
 

  

  
Abstract—Nonlinear boundary value problem of the Young-Laplace 

equation which describes the meniscus free surface in semiconductor 

crystals grown by Dewetted Bridgman technique is considered. The 

statically stability of the menisci, via the conjugate point criterion of 

the calculus of variations, is investigated in the cases of the classical 

semiconductors grown in (i) uncoated crucibles (i.e., the wetting 

angle θc and growth angle αe satisfy the inequality θc+αe<180°), and 

(ii) coated crucibles or pollution (θc+αe ≥ 180°). Necessary or 

sufficient conditions for the existence of the statically stable convex 

(or concave, convex-concave, concave-convex) solutions of the 

considered BVP are established. 

 

Keywords— Nonlinear boundary value problem, Young-Laplace 

equation, growth from the melt, dewetted Bridgman crystal growth 

technique. 

I. INTRODUCTION 

major problem to which crystal growth researchers have 

been confronted was the development of techniques 

capable to monitor and control the external shape of 

melt-grown crystals, and simultaneously to improve the 

crystal structures. In the crystal growth processes based on 

the principle of capillary shaping (Czochralski, Floating zone, 

Edge-defined film-fed growth, Dewetted Bridgman 

techniques, etc.), the shape and the dimensions of the crystal 

are determined by the liquid meniscus and by the heat transfer 

at the melt-crystal interface.  
Historically, the physical origin and the shape of a liquid 

meniscus have been among the first phenomena studied in 

capillarity, in particular by Hauksbee (1709) [1], as cited by 

Maxwell [2] in his introduction to the Capillary Action written 

for the Encyclopaedia Britannica: „the first accurate 

observations of the capillary action of tubes and glass plates 

were made by Hauksbee. He ascribes the action to an attraction 

between the glass and the liquid".  
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 The first formal analytical expression was given by 

Laplace [3], after introduction of the mean curvature κ defined 

as average (arithmetic mean) of the principal curvatures [4]: 
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Laplace showed that the mean curvature of the free surface 

is proportional to the pressure change across the surface. In 

crystal growth processes, the proportionality coefficient 

contains the surface tension γ  and the pressure change across 

the surface (the pressure of the external gas on the melt pv; the 

internal pressure applied on the liquid, which can generally be 

defined at the origin, pO; the hydrostatic pressure gzlρ ; the 

pressure determined by the centrifugal force due to a possible 

liquid rotation ( )2 2 2 2l l x y /ρ Ω +  where 
lΩ  is the angular 

velocity of the liquid; and when the magnetic fields is used, the 

Maxwell pressure which is proportional to the square of the 

magnetic induction ( )2 2B x, y / µ ) [5]. Thus, the following 

equality known as Young-Laplace’s equation must hold: 
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Denoting the meniscus surface by z(x,y), it is known from 

differential geometry, that the mean curvature is expressed as: 
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represent the coefficients of the first fundamental form of the 

surface, and 
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represent the coefficients of the second fundamental form. 

Hence, the Young-Laplace equation (2) becomes: 
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This equation is a nonlinear partial differential equation of 

second order, and the unknown function z(x,y) represents the 

meniscus surface.  

In the axi-symmetric case, the Young-Laplace equation (4) 

can be written using cylindrical polar coordinates  

x r cos , y r sin , z zφ φ= ⋅ = ⋅ =  (the meniscus is axi-

symmetric). Expressing r and φ  as functions of x and y, i.e., 

2 2r x y= + , y
arctan

x
φ = , the partial derivatives of the 

function z(x,y) are: 
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Replacing these derivatives in (4), Young-Laplace’s equation 

written in cylindrical coordinates is: 
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for which the solution z=z(r) is searched depending on the 

radial coordinate 22 yxr += . An equivalent formulation of 

(5) is: 
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For solving the axi-symmetric Young-Laplace equation, initial 

or/and boundary conditions are determined by the structural 

features of each specific configuration (Czochralski, Floating 

zone, Edge-defined film-fed growth, Dewetted Bridgman 

techniques, etc.). 

II. YOUNG –LAPLACE EQUATION FOR THE 

DEWETTED BRIDGMAN CRYSTAL GROWTH PROCESS 

Dewetted Bridgman is a crystal growth technique in which 

the crystal is detached from the crucible wall by a liquid free 

surface (liquid meniscus) at the level of the solid-liquid 

interface which creates a gap between the crystal and the 

ampoule (see Fig.1). 

