
Applications of Genetic Algorithms 

in Electrical Engineering  

 
Marius-Constantin O.S. Popescu, Nikos E. Mastorakis, Liliana Popescu- Perescu 

                       
 

 

     Abstract: - In this paper were presented the main directions 

of genetic algorithms. There is a large class of interesting 

problems that have not yet been developed fast algorithms. 

Many of these problems are problems which occur frequently 

optimized in applications. The studies of this work will allow us 

to compare the results from different methods of determining 

these parameters and especially those based on genetic 

algorithms. 
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1 INTRODUCTION 

iving is a problem poorly optimized is always 

possible to find an efficient algorithm whose 

solution is almost optimal [2], [3], [9], [11]. For 

some stupid problems we can use optimized 

algorithms probabilistic. These algorithms do 

not guarantee optimal value, but the elections random 

enough weaknesses of errors can be made so that we can 

overcome them. There are many practical problems for 

such optimized algorithms for a high quality became 

available. In general, any abstract process to be 

accomplished can be thought of as a problem-solving, 

which, in turn, may be perceived as a search space with 

potential solutions. How are we looking for the best 

solutions, we can look at this task as a process optimized. 

For small spaces, classical methods are sufficient 

executive, large spaces for special techniques of artificial 

intelligence should be taken into account.  

     Genetic algorithms are among these techniques, they 

are stochastic algorithms whose search methods molds 

some natural phenomena [1]. The idea behind genetic 

algorithms is to do what nature does. Some fundamental 

principles of genetics are borrowed and used artificially to 

build search algorithms that are robust and require 

minimum information about the problem. Genetic 

algorithms were made using the process of adaptation. 

They operate, in particular, with binary strings and use a 

recombination operator and a mutation.  
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Mutation by changing a (gene) from a chromosome, and 

by crossing change genetic material between two parents, 

if parents are represented by strings of five bits, for 

example (0, 0, 0, 0, 0) and (1, 1, 1, 1, 1), crossing two 

vectors can result in descendants (0, 0, 1, 1, 1) and (1, 1, 

0, 0, 0) (this is an example of such called cross-point with 

a notch). The fitness of an individual is assigned in 

proportion to the value function corresponding to the 

individual criteria, individuals are selected for the next 

generation on the basis of their fitness. We stated 

previously that genetic algorithms work with strings of 

bits representing the parameters and not the parameters 

them selves. After created a new series (a new solution) 

through the genetic operators must evaluate it. In most 

cases, the fitness is just the criterion function for that 

solution. If our objective is to minimize the criterion, then 

we say that a solution is better than another, if the fitness 

of the two is greater [4], [5].  PMODZ4KCCKDNH 
 

 

II. STRUCTURE OF A GENETIC ALGORITHM 
 

     In 1990 Koza proposed such a evolution system, 

genetic programming, to search for the best computer 

program to solve a particular problem. The program 

structure development is shown in Fig.1. 

Fig.1: Structure of a genetic algorithm after [8] and [15] 
      
Thus, attempts to improve the population of chromosomes 

within the time available, the meaning of closeness as 

much as the optimal solution. Generation 0 is chosen 

completely randomly, and the remaining operations and 

use them to generate random numbers. Consequently, the 

result of execution of such algorithm will also depend on 

chance, and, moreover, will be run at each other. To better 

explain how the algorithm works, we choose a concrete 

problem, namely, "Determination of a maximum function 

f(x) on interval [a, b]". This problem has the advantage 

that allows us to evaluate whether the algorithm easily 

leads us to the solution or not, although there is a 

procedure evolutionary algorithm 

t←0  

Creation P(t) 

Asseement P(t) 

   While not subjet to termination 

        t←t+1 

       selection P(t) from P(t+1) 

        change P(t) 

       assessment P(t) 

   end while 

end procedure 

 

G 
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significant example for using genetic algorithms [10]. 

Clearly, for the best results, you should consider as many 

values for the variable x in the interval [a, b]. I noted with 

no number of such values. All values that we choose will 

be quantified in the form of chromosomes. Chromosome 

is a sequence of k binary positions, each position being a 

gene. Therefore we have no chromosome with k genes 

each. First step is to choose randomly the NR 

chromosome, generating one sequence of random gene k 

(values of 0 or 1). To convert a chromosome into a real 

variable in [a, b], a division of the field in the 2
k
 intervals 

and assigned to chromosome a↔ 00...000 and 

b↔ 111...111 chromosome, the rest being distributed 

proportionally. 

