 1483 5,66 1482,8

Mr=20Nm 7,9 1465 7,50 1467,5

Mr=37Nm 12,7 1430 11,9 1436

When the system has converged to the optimal solution,

the individual from the copy is very often as the best

individual within the meaning of the criterion of

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 364

adequacy. Through Figs 15 to 19, during the first 1,000

generations, we often see an increase in fitness and

changes of parameters (genes) that occur in jumps. This

result allows the algorithm, besides accelerating the

convergence process begins, for better robustness towards

local maxima [16].

VI. CONCLUSIONS

 Practical applications of these algorithms are

numerous. They are used in more unexpected areas such

as designing airplane wings or the design shape orbital

stations. To solve a genetic problem, must take account of

some recommendation. To resolve a problem with genetic

algorithms must be converted first into an optimization

problem, ie to minimize or to maximize the value (the

shortest hamiltonian chain, the largest component

internally stable, etc). Genetic algorithms are Heuristic

algorithms, ie the solution they found is not always best,

but is in a neighborhood of the optimal solution. So if you

have a choice between a polynomial algorithm that solves

the problem and secure a genetic algorithm would be

preferable to use the polynomial algorithm. Genetic

algorithms, typically have polynomial complexity.

Therefore they are very often used to solve difficult

problems. The results are very close to those obtained by

certain algorithms, but have run thousands of hours. If the

issue is complex using a genetic algorithm and not an

evolutionary strategy. Mutation is usually a weak search

operator, so if it is used only, there is great opportunity to

achieve local solutions and not global.

 The optimization problem is not a simple problem and

there is no universal method that works for all cases.

Often, a detailed knowledge of the problem led to the

adoption or rejection of any particular method. This

knowledge improves the way the algorithm is

implemented to minimize and control with a consequent

convergence safer and faster to the global optimum.

Compared to existing work in our laboratory which we

have mainly used the method of Levenberg-Marquardt,

we have explored the path offered by genetic algorithms

to identify the parameters of the induction machine [13].

These are cumbersome methodes in calculation time when

they are used to optimize a startup. However, they have

the advantage of being much less sensitive to the starting

point and other constraints related to the derivation of the

function to optimize and wich are specific to the type

gradient algorithms.

REFERENCES

[1] Beasley D., Bull D.R., Martin R.R., "An Overview of Genetic

Algorithms", Part 1, Foundations, University Computing, Vol.15, No.4,

pp.170-181, 1993.
[2] Boteanu N., Popescu M.C., "Optimal Control by Energetic Criterion

of Driving Systems", Proceedings of the 10th WSEAS International

Conference on Mathematical and Computational Methods in Science and
Engineering, pp.45-51, Bucharest, Romania, 7-9 november 2008.

[3] Bulucea C.A., Popescu M.C., Bulucea C.A., Manolea Gh., Patrascu

A., "Interest and Difficulty in Continuous Analysis of Water Quality",
Proceedings of the 4th IASME/WSEAS International Conference on

Energy & Environment, pp.220-225, Cambridge, february 2009.

[4] Drighiciu M., Petrisor A, Popescu M.C., "A Petri Nets approach for
hybrid systems modelling", International Journal of Circuits, Systems

and Signal Processing, Issue 2, Vol.3, pp.55-64, 2009.
[5] Dumitrescu D., "Genetic algorithms and evolutionary strategies:

Applications in artificial intelligence and related fields", Editura

Albastră, Cluj-Napoca, 2000 (in Romanian).
[6] Garey M.R., Johnson D.S., "Computers and Intractability: A Guide to

NP-completeness", W.H. Freeman and Company, New York, 1978.

[7] Goldberg D.E., Genetic Algorithms in Search, Optimization and
Machine Learning, Addison - Wesley, Reading, MA,1989.

[8] Koza J.R., "Genetic Programming", MIT Press, Cambridge, MA,

1992.
[9] Mastorakis N., Bulucea C.A., Manolea Gh., Popescu M.C., Perescu-

Popescu L., "Model for Predictive Control of Temperature in Oil-filled

Transformers", Proceedings of the 11th WSEAS International Conference
on Automatic Control, Modelling and Simulation, pp.157-165, Istanbul,

May - June 2009.

[10] Oltean M., "Designing and implementing algorithms", Computer
Libris Agora, Cluj-Napoca, 2000 (in Romanian).

[11] Popescu, M.C., Balas, V.E., Popescu, L. "Heating Monitored and

Optimal Control of Electric Drives", 3rd International Workshop on Soft
Computing Applications, Proceedings IEEE, Library of Congres

2009907136, pp.149-155,Szeged-Hungary-Arad-Romania, August 2009.

[12] Popescu M.C., Olaru O, Mastorakis N. "Equilibrium Dynamic
Systems Integration", Proceedings of the 10th WSEAS Int. Conf. on

Automation & Information, pp.424-430, March 2009.

[13] Popescu M.C., Onisifor O., Mastorakis N., "Equilibrium Dynamic
Systems Intelligence", WSEAS Transactions on Information Science and

Applications, Issue 5, Vol.6, pp.725-735, May 2009.

[14] Popescu M.C., Balas V., Olaru O., Mastorakis N., "The
Backpropagation Algorithm Functions for the Multilayer Perceptron",

Proceedings of the 11th WSEAS International Conference on

Sustainability in Science Engineering, pp.28-31, Timisoara, May 2009.
[15] Popescu M.C., Perescu-Popescu L., "Solving Applications by Use

of Genetic Algorithms", Proceedings of the 11th International Conference

on Mathematical Methods and Computational Techniques in Electrical
Engineering, Published by WSEAS Press, pp.208-214, Vouliagmeni

Beach, Greece, September 2009.

[16] Popescu M.C., Manolea Gh., Drighiciu M.A, Boteanu N., Petrisor
A., "Algorithmes genetiques appliques dans la commande de la machine

asynchrone", International Conference on Electromechanical and Power

Systems, Vol. I, pp. I.9-I.16, Iasi, october 2009.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 365