 
Fig. 1: Schematic dewetted Bridgman crystal growth 

technique. 

 

The dewetting was first obtained spontaneously in space 

experiments during InSb Bridgman solidification performed on 

Skylab-NASA mission-1974 [6], and subsequently in many 

experiments carried out in orbiting spacecrafts (microgravity) 

on a wide variety of semiconductors. Since the most important 

aspect of dewetting is the huge improvement of the crystalline 

quality (reduction in spurious nucleation, fewer dislocations, 

lower stresses, etc.), this phenomenon has attracted 

considerable attention. There have been several studies on the 

mechanisms which may lead to dewetting.   

Duffar et al. focused on the meniscus equilibrium for rough 

[7] and smooth ampoule surfaces [8]. An analytical formula 

for gap thickness was reported in zero gravity, through a 

theoretical model based on Young-Laplace equation in which 
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the principal radii of meniscus curvature were expressed 

using curvilinear coordinate s. They concluded that the gap 

thickness depends on various parameters: contact angle, 

growth angle αe, surface tension, ampoule radius, and gas 

pressure difference. 

Understanding the results obtained in microgravity 

opened the possibility for the dewetting growth on the earth, 

that can be obtained by applying a gas pressure difference 

∆P= Pc-Ph between the cold and hot sides of the sample (see 

Fig.1). In this case, the Young-Laplace equation of a capillary 

surface (5) written in agreement with the above configuration 

is: 
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where the external pressure on the melt 
v cp P= ,  and the 

internal pressure applied on the liquid, pO is defined as: 

2O h l ap P gH / bρ γ= + + . 

Here, 
lρ  represents density of the melt; g - gravitational 

acceleration;
aH  - ampoule length; γ - surface tension of the 

melt; 2/b - the curvature at the top which in microgravity 

conditions is ( )1 c a/ b cos / rθ= − ; 
cθ - contact angle; 

ar  - 

ampoule radius; h - the meniscus height; l - level of the 

liquid-solid interface. Thus Young-Laplace equation can be 

written as follows: 
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                          (8)  

The solution of (8) has to verify the following boundary 

conditions: 

( )cz r l=  and ( )
2

c ez' r tan
π

α = − 
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,                              (8a) 

( )az r l h= +  and ( )
2
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θ = − 
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( )z r  is strictly increasing on [ ]c ar ; r ,                          (8c) 

where 
cr  represent the crystal radius. 

Comments: 

(i) Condition ( )cz r l=  expresses that the coordinate of the 

crystallization front is equal to 
0 0l l≥ >  (

0l  represents the 

length of the seed); and the condition ( ) ( )2c ez' r tan /π α= −  

expresses that at the point ( )( ) ( )c c cr ; z r r ;l=  where the 

solidification condition has to be realized (i.e., the left end of 

the free meniscus surface), the angle between the tangent line 

to the free surface and the vertical is equal to the growth 

angle αe, ( )0 2e ; /α π∈ . 

(ii) Condition ( )az r l h= +  expresses the fact that the meniscus 

height is equal to h; and the condition ( ) ( )2a cz' r tan /θ π= −  

expresses that at the point ( )( ) ( )a a ar ; z r r ;l h= +  where the free 

surface touch the ampoule wall (i.e., the right end of the free 

meniscus surface), the contact (wetting) angle is equal to 
cθ , 

( )2c / ;θ π π∈ . 

(iii) Condition (8c) expresses the fact that the meniscus shape is 

relatively simple. 

 

Equation (8) and boundary conditions (8a)-(8c) represent the 

nonlinear boundary value problem (NLBVP) of the Young-

Laplace equation which describes the equilibrium capillary free 

surface in semiconductor crystals grown by Dewetted 

Bridgman. Moreover, equation (8) is the Euler equation of the 

energy functional of the melt column. 

Indeed, the total free energy written for dewetted Bridgman 

configuration presented in Fig.1, is composed by the surface 

free energy and the gravity field energy: 
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In cylindrical polar coordinates, the total free energy becomes: 
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If there exists a meniscus 
0z  such that ( )0zI =minimum, then 

the meniscus 
0z  is called statically stable (i.e., the meniscus is 

kept in a stable equilibrium for any small variations zδ  and 

( )
dr

zd
z ' δ

δ =  [9]).  