      To obtain the solution to first consider the 

chromosome as NR: c1,c2 …,cNR. To assess the population 

of chromosomes, will calculate the following values:  

     - First, objective function )( ii cfv = , thereby convert 

each chromosome into a real value, namely the function 

whose maximum ill want point in the chromosome but ci;  

     - Calculate the amount the objective function 
 

∑=
=
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i
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1
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     - For each chromosome we calculate the probability of 

selection    
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     - For each chromosome is calculated cumulative 

probability of selection  
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the observation series q1,q2…qNR will be increasing, the 

last value being 1.  

As ci+1  but contains a value for which to obtain a higher 

value for the objective function, both with difference 

between qi+1 and  qi  will be higher. Thus, row cumulative 

probability selection is a division of the interval [0.1]. To 

create an intermediate population of chromosomes, select 

NR uniform random numbers in the interval (0, 1]. If a 

number is located in the (qi, qi+1], but then chromosome 

ci+1 is selected. It can be seen that the probability that a 

chromosome is selected to be much higher as the (qi, qi+1] 

is greater. I showed in the previous paragraph as the 

length of this interval is much higher as the objective 

function for the chromosome is larger. Consequently, 

there is a greater probability that a chromosome “best” to 

be selected, but does not warrant its selection. In addition, 

a chromosome can be selected several times in the 

intermediate population [14].  

    The next step is mating between chromosomal 

populations of intermediate. Here is a problem, namely 

how to choose chromosome pairing. First, if you choose 

none, there is the possibility to obtain a solution better 

than the present, and if you choose all too much risk 

destroying the entire population of chromosomes, so that 

after pairing time resulting population may be better or 

worst.  In the below read from a computer keyboard, and 

for each chromosome generate a random number in the 

interval (0, 1]. If the number is smaller than pc, that will 

be subjected to chromosome pairing time. An acceptable 

value for pc is 0.1 (10% of chromosome pairing time will 

be subjected). Technical crosses is the following:  

     - Cross first chromosome selected for mating with the 

second, third fourth etc (if selected for mating to an odd 

number of chromosomes, is the last drop);  

     - The crossing is in exchange between the two genes at 

chromosome, where t is chosen randomly in (0, k).  

     After crossing two chromosomes are obtained us:  

     - The first new chromosome will contain the first gene 

of the first t chromosome old and last k-t genes of the 

second chromosome old; 

     - The second new chromosome will contain the first 

gene t of the second chromosome old and the last k - t 

genes of the first chromosome. 

Finally, the intermediate population of chromosome is 

subjected to simple mutations. For this, we read from the 

keyboard probability of occurrence of mutations simple ps, 

which should have a small value (close to 0). For each 

gene of each chromosome is randomly choose a number 

between (0,1], and particularly if the number is less than 

ps, gene content change of 0 or 1 in reverse. Following 

these operations, to obtain a new population of 

chromosomes and returned to the stage of assessing the 

population. The algorithm runs in limited time available, 

which is read as a parameter from the keyboard. Note 

huge similarity between genetic algorithms and everyday 

life. Although chromosomal values have higher chances to 

reach a new population, there is the possibility that some 

of them to lose. Important chromosome is not so, but the 

population of chromosomes. It must evolve.  

    We illustrate the working of genetic algorithms using a 

simple problem: designing a box of cans. We consider a 

cubic box of canned food, with only two parameters: the 

diameter d and height h (obviously, can be considered and 

other parameters such as thickness, material properties, 

shape, but just enough are the two parameters to illustrate 

with genetic algorithms). To believe that this box of 

canned food should have a volume of at least 300 ml and 

the project objective is to minimize the cost of materials 

used in the manufacture of cans.  

    We formulate our problem as follows: 














π+

π
= dh

d
chdf

2
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2

,  (4) 

 

to minimize the function where c is preserved material 

cost per cm
2
, and the expression in brackets is the area 

preserved. Function f is called and the criterion function 

(or objective function). Have met and provided that the 

box is at least 300 ml and we will make it so: 
 

.300
4
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π
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d
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The parameters d and h can vary between certain limits. 

