
 

 

  
Abstract—On the physical point of view, the dewetting 

phenomenon is governed by the Young-Laplace equation of a 
capillary surface in equilibrium, which is a nonlinear partial 
differential equation of second order. Starting from this equation, an 
analytical expression of the meniscus surface in zero gravity 
condition was established, leading to important information about the 
meniscus shape, useful for further stability analysis of the growth 
process. The analytical results were validated by the numerical 
studies. Therefore, the Young-Laplace equation has been solved 
numerically, in the axi-symmetric case, using the adaptive 4th order 
Runge-Kutta method for InSb crystals. 
 

Keywords—Dewetted Bridgman crystal growth technique, 
Growth from the melt, Nonlinear partial differential equation, 
Young-Laplace equation.  

I. INTRODUCTION 
RYSTALS, used as sensors, as laser radiation source 
detectors or solar cells, are essential components of many 

high technology apparatuses produced in the optoelectronic 
industry. The quality of this kind of apparatus depends, on the 
quality of the aggregate crystals, which can be obtained by 
different growth methods. Before its utilization in 
engineering, the crystals are constrained to some 
supplementary mechanical processes (cutting, polishing) for 
bringing them to the desired form. These processes are 
generating defects and material losses, so the final product has 
low quality and it is more expensive. For this reason those 
growth methods are preferred which allow obtaining the 
crystal directly in the final desired form (without additional 
machining) and with minimal defects. Techniques of crystal 
lateral surface shaping without contact with the container 
walls are preferred: Dewetted Bridgman (DW), Edge-defined 
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film-fed growth (EFG), Czochralski, Floating-zone; the 
absence of contact between the crystallizing substance and 
crucible walls allows one to improve crystal structures and to 
decrease the mechanical stress level. 

Classical Bridgman method involves heating a 
polycrystalline material above its melting point in a crucible 
and slowly cooling it from one end where a seed crystal is 
located (Fig. 1 (a)). Single crystal material is progressively 
formed along the length of the crucible. The disadvantage of 
this technique is that the crystal contacts the crucible wall, 
which generally results in increasing the mechanical stresses, 
impurity level, and defect density in the grown crystals. The 
disadvantage can, however, be overcome by the dewetting 
solidification technique. 

 
Fig. 1 Schematic Bridgman (a), dewetted Bridgman (b) crystal 
growth systems and photograph of an ingot showing attached and 
detached regions (c) 
 

Phenomenon of dewetting is characterized by the classical 
Bridgman technique, but the crystal is grown without contact 
with the crucible walls thanks to the stability of a small liquid 
meniscus (Fig. 1 (b)) creating a gap between the crystal and 
the crucible wall [1]. 
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This phenomenon was first obtained spontaneously, in 
space experiments during the Bridgman solidification of InSb 
performed on the Skylab-NASA mission-1974 [2-3]. 
Numerous others Bridgman crystal growth experiments in 
space showed the same behaviour [4].  

 
In dewetting Bridgman technique there are two problems of 

interest [5]: 
- What is the crystal-crucible gap thickness e, therefore the 
crystal radius, c ar r e= − ? 
- What is the shape of the meniscus? This shape is related to 
the stability of the process. 
The main purpose of the present paper is to perform 

analytical and numerical studies for the meniscus surface in 
zero gravity conditions, starting from Young-Laplace’s 
equation [6]-[7] of a capillary surface in equilibrium and to 
establish the properties of the function which describes the 
meniscus surface, leading to important information for the 
stability analysis of the growth process [8]-[10]. 

II. MENISCUS SURFACE’S EQUATION 
The equation of a capillary surface in equilibrium in the 

absence of exterior pressure is given by the function:  
( )z z x, y=                         (1) 

which verifies the Young-Laplace equation with partial 
derivatives:  

( )
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where c hP P PΔ = −  represents the pressure difference 
between the cold and hot sides of the sample, θc - the contact 
angle, Ha- the total length of the melt and solid, lρ  - the 
density of the liquid, g - the gravitational acceleration, γ - the 
surface tension of the melt, ra - the ampoule radius and the 

term 2
b

 is due to the curvature at the top [11]. 