A solution z(r) is minimum for I(z) if and only if the following 

conditions are satisfied: 

(a) existence of the extreme expressed by the Euler equation 
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(b) Legendre condition 0
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(c) Jacobi equation  
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the boundary conditions ( ) ( ) ,r',r aa 10 == ηη  has no 

conjugate points [9]-[11], i.e. the solution η(r) of the Jacobi 

equation is no null for any r belongs to ( )ac r;r . 

It is important to underline that the Euler equation only 

determines extremals, but does not give any information 

about their stability. In order to be sure that a minimal 

solution exists, the Legendre and Jacobi conditions should be 

satisfied. 

Using the equality (11), Euler’s condition gives the meniscus 

equation (8). In the case of terrestrial growth, for crucibles 

with a reasonable practical radius (larger than the melt 

capillary constant), the curvature of the upper free liquid 

surface is very small, and hence the term 2/b can be neglected 

[5], [12].  

Concerning the conditions (b)-(c), it is easy to observe that 

Legendre condition is fulfilled: 
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Replacing the partial derivatives in Jacobi condition, a Sturm-

Liouville problem of the form  ( )[ ] ( ) 0=⋅+⋅ ηη rq'rp
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is obtained: 
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For studying if the non-trivial solution η(r) is no null on the 

interval ( )ac r;r , the cases �180<+ ec αθ  and �180≥+ ec αθ  

should be treated separately because different behaviours of 

the meniscus shape. However, from sessile drop 

measurements it is known that semiconductors have the 

Young contact angles lower than 150° at equilibrium, and the 

growth angle values are lower than 30° (except InP). This 

means that the inequality �180<+ ce θα  is generally valid for 

semiconductors. On the other hand, crystal growth 

experiments showed that, in some conditions, contact angle 

may vary from 178° to 152° for the growth angle varying 

from 0° to 30°, leading to an unexpected inequality between 

the wetting angle θc and growth angle αe (i.e., �180≥+ ce θα ). 

This phenomenon was explained on the basis of the 

thermodynamical analysis [12]-[13], which proved that the 

chemical contamination modifies the contact angle by 

increasing it artificially. 

 

III. STATIC STABILITY OF THE MENISCI 

 

A. Case of microgravity 

In the case of microgravity the meniscus equation (8) becomes 

[14]-[15]: 
3
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and the Jacobi condition is 
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i.e., q(r)=0. Integrating (13), the following analytical 

expression of the derivative of z(r) is obtained: 
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As the function z(r) is strictly increasing on [rc; ra], the 

positive sign is chosen. The constant c1 is determined from the 

boundary condition (8b), leading to 
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Replacing ( )r'z  in the Jacobi’s equation, after integration, the 

derivative of η(r) is computed 
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It is easy to see that η’(r)>0, and hence the solution η(r) 

increases. Moreover, due to the boundary condition ( ) 0arη = , 

it is obtained that η(r) is no null on the interval (rc; ra), which 

shows that in the case of zero gravity, all menisci are statically 

stable.  

 

B. Case of terrestrial conditions 

In the case of terrestrial growth conditions the derivative 

( )r'z  can not be obtained analytically and hence for obtaining 

information concerning the nonzero solution η(r) of the 

Jacobi equation, Sturm-Picone comparison theorem should be 

used as follows: 

 

(i) For finding menisci which are statically stable, a Sturm 

majorant equation is searched. Considering the Sturm-

Liouville equation (12), new functions satisfying 
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  ( ) ( )rprp −≥     and  ( ) ( )rqrq +≤                                    (18) 

should be found. Thus, Sturm’s majorant equation  

( )[ ] ( ) 0=⋅+⋅ + ηη rq'rp
dr

d
_

                                        (19) 

is obtained, and information about its solution can be 

searched. 

Remark: If the solution η(r) of the Sturm majorant equation 

(19) has only the root ra, then the solution η(r) of the Jacobi 

equation is no null for any r belongs to (rc; ra). 