The first step in using a genetic algorithm is to establish a 

codification of the problem. Binary encoding is the most 
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common techniques of coding, it is easy to handle and 

gives robustness problem. Binary representation can 

encode almost any situation, and operators do not include 

knowledge of the field problem. It's why a genetic 

algorithm can be applied to very different problems. If 

binary encoding, each value is mean by a string of 

specified length which contains the values 0 and 1. In 

some situations it is necessary to use encoding "natural" 

problem, instead of binary representation. An example 

would be the natural coding actual coding, which uses real 

numbers for representation. To use genetic algorithms to 

find optimal values for parameters d and h, which satisfies 

the condition in the form and function g to minimize the 

function f, we will first need to represent the binary strings 

in the parameters (we use therefore a binary encoding of 

the problem). Genetic algorithms require not only values 

the whole of a given interval, in general, we can choose 

any real value or by changing the length binary string. 
    
 

III. GENETIC OPERATORS 
 

     We further describe using genetic operators, usually in 

a genetic algorithm. 

     Selection. An important role in a genetic algorithm is 

occupied by the selection operator. The operator decides 

wich of the population individuals will participate in 

forming the next population. The purpose of selection is to 

provide more reproductive opportunities to the most 

performant of the individuals in a given population. 

Through selection we aim to maximize individual 

performance.we will briefly present the most important 

selection mechanisms in the following  

       a) Proportional selection. In proportional selection 

case, the likelihood of selecting an individual depends on 

the performance thereof. Suppose you have a lot of 

chromosomes x1,x2,…,xn. For each chromosome we 

calculate xi performance to f(xi). Should be provided that 

f(xi)≥0. The performance sum for all chromosomes of the 

population will be the total performance and we will note 

it with F.  

       b) Selection based ordering. This selection is to 

calculate (for each generation) the fitness function values 

and to arrange the individuals in a descending order of 

these values. It will assign each i individual  a  selection 

probability pi that depends on its rank in series. 

Probabilities now depend only on the chromosome 

position. The most promising individual has probability is 

1. 

     c) Selection through contest. Selection through 

competition or selection lists are based on direct 

comparison of two chromosomes and selecting the best 

performing. The operations involved are: 

• are chosen at random two chromosomes;  

• calculating performance chromosome selected;  

• best performing chromosome is selected (copied in the 

population over which interim apply genetic operators).  

       Other mechanisms for selecting another type of 

selection is elitist selection. In this case, every generation 

we keep the most promising or the most promising 

individuals. Another idea would be that every generation, 

to be replaced only a small part of the population. 

     The reproduction operator. Operator reproductive role 

is to maintain the promising solutions of the population 

and to eliminate the less promising, keeping constant the 

population size. This is done as follows: 

• identifying promising solutions of the population;  

• to create multiple copies of promising solutions;  

• be deleted less promising solutions of the population so 

that multiple copies of promising solutions can be placed 

in the population.  

There are several ways to do this. The most common 

methods are proportional selection, the tournament 

selection and selection by order.it is easily seen  that the 

promising solutions have more than one copy in the 

intermediate population. 

     The crossing operator. The meeting is applied on 

individuals in the population between. In our example, 

will be applied to the binary representation of the six 

elements that we have people in between. The cross acts 

in the following way: they are two randomly chosen 

individuals from intermediate population (which is also 

called and cross the pool) and some portions of the two 

individuals are interchangeability. The operator mimics 

natural interchromosome crossing. It is used by operators 

of cross type (2,2), ie, two parents give birth to two 

descendants. Crosses made an exchange of information 

between the two parents. Descendants produced by 

crossing will have characteristics of both parents. Given 

the importance of crossing were proposed several models 

of interbreeding. We enumerate here some of those used 

when binary coding. 

     Crossing point with a cleft. R be the length of 

chromosomes. A notch point is an integer k∈{1,2,..., r-1}. 

The number k indicates the position of the chromosome 

sequence where chromosomal breaks that are produced 

segments to recombine with other segments from other 

chromosomes. We consider two chromosomes:  
 

            x=x1x2...xk xk+1...xr   and   y=y1y2...ykyk+1...yr. 
 