When referring to a system of coordinates as in Fig. 2, due 
to the radial symmetry, and imposing z independent of the 
polar angle: 
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the meniscus equation is obtained by the rotation around Oz 
axis of the curve k which satisfies the equation: 

( ) ( )
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In zero gravity conditions, the Young-Laplace equation 
becomes: 

( ) ( )
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γ

−Δ
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where 2/b is due to the curvature at the top which depends on 
the contact angle cθ  and on the ampoule radius, ar . Under 

microgravity condition it can be written as: 1 c

a

cos
b r

θ
= −  [11]. 

 
Fig. 2  Dewetting configuration in microgravity conditions 
 

The solution of (5) should satisfy the wetting boundary 
condition: 

( ) ( )
2 2a a c cz r l h,z' r tan , ,π πθ θ π⎛ ⎞ ⎛ ⎞= + = − ∈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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and the achievement of the growth angle: 

( ) ( ) 0
2 2c c e ez r l ,z' r tan , ;π πα α⎛ ⎞ ⎛ ⎞= = − ∈⎜ ⎟ ⎜ ⎟
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where l represents the solid-liquid interface coordinate and h 
is the meniscus height. 
Equation (5) can be written as 
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which is equivalent to  
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i.e., by integration: 
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Squaring the above relation gives: 
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from where is obtained 
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As the function ( )z r  is strictly increasing on [ ]c ar ; r , where 

cr  represents the crystal radius, in (8) the positive sign should 
be chosen. 
The constant c1 is determined from the boundary condition 

( )
2a cz' r tan⎛ ⎞= −⎜ ⎟

⎝ ⎠
πθ , leading to: 
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The analytical expression of the meniscus can be obtained 
integrating relation (9). As the integral can be expressed using 
elementary functions only in some particular cases, further 
two different cases will be treated separately: 0PΔ = and 

0PΔ ≠ . 
 
Case I: 0PΔ =  
 

On the physical point of view, this means that there is a 
connection between the cold and hot sides of the sample, so 
that the pressures cP and hP  are equal. 
In this case (9) becomes 

( )
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Integrating (10) gives: 
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Using the condition ( )az r l h= + , the analytical expression of 

the meniscus surface in zero gravity, when 0PΔ =  is 
obtained: 

( ) ( )2 2 21
a c a c
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z r r r c os r sin l h,
cos

= − − + +θ θ
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     (11) 

where [ ]0 ar ,r .∈  
Thus, by the rotation of the curve k around the vertical 
coordinate Oz, the meniscus equation is obtained: 

[ ]
[ ]

( )2 2 2

0 2

0
1

a

a c a c
c

x r cos , ,

y r sin , r ,r

z r r c os r sin l h
cos

β β π

β

θ θ
θ

⎧ = ⋅ ∈
⎪

= ⋅ ∈⎪
⎨
⎪ = − − + +⎪⎩

 

where 
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Further, some properties of the function ( )z r  will be 

presented. 
Proposition 1: 

Function ( )z r which describes the meniscus surface has the 

following properties: 
(i) ( )z r  is strictly increasing for [ ]0 ar ,r∈ ; 

(ii) ( )z r is convex for [ ]0 ar ,r∈ . 

Proof: 
(i) Deriving the relation (11) gives: 
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(ii) In order to show the convexity of the function ( )z r  the 

sign of the second derivative should be studied for [ ]0 a,r : 

( )
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Thus, function ( )z r is convex. ■ 

 From the above properties it results that in zero gravity 
condition and null pressure difference the meniscus is always 
globally convex and this is in agreement with the numerical 
results obtained in the case of InSb (Fig. 3). 

 
Fig. 3 Meniscus shape ( )z r for InSb, 25160 +=+αθ , 

ra=0.0055 m. 
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Thickness of the crystal-crucible gap 
 

Dewetting occurs when the growth angle 0
2e , πα ⎛ ⎞∈⎜ ⎟

⎝ ⎠
 (the 

angle between the tangent to the meniscus surface and the 
vertical) is achieved at least at one point on the meniscus 
surface, i.e. when the equation: 

( )
2 er πφ α= −                       (12) 

has at least one solution in the range ( )0 a,r ; where φ  is the 

angle between the plane 0z =  and the tangent plane to the 
meniscus at a point ( )P r,β . For this angle the equality 

( )tan z' rφ =  holds and hence information concerning the 

achievement of the growth angle is given by the equation: 