 

(ii) For finding menisci which are statically unstable, a 

Sturm minorant equation is searched. Thus, for the Sturm-

Liouville equation new functions satisfying 

   ( ) ( )rprp +≤   and ( ) ( )rqrq −≥                                      (20) 

are built, and the following Sturm’s minorant equation is 

obtained: 

( )[ ] ( ) 0=⋅+⋅ −
+ ηη rq'rp

dr

d  .                                       (21) 

Remark: If the solution η(r) of the Sturm minorant equation 

(21) has minimum two roots, then the solution η(r) of the 

Jacobi equation has at least one zero on the interval (rc; ra). 

 

Necessary or sufficient conditions for the existence of the 

statically stable convex (or concave, convex-concave, 

concave-convex) menisci are searched in the cases 
�180<+ ec αθ  and �180≥+ ec αθ . 

 

Case �180<+ ce θα  

Since the inequality �180<+ ec αθ  implies 
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φ=  (see Fig.1)  
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2

π
θ −c

, the 

growth angle 
eα

π
−

2
 can be achieved only if ( )rφ  decreases 

from 
eα

π
−

2
 to 

2

π
θ −c

, i.e. 0
d

dr

φ
< . On the other hand, 

2

2 2

1d z d

dr cos dr

φ
φ

= ⋅ , and hence 
2

2
0

d z

dr
< , i.e., the meniscus 

should be concave in the neighbourhood of ra. Due to this 

reason, in the followings, special attention is paid on the 

globally concave and convexo-concave (“S” shape) menisci 

shapes [16]-[17]. 

 

If the meniscus is globally concave, then for studying static 

stability, inequalities of the form (18) are found: 

   ( ) ( )l l aq r gr gr q rρ ρ += ≤ =  

 and  

  
( )

( ) ( )

( ) ( ) ( )

3 2 3 2
2 2

3 3

11
/ /

a e

r r
p r

tan rz'

r cos r r e sin p r ,

γ γ

φ

γ φ γ α −

⋅ ⋅
= =

   ++   

= ⋅ ⋅ ≥ ⋅ − ⋅ =

  

here e represents the gap thickness e=ra-rc. 

In the last inequality, the monotony of the function ( )rφ  

was involved (i.e., decreases for globally concave meniscus). 

More precisely, starting from ( )
2 2

c e
r

π π
θ φ α− ≤ ≤ − , it is 

obtained ( )( )
2 2

c ecos cos r cos
π π

θ φ α   − ≥ ≥ −   
   

, and hence 

( )( )3 3 3

2
e ecos r cos sin .

π
φ α α ≥ − = 

 
  

Thus, the corresponding Sturm majorant equation for globally 

concave menisci is: 

 ( ) 3 0a e l a

d
r e sin ' gr

dr
γ α η ρ η ⋅ − ⋅ ⋅ + ⋅ = 

                        (22)                          

which is equivalent to 

( ) 3
0l a

a e

gr
''

r e sin

ρ
η η

γ α
+ ⋅ =

⋅ − ⋅
.                                       (23)                                                     

According to the Hartman inequality [11], roots’ number N of 

the non-trivial solution η(r) of (23) satisfies the inequality 

     ( )
( )

1

2

3

1
1

2

a

c

r

l a
a c

a er

gr
N r r dr .

r e sin

ρ
γ α

 
< ⋅ − ⋅ + 

⋅ − ⋅  
∫                (24) 

Then, imposing for the solution η(r) of the Sturm majorant 

equation to have maximum one root at ra (i.e. it does not have 

a root different by ra), the following limitation of the gap 

thickness is obtained: 

( )

3
2 e

a l a a

sin e

r g r r e

γ α
ρ

⋅
⋅ >

⋅ −
.                                       (25) 

Comment: Numerical simulations made for InSb [18] showed 

that the globally concave menisci are statically stable for gaps 

in the range ( ]0012300 .;e∈ m. Since computed gap range for 

which the meniscus has concave shape is ( ]0014300 .;e∈ m 

[17], it can be concluded that globally concave menisci are 

statically stable, with possible exception in the case of a 

larger gap. 
For studying static instability of the globally concave 

menisci, inequalities of the form (20) are searched. Thus, 

( ) ( ) ( )l l c l aq r gr gr g r e q rρ ρ ρ −= ≤ = ⋅ − =  

and 

 
( )

( )
( )

( )

3

3 2
2

3 3

1

2

/

a c a c

r
p r r cos r

z'

r cos r sin p r .