Following recombinations change chromosomes between 

the two sequences in the right notch point k chromosomes 

will be: x'= x1x2 ... xk yk+1 ... yr  and  y'= y1y2 ... yk xk+1… xr.  

For example, if you have a possible representation of the 

two chromosomes: 
 

 
 

descendants will be: 
 

 
 

     Cross with more notch points. If more notch points, the 

segments are obtained by combining the rule again. We 

consider two crossing notch points. This type of crossing 

is done according to schedule below. Of chromosomes: 
 

 
will give two descendants of the type: 
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In the case of three notch points, descendants will form: 
 

 
 

Returning to our example, we consider the crossing with a 

single gash point. For example, the crossing of two 

solutions represented by the box that has the fitness 23, h 

=8 d =10 and the box with the  fitness 26, h=14 and d=6, 

will give two descendants who will have the fitness 22, 

h=10 and d=6, respectively the fitness 38, h=12 and d=10 

model below:     
 

 
Fig. 2: Explanation of the application with a single 

crossing point cut. 
 

It should be noted that the crossing not randomly 

generates descendants. Although it is unlikely that the 

cross between two solutions of the population to generate 

“sons” solutions most promising than the parent solutions, 

however, it shortly becomes clear that the chance to create 

more promising solutions is higher than in random search. 

From crosses with a single notch point of a pair of binary 

strings, it can only create two different pair strings who 

will have in its composition combining bits from both 

parents; son solutions being created are, probably, strings 

at least as promising. Therefore, not every meeting can 

create solutions as promising, but will not be less 

promising than their parents. If a less promising solution 

was obtained, then it will not appear when the next 

reproduction operator will be applyed and thus it will have 

a short life. If a more promising solution is created, then it 

is likely that she  has more copies when the following 

reproductive operator implementation. To keep such a 

string selection promising  During the reproduction 

operator application, not all strings of the population are 

used to cross. The crossing operator is primarily 

responsible for the search aspect of genetic algorithms, 

while the mutation operator is used for other purposes. 

The mutation is the second operator in the genetic order of 

importance and its use. The effect of this operator is the 

change of a single position from chromosome. By 

mutation other individuals are introduced in the 

population who could not be obtained through other 

mechanisms. The mutation operator is acting on bytes 

whatever of their position in chromosome. every bit of the 

chromosome may suffer a mutation. In a chromosome 

may exist, in conclusion, more positions that undergo 

mutation. The Mutation is a probabilistic operator (ie does 

not apply safely). We consider an n population of 

individuals (chromosomes), each having length r. Each bit 

has the same probability pm to suffer the mutation. There 

are several variants of the mutation operator. One of them 

would be the mutation into the strong form. In this case it 

proceeds as follows: it generates a random number q in 

the [0, 1) interval. If q<pm, then  the respective position 

mutation runs changing position 0 in 1 or 1 In 0. 

Otherwise, the position does not change. Returning to our 

example, if we apply the mutation operator to an obtained 

solution  in the process of cross-breeding,to the solution 

that has fitness 22, we get a solution that will have  fitness 

16. 
 

 
Fig. 3: Explanation of the application of the operator to 

move. 
 

The solution obtained is more promising than the original 

solution. In consequence, the reproduction operator selects 

the most promising rows, cross operator combines two 

strings substring from the promising form to the most 

promising substring and mutation operator changing 

strings locally, also to improve the solution. 
 

 

IV. EVOLUTIONARY STRATEGIES 
 
 

     Evolutionary strategies have been developed as a 

method for solving optimization problems  

parameters. First evolutionary strategy was based on a 

population consisting of a single guy. It is also used a 

single operator in the process of evolution: mutation. This 

is in line with the biological concept that small changes 

occur more frequently than big changes. Ussualy this 

strategy that a parent gives birth though mutation to a  

single descendant is known as evolutionary strategy 1+1. 

The way that this algorithm practically applys is simple: a 

solution is generated randomly on the search domain  and 

mutations are made to it. The best of parent and 

descendants is chosen. The mutation operator is applied 

repeatedly until a solution is reached. Another type of  

strategy is the strategy (µ+λ): µ parents produce λ 

descendants. New population (temporary) of (µ+λ) 

individuals is reduced again - through a selection process - 

to µ individuals. On the other hand, in the strategy (µ, λ), 

µ individuals produce λ descendants (λ>µ) and through 

the selection process a new population of µ individuals is 

choosen only from the crowd of λ descendants. Thus, the 

life of each individual is limited to one generation. 