2 2 2
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Rewriting the above relation as: 
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, for [ ]0 ar ,r∈ .         (14) 

Relation (14) gives a condition of dewetting which depends 
on the growth angle eα  and contact angle cθ . 
The positivity of the derivative 
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gives that the function ( )rφ  is strictly increasing for 

[ ]0 ar ,r∈ . Taking into account this monotony and the 

boundary condition ( )
2a cz' r tan πθ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 which is equivalent 

to ( )
2a cr πφ θ= − , the growth angle is achieved if 

( )rφ decreases from 
2
πθ −c

 to 
eαπ

−
2

, leading to 

2 2e c
π πα θ− < − , i.e., c eθ α π+ > . In the opposite case 

when c eθ α π+ < , the growth angle can not be achieved due 

to the monotony of ( )rφ . 

Under the hypothesis that the growth angle criterion is 
satisfied, i.e., c eθ α π+ > , the Eqs. (12) and (13) give: 
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where e represents the crystal-crucible gap thickness and 

c ar r e= −  the crystal radius. 
From (15) results the gap thickness formula [11]: 
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= ⎜ ⎟

⎝ ⎠
              (16) 

valid under zero gravity condition, 0PΔ = , and c eθ α π+ > . 
Theorem: 

For a given ampoule radius ar  and 0PΔ = , if ⎟
⎠
⎞

⎜
⎝
⎛∈ ππθ ,

2c
 

and 0
2e , πα ⎛ ⎞∈⎜ ⎟

⎝ ⎠
 satisfy  the inequality c eθ α π+ > , then the 

meniscus height in zero gravity is constant and is given by the 
following relation: 

( )a
c e

c

rh sin sin .
cos

θ α
θ

= −             (17) 

Proof: 
Relation (17) is obtained imposing to relation (11) the 
condition of the growth angle achievement ( )cz r l= , which 

gives: 

( )2 2 21
a c c a c

c

h r r c os r sin
cos

θ θ
θ

−
= − −  

and by replacing c ar r e= − , where e is given by (16). ■ 
 
Case II: 0PΔ ≠  
 

The physical meaning of 0PΔ ≠  is that the gases between 
the cold and hot sides of the sample do not communicate, so 
that a pressure difference exists. 

In order to obtain the meniscus equation, relation (9) should 
be integrated, but if 0PΔ ≠ the integral can not be expressed 
using elementary functions. Then, for obtaining information 
concerning the meniscus shape, achievement of the growth 
angle, and gap thickness, qualitative studies should be 
performed. 

Introducing ( )tan z' rφ =  in relation (9), gives: 
2 22

2 2
c a

a

r cos r Pr Psin
r

θφ
γ γ

ΔΔ
= − − +             (18) 

which is equivalent to  
2 22

2 2
c a

a

r cos r Pr Parcsin
r

θφ
γ γ

⎛ ⎞ΔΔ
= − − +⎜ ⎟

⎝ ⎠
         (19) 

for any [ ]0 ar ,r∈ .  

In a way similar to previous calculations, the sign of the 

derivative d
dr
φ  will give information about the shape of the 

meniscus, and about the condition which should be imposed 
on the sum of the contact and growth angles such that 
achievement of the growth angle is feasible. Thus, deriving 
the relation (19) gives: 
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The sign of this derivative depends on the sign of the 
expression depending on r and PΔ : 
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and then, the following cases should be considered: 

(i) If ( ]0P ;Δ ∈ −∞ , then ( ) 0E r, PΔ >  and hence 0>
dr
dφ . 

Moreover, 01
22
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cosdr
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, i.e., the meniscus is 

globally convex, and the growth angle can be achieved only if 
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(ii) If  0 c
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r
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, then the meniscus changes its 

curvature (concave-convex) at the point 
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, i.e., ( ) 0IE r , PΔ =  which is 

equivalent to ( ) ( ) 02
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== II r
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dφ and the growth angle can 

be achieved once or twice, depending on its value. 