γ
γ φ

π
γ θ γ θ +

⋅
= = ⋅ ⋅

 + 

 ≤ ⋅ ⋅ − = ⋅ ⋅ = 
 
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In this case, the corresponding Sturm minorant equation for 

globally concave menisci is: 

 ( )3 0a c l a

d
r sin ' g r e

dr
γ θ η ρ η ⋅ ⋅ ⋅ + − ⋅ = 

                        (26)                                           

which is equivalent to 

    ( )
3

0
l a

a c

g r e
''

r sin

ρ
η η

γ θ
⋅ −

+ ⋅ =
⋅ ⋅

.                                               (27)   

Imposing for the solution η(r) of the Sturm minorant equation 

to have minimum two roots (see the corresponding Hartman 

inequality), the following estimation of the gap thickness is 

found: 

3

2 a c
a

l

r sin
e r e .

g

γ θ
ρ

⋅ ⋅
⋅ < ⋅ −                                  (28) 

Comment: The inequality (28) was evaluated numerically for 

InSb [18]. It was obtained that there are no gap thickness 

values satisfying (28), i.e. there are no values of e for which 

the meniscus is unstable. 

 

Concerning the convexo-concave menisci, the problem is 

more difficult because the function ( )rφ , defined by 

dz
tan

dr
φ= , increases in the first part of the interval  (rc; ra) 

and after that decreases [16]-[17]. More precisely, using the 

second derivative 
2

2 2

1d z d

dr cos dr

φ
φ

= ⋅ , and the shape convexo-

concave, it is obtained that 0
d

dr

φ
>  on the interval  (rc; I) and 

0
d

dr

φ
<  on the interval  (I; ra), where I represents the inflexion 

point of the meniscus (i.e., ( )rφ  is maximum at I). 

Thus, for studying static stability, the following inequalities 

of the form (18) are found: 

( ) ( )l l aq r gr gr q rρ ρ += ≤ =  

 and  

  
( )

( ) ( )

( ) ( ) ( )( ) ( )

3 2 3 2
2 2

3 3

11
/ /

a

r r
p r

tan rz'

r cos r r e cos max r p r .

γ γ

φ

γ φ γ φ −

⋅ ⋅
= =

   ++   

= ⋅ ⋅ ≥ ⋅ − ⋅ =

  

Sturm majorant equation for convexo-concave menisci is: 

  ( ) ( )( )3 0a l a

d
r e cos max r ' gr .

dr
γ φ η ρ η ⋅ − ⋅ ⋅ + ⋅ = 

        (29) 

Comment: Computing ( )max rφ  for InSb and then imposing 

for η(r) to have maximum one root at ra, it is obtained that the 

convexo-concave meniscus is stable for ( ]00000300 .;e ∈ . 

Comparing this range with computed gap range 

[ ]003150001420 .;.  for ∆P corresponding to the menisci 

having “S” shape [17], it can be concluded that, for the 

considered parameters, there are no gap thicknesses for which 

convexo-concave menisci are statically stable. 

For obtaining a Sturm minorant equation (static instability), 

the following inequalities are found: 

( ) ( ) ( )l l c l aq r gr gr g r e q rρ ρ ρ −= ≤ = ⋅ − =  

and 

   ( )
( )

( ) ( )3

3 2
2

1
a/

r
p r r cos r r p r .

z'

γ
γ φ γ +⋅

= = ⋅ ⋅ ≤ ⋅ =
 +
 

                                

Hence, the Sturm minorant equation is 

( )
0

l a

a

g r e
''

r

ρ
η η

γ

⋅ −
+ ⋅ =

⋅
,                                               (30)                                                        

and imposing for η(r) to have minimum two roots, the gap 

thickness inequality is obtained: 

2 a
a

l

r
e r e .

g

γ
ρ
⋅

⋅ < ⋅ −                                             (31) 

 

Case �

180≥+ ce θα  

Since the inequality �180≥+ ce θα  implies 
2 2

c e

π π
θ α− ≥ − , 

using the function ( )rφ  defined by dz
tan

dr
φ= ,  and the 

boundary condition ( )
2

a cr
π

φ θ= − , we obtain that starting 

from 
2

π
θ −c

, the growth angle 
eα

π
−

2
 can be achieved only if 

( )rφ  increases from 
eα

π
−

2
 to 

2

π
θ −c

, i.e. 0
d

dr

φ
> . On the 

other hand, 
2

2 2

1d z d

dr cos dr

φ
φ

= ⋅ , and hence 
2

2
0

d z

dr
> , i.e., the 

meniscus should be convex in the neighbourhood of ra (this 

includes globally convex or concave-convex menisci [5]). 