     A. Evolutionary Programming. Original evolutionary 

programming techniques have been developed by 

Lawrence Fogel [6]. He sought a development of artificial 

intelligence in the sense of developing the ability to 

predict changes in an Environment. Environment was 

described as a sequence of symbols and evolving 

algorithm supposed to obtain a new product, namely a 

new symbol. The symbol will maximize the final function 

who will  measure the accuracy of predictions. For 

example, we can consider a series of events marked a1, a2, 

..., an, an algorithm will determine the next symbol (1 

year), based on known symbols a1, a2 ,..., year. The idea 

behind evolutionary programming is to develop an 

algorithm. As in evolutionary strategies, in evolutionary 

programming technique descendants are created first and 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 359



then the individuals are selected for the next generation. 

Each parent produces a single descendant, so intermediate 

population size doubles (as in evolutionary strategy (n, n), 

where n is the size of the population). The descendant is 

created by a random mutation of the parent (it is possible 

to apply more than one mutation to an individual). A 

number of individuals (the most promising) equal to the 

size of the population are retained for the new generation. 

In the original version this process is repeated to obtain a 

new symbol which is available. Once obtained a new 

symbol, it is added to the list of symbols known and the 

whole process is repeated. Recently, evolutionary 

programming techniques have been used for solving 

numerical problems of optimization and many other 

purposes. 

     B. Genetic Programming. Another interesting approach 

was discovered relatively recently by John Koza [8]. Koza 

suggests that the desired program will evolve himself 

during a process of evolution. In other words, instead of 

solving a problem and instead of building a progressive 

program to solve the problem, we try to find a source code 

to solve. Koza developed a new methodology which 

provides a way to make this search. By example,we want 

to obtain a program Pascal or C++ to solve the problem of 

the Hamiltonian road  or exit from a maze. So, we are not 

interested to get a solution to a set of some data, but 

rather, we are interested to get a source to generate a 

correct solution for any given entry. In other words, we 

are interested to get as result a similar program to  which 

that  we could have writen if we knew to solve the 

problem. In terms of evolutionary the approach to such 

problems is generating a lot (population) random source 

codes, which are then selected based on function and 

fitness evolved through specific genetic operators. Most 

importantly we must assign a function of quality (fitness 

function)to each generated program. The fitness function 

should reflect the performance of the program of which it 

is attached. Usually the attaching of a fitness function is 

made running the program and measuring the solution 

quality in relationti with the solution which is known to be 

optimal. A program will have a higher quality if its 

generated solution will be similar to the correct solution.It 

is not bad if  an optimum solution Is not known 

previously, because we want to achieve solutions with a 

fitness as a high as it can be (or as small as it can be). The 

evolution of the source program is done through specific 

genetic operators. For example, a recombination operator 

can mean the merging of sequences from a source code 

with sequences from another source code. A mutation 

operator could mean the insertion of new instructions in 

the source code, deleting of instructions, processing 

instructions. Obviously, after aplying those genetic 

operators a source code is generated that contains syntax 

errors. Also, useless source code sequences are generated. 

In what follows this will solve a problem using genetic 

algorithms. It is considered M a lot of n and a number S. 

To determine of lot set M which has the sum of the 

number closer to S. Determination of lot amount of time a 

problem is NP-complete. This means that it is not known 

whether or not there is an algorithm of polynomial 

complexity to solve this problem. Until now, the 

algorithms used have exponential complexity, and some 

cases have pseudo-polinomial complexity. For example, 

we can reasonably solve this problem if the input data 

satisfy the following conditions: they are no more than 

100 natural numbers, the amount not exceeding 500 

numbers (more precisely, the number of numbers and 

their sum must not exceed the maximum allowable size 

for the allocation a matrix (we assume that it is statically 

allocated). If these conditions should be fulfilled, we 

could easily solve this problem using dynamic 

programming, using an algorithm of complexity O(n•S). 

However, if the numbers would not be whole but real, or 

their sum would be greater than 500, or differences 

between them would be so great. Then the algorithm by 

dynamic programming can not be used. I have listed here 

only cases, but can be imagined and other difficulties. For 

these reasons we will solve this problem using a genetic 

algorithm. We need to find a representation of the solution 

and also a function of fitness. How we represent our 

solution is given even stated the problem: it requires a lot 

of  M whit n elements. So, a solution of the problem is a 

lot. We encode a lot by a string of length n which contains 

only values 0 and 1. If an item will have value k is 1, then 

lot will include the Mk (the k-th element of M crowd), and 

if position k is 0, then the item does not belong of lot [13]. 

The calculation of the fitness (quality) of a solution (of 

lot) is simple. Calculate sum of lot and fitness will be the 

difference (in absolute value) of the amount obtained and 

the number of S. Under these conditions the fitness will be 

minimized, because we want to determine an amount for 

which of lot elements is as close time value of S. The 

proposed genetic algorithm for solving this problem has 

been described above. We will use the tournament 

selection to obtain intermediate population. Genetic 

operators used are specific binary coding (turning a single 

point of scission, with mutation probability pm=0.1).  

     Allocation of fitness. I have stated previously that 

genetic algorithms work with strings of bits representing 

the parameters and not the parameters them selves [12]. 

After he created a new series (a new solution) by genetic 

operators should evaluate it. In most cases, the fitness is 

just the criterion function for the solution. If our goal is to 

minimize the criterion, then we say that a solution is better 

than another, if the fitness of the two is greater. In another 

example of the problem, it is proposed to minimize one of 

the five features proposed by Ken DeJong in 1975, F1 

(area):   

           ( ) ∑=
=

3

1

3

i
ixxf , [ ]12.5;12.5−∈ix .              (6) 

 

The global minimum in f(0,0,0)=0. After all calculations 

were performed for 100 generations, the results will be 

displayed [13]: 

 

GA running 

GA terminated 

Fitness function value: 

      2.4109846667385811E-4 

Optimization terminated: 

average change in the fitness value 

less then options. 
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Also, during the evaluation can be seen in real time as 

parameters vary elected (Fig. 4). It is noted that as 

chromosomal approaching optimal, tend to behave like, 

because they are influenced by its predecessors. They say 

that they evolve to the optimum. To avoid congestion on 

the graphics will set a maximum value of 3. 

      

 

a) 

 
b) 

 
c) 

 

d) 

Fig. 4: Variation of parameters considered example.  
 

In general, any abstract task to be performed, could be 

seen as solving a problem, which in turn, can be seen as a 

search in the potential solutions. As always, seek the best 

solution, we can look at this process as one of 

optimization. For small spaces, classical methods are 

comprehensive enough, for large spaces can be used 

special techniques of artificial intelligence. The best 

known techniques of the evolutionary computation class 

are the genetic algorithms, evolutionary strategies, genetic 

programming and evolutionary programming. There are 

other hybrid systems incorporating various properties of 

the above paradigms, moreover, the structure of any 

evolutionary computation algorithm is largely the same 

[14]. 

 

V. THE PARAMETERS IDENTIFICATION OF THE 

ASYNCHRONOUS MACHINE 
 

       The parameters necessary to simulate the operation of 

the machine are divided into electromagnetic and 

mechanical parameters. Further we show that the required 

electromagnetic parameters  are (Rs, τs, τr et σ). An 

asynchronous machine, given the source, is not able to 

provide information on the value of its equivalent rotor 

resistance. So we can’t determine its rotor time constant. 

As part of this work, we implement genetic algorithms for 

parameter identification of the asynchronous machine. 

The tests are performed on two machines described 

below: 

- Machine 1. Nameplate: Manufacturer: CEN U; 

220/380V, In:21/12A,Ωn=1420 tr/mn, Pn=5,5 kW. 

 - Machine 2. Nameplate: manufacturer ABB, U: 

220/380V, In: 4,5/2,6A, Ωn=2850 tr/mn, Pn=l,l kW. 

We have chosen the methods that take into considerations 

both electrical and mechanical transient behaviour of the 

machine. Thus, we used the methods described in [3]. The 

test consists of a machine start, in vacuum, at full voltage. 

There are speed, voltage and current of phase “a”. We 

determine the initial phase of the voltage in order to 

introduce it in the simulation. We observe a voltage drop 

at startup that we model through a sigmoid function (2). 