Also, if the meniscus presents convex parts, i.e. the meniscus 

is convexo-concave then the dewetting is feasible [18].  

 

If the meniscus is globally convex then for studying static 

stability, the inequalities 

( ) ( )l l aq r gr gr q rρ ρ += ≤ =  

 and  

  
( )

( ) ( )

( ) ( ) ( )

3 2 3 2
2 2

3 3

11
/ /

a c

r r
p r

tan rz'

r cos r r e sin p r ,

γ γ

φ

γ φ γ θ −

⋅ ⋅
= =

   ++   

= ⋅ ⋅ ≥ ⋅ − ⋅ =

  

are used. Here the monotony of the function ( )rφ  was 

involved (i.e., increases for globally convex meniscus). More 

precisely, starting from ( )
2 2

e cr
π π

α φ θ− ≤ ≤ − , it is obtained 

( )( )
2 2

e ccos cos r cos
π π

α φ θ   − ≥ ≥ −   
   

, and hence 

( )( )3 3 3

2
c ccos r cos sin .

π
φ θ θ ≥ − = 

 
 

Thus, the following Sturm majorant equation is obtained: 

( ) 3
0l a

a c

gr
''

r e sin

ρ
η η

γ θ
+ ⋅ =

⋅ − ⋅
.                                       (32)                                
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Imposing for the solution η(r) of the Sturm majorant equation 

to have maximum one root at ra, the following limitation of 

the gap thickness which assures the statically stable globally 

convex is obtained: 

( )

32 c

a l a a

sin e

r g r r e

γ θ
ρ

⋅
⋅ >

⋅ −
.                                      (33)                                                 

Comment: Numerical simulations made for Ge grown in pBN 

sleeve [18], showed that the globally convex menisci are 

statically stable for gaps in the range ( ]00021700 .;e ∈ m. 

Comparing this range with the computed gap range 

[ ]00018600 .;  for ∆P corresponding to the convex menisci at 

ra [19]-[20], it can be concluded that convex menisci are 

statically stable. 

For studying static instability of the globally convex menisci, 

the followings inequalities are used 

( ) ( ) ( )l l c l aq r gr gr g r e q rρ ρ ρ −= ≤ = ⋅ − =  

and 

 
( )

( )
( )

( )

3

3 2
2

3 3

1

2

/

a e a e

r
p r r cos r

z'

r cos r sin p r .

γ
γ φ

π
γ α γ α +

⋅
= = ⋅ ⋅

 + 

 ≤ ⋅ ⋅ − = ⋅ ⋅ = 
 

 

In this case, the corresponding Sturm minorant equation for 

globally convex menisci is: 

( )3 0a e l a

d
r sin ' g r e

dr
γ α η ρ η ⋅ ⋅ ⋅ + − ⋅ = 

                        (34)                                           

which is equivalent to 

    ( )
3

0
l a

a e

g r e
''

r sin

ρ
η η

γ α
⋅ −

+ ⋅ =
⋅ ⋅

.                                              (35)   

Imposing for η(r) to have minimum two roots, the following 

estimation of the gap thickness is found: 

3

2 a e
a

l

r sin
e r e .

g

γ α
ρ

⋅ ⋅
⋅ < ⋅ −                                  (36) 

Comment: The inequality (36) was evaluated numerically for 

Ge grown in pBN sleeve. It was obtained that, for the 

considered parameters, there are no gap thickness values 

satisfying (36), i.e. there are no values of e for which the 

globally convex meniscus is unstable. 

 

The static stability (instability) of the convexo-concave or 

concave-convex menisci is investigated in similar way with 

those presented in the case �180<+ ce θα . 
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