This voltage reduction is due to the presence of an 

autotransformer. The genetic algorithm developed to 

optimize the model parameters of the machine is 

integrated with the simulation software “MATLAB” [8]. 

The fitness function used is as follows: 
 

Erreur
Fitness
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= ,                      (1) 
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with FΩ =1 and FIas =5. These are the factors that can 

weigh the importance of a measure compared to the other. 

In this case, we give more importance to the curve 

adjustment of the stator current identified as the speed’s 

one. Similarly, to accelerate the convergence of the 

algorithm we have promoted, using a sigmoid function 

(parameters A and t0 in the previous formula), the steady 

regime to the start of the transitional regime. We use the 

sigmoid function when we want to obtain the passage 

from one state to another in a non-linear way, very 

pronounced but continue[12]. First identification for 

machine 1 [6]: 
 

    Tab. 1: Parameters vector 1 [3]. 

Rs=2,25Ω, Rr=0,7Ω 

Ls=0,1232H, Lr=0,1122H 

M=0,1118H 

τs=0,0546s, τr=0,160s 

σ=0,09 

J=0,038 kgm
2
  

(single machine) 

a2=0,049 Nm s/rd 

Jf=0,0124kg m2 

 

 

     Second identification for machine 1: the 

electromagnetic parameters are the result of a genetic 

algorithm optimization on a vacuum start. 
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Tab. 2: The mechanical parameters are derived from an 

identification on a slow curve. 

Rs=2,2513Ω 

τs=0,06526s 

τr=0,1975 s 

σ=0,0423 

J=0,059 kg.m
2
 (motor+brake) 

a1=0 Nm s
2
/rad

2 

a2=0,01438 Nm s/rad 

a3=0,5012 Nm 
 

The following results concern the identification of the 

machine 2. Hence the equivalent dq model: τs=0.0752s, τr 

=0.145 s and σ=0.0487. 
 

Tab. 3: The parameters of the dq model are derived from an 

optimization by genetic algorithm on a vacuum startup (speed 

and stator current per 0.7 s). 

Rs=7,828 Ω 

τs=0,0833 s 

τr=0,1415 s 

σ=0,0466 

J=0,006093 kg m
2
 

a1=0 Nm s
2
/rad

2
 

a2=0,000725 Nm.s/rad 

a3=0 Nm 
 

Tab. 4: The parameters of the model mesh are derived measures. 

Rs=7,828 Ω 

J=0,006093 kg.m
2
 

a1=0 Nm.s
2
/rad

2
 

a2=0,000725Nm s/ 

rad 

a3=0 Nm 

Radius=0,03575 m 

Length=0,065 m 

Gap=0,00025 m 

Ns=160, Nr=16,LSl=0,018H 

Rb sain=150.10
-6

Ω 

Rb cassee=0,03Ω 

Re sain=72.10
-6

Ω (total) 

Lb=10
-7

H,Le=10
-7

H (total) 
 

     In Figs 5, 6 and 7 are represented the results of the 

experiment and simulation. These figures are followed by 

an expansion of the evolution of the speed and current at 

startup.  

     As a result, the evolutions of the stator resistance (Fig. 

9), the time constant stator (Fig.10), the rotor time 

constant (Fig. 11), the coefficient of dispersion (Fig. 12), 

the moment of inertia (Fig. 13) and coefficients of friction 

(Fig. 14) are represented. 

 

 Fig. 5: Startup optimization by genetic algorithm, 

mechanical speed.  

 
Fig. 6: Startup optimization by genetic algorithm.  

 

 
Fig. 7: Startup optimization by genetic algorithm, voltage 

source used. 
 

 
 Fig. 8: Startup optimization by genetic algorithm 

(Expansion). 
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Fig. 9: The Rs evolution. 

 
Fig. 10: The τs evolution.  

 
Fig. 11: The τr evolution. 

 
Fig. 12: The σ evolution.  

  
Fig. 13: The J evolution . 

 
Fig. 14: The evolution of coefficients of  friction.  

 

     We can observe a convergence of different estimated 

parameters which requires a large number of generations 

[9]. The evolution of parameters during the first 1,000 

generations is represented in Figs.15-19. 

 

 
Fig. 15: The "Fitness" evolution (Expansion). 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 3, 2009 363



 
Fig.16 The τs evolution (Expansion).  

 
Fig. 17: The τr  evolution (Expansion).  

 

 
Fig. 18: The σ evolution (Expansion).  

 
Fig. 19: The J evolution (Expansion).  

 
Fig. 20: The evolution of coefficients of  friction. 

(Expansion).  
 

The results of this optimization come after 60,000 

generations: Fitness = 1,00213.10
-4

  (Table 3). Obviously,  

the values given here are numerical results of  

optimization. The parameters can not be known with such 

a precision. This vector of parameters from a global 

optimization throughout the startup, is an “average” vector 

of parameters. It is appropriate to simulate both the 

stationary and the transitional regime. The following 

results concern the identification of machine 1 (Table 1). 

For this machine, we separated the identification of the 

mechanical part of those of the electromagnetic 

parameters. We conducted a test of slower overall 

machine brake dust that allowed to calculate: D=0.059 

kg/m
2
, a2 = 0.01438 Nm.s/rad, a3 = 0.5012 Nm (Table 2). 

Regarding this machine, the wide range of variation of the 

currents at stake made the acquisition process more 

difficult. We used the end of the transitional and the 

stationary regime after a start under rated voltage. We 

obtain a set of parameters (Table 5) which should not only 

start, but gives the currents and velocities corresponding 

to different loads of the machine (Table 6). 
     
    Tab. 5. The parameters of the model. 

Rs=2,2513   Ω J=0,059 kg m
2
 

τs=0,06526 s a1 = 0 Nm s
2
/rad

2
 

τr =0,1975 s a2 = 0,0143 8 Nm s/rad 

σ=0,0423 a3 = 0,5012 Nm 

 

     Tab. 6. The loads of the machine. 

 Experimental Simulation 

Load Ias eff (A) Ω(tr/mn) Iaseff 

(A) 

Ω(tr/mn) 

vacuum 4,6 1495,4 4,78 1496,6 

Mr=10Nm 5,8 1483 5,66 1482,8 

Mr=20Nm 7,9 1465 7,50 1467,5 

Mr=37Nm 12,7 1430 11,9 1436 

 

When the system has converged to the optimal solution, 

the individual from the copy is very often as the best 

individual within the meaning of the criterion of 
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adequacy. Through Figs 15 to 19, during the first 1,000 

generations, we often see an increase in fitness and 

changes of parameters (genes) that occur in jumps. This 

result allows the algorithm, besides accelerating the 

convergence process begins, for better robustness towards 

local maxima [16]. 
 

 

VI. CONCLUSIONS 
 

     Practical applications of these algorithms are 

numerous. They are used in more unexpected areas such 

as designing airplane wings or the design shape orbital 

stations. To solve a genetic problem, must take account of 

some recommendation. To resolve a problem with genetic 

algorithms must be converted first into an optimization 

problem, ie to minimize or to maximize the value (the 

shortest hamiltonian chain, the largest component 

internally stable, etc). Genetic algorithms are Heuristic 

algorithms, ie the solution they found is not always best, 

but is in a neighborhood of the optimal solution. So if you 

have a choice between a polynomial algorithm that solves 

the problem and secure a genetic algorithm would be 

preferable to use the polynomial algorithm. Genetic 

algorithms, typically have polynomial complexity. 

Therefore they are very often used to solve difficult 

problems. The results are very close to those obtained by 

certain algorithms, but have run thousands of hours. If the 

issue is complex using a genetic algorithm and not an 

evolutionary strategy. Mutation is usually a weak search 

operator, so if it is used only, there is great opportunity to 

achieve local solutions and not global. 

     The optimization problem is not a simple problem and 

there is no universal method that works for all cases. 

Often, a detailed knowledge of the problem led to the 

adoption or rejection of any particular method. This 

knowledge improves the way the algorithm is 

implemented to minimize and control with a consequent 

convergence safer and faster to the global optimum. 

Compared to existing work in our laboratory which we 

have mainly used the method of Levenberg-Marquardt, 

we have explored the path offered by genetic algorithms 

to identify the parameters of the induction machine [13]. 

These are cumbersome methodes in calculation time when 

they are used to optimize a startup. However, they have 

the advantage of being much less sensitive to the starting 

point and other constraints related to the derivation of the 

function to optimize and wich are specific to the type 

gradient algorithms. 
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