(iii) If c
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 then ( ) 0E r, PΔ <  and 

hence 0<
dr
dφ . In this case the meniscus is globally concave, 

i.e., 02

2

<
dr

zd , and the growth angle can be achieved only if 

c eθ α π+ < . 
Under the hypothesis that PΔ , cθ  and eα  are chosen such 

that the growth angle can be achieved, the growth angle 
criterion (12) is satisfied somewhere along the meniscus. 
From (18): 
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the following gap thickness formulas [11] are obtained: 
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2
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2
e c a
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cos cos Pre r
Pr cos

γ α γ θ δ
γ θ
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where 2 2 2 2 2e a a ccos P r r P cosδ γ α γ θ= + Δ + Δ . 

The first gap formula (23) is valid when the growth angle is 
achieved on the convex part of the meniscus, and the second 
formula (24) is valid when the achievement of the growth 
angle occurs on the concave part of the meniscus [12]. 

 

III. NUMERICAL RESULTS 
The results obtained solving numerically the Young-

Laplace equation by Runge-Kutta method for InSb crystals 
grown in zero gravity by the dewetted Bridgman technique 
(material parameters used in numerical computations: 

mN 42.0=γ , 3
1 mkg6582 =ρ , 0 0055ar . m= 0 08aH . m= ), 

confirm the behaviors obtained through the qualitative study: 
(i) If ( ]0P ;Δ ∈ −∞ , then the meniscus is globally convex 

and the growth angle can be achieved once. In the 
case of achievement of the growth angle the gap 
thickness is given by e1 expressed in (23). The 
numerical results reveal this behaviour for 

( ]50 0P ;Δ = − ∈ −∞  and 160 25c eθ α π+ = + > , as it 
can be seen in Fig. 4 showing that the meniscus is 
globally convex and that the growth angle is 
achieved. The computed gap thickness e=ra-
rc1=0.0055-0.00539=0.00011 m is equal to the one 
given by formula (23), i.e., e1=0.00011466 m. 

 
Fig. 4 Meniscus shape z(r) (a) and meniscus angle ( )rφ  (b) 
corresponding to a pressure difference 50P PaΔ = −  and 

160 25c eθ α+ = +  for InSb. The place where the growth angle 
(25°) is achieved is shown by the black dot. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 4, 2010 54



 

 

(ii) If 0 c

a

cos
P ;

r
γ θ⎛ ⎞

Δ ∈ −⎜ ⎟
⎝ ⎠

, then the meniscus is concave-

convex (has an inflexion point). When the growth 
angle is achieved on the concave part, the gap 
thickness is given by e2 expressed by (24), and on the 
convex part, the gap thickness is given by e1 
expressed by (23).  The numerical results confirm 
these behaviours. The menisci are concave-convex 
and the growth angle can be achieved once or twice: 
(a) for 112 25c eθ α π+ = + <  and 

( )8 0 0 28 6c

a

cos
P ; ; .

r
γ θ⎛ ⎞

Δ = ∈ − =⎜ ⎟
⎝ ⎠

 the growth angle is 

not achieved (see Fig. 5), but for ( )20 0 28 6P ; .Δ = ∈  the 
growth angle is achieved once, as it can be seen on 
Fig. 6;  

  (b) for 160 25c eθ α π+ = + >  and  

( )30 0 0 71 75c

a

cos
P ; ; .

r
γ θ⎛ ⎞

Δ = ∈ − =⎜ ⎟
⎝ ⎠

 the growth 

angle is achieved twice (see Fig. 7). 
 

 
Fig. 5 Meniscus shape z(r) (a) and meniscus angle ( )rφ  (b) 
corresponding to a pressure difference 8P PaΔ =  and 

112 25c eθ α+ = +  for InSb. The place where the growth angle 
(25°) is achieved is shown by the black dot. 
 

 
Fig. 6 Meniscus shape z(r) (a) and meniscus angle ( )rφ  (b) 
corresponding to a pressure difference 20P PaΔ =  and 

112 25c eθ α+ = +  for InSb. The place where the growth angle 
(25°) is achieved is shown by the black dot. 
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Fig. 7 Meniscus shape z(r) (a) and meniscus angle ( )rφ  (b) 
corresponding to a pressure difference 30P PaΔ =  and 

160 25c eθ α+ = +  for InSb. The places where the growth angle 
(25°) is achieved are shown by the black dots. 
 

The above figures show that the menisci are concave-
convex, and there are situations where the growth angle is not 
achieved, or the growth angle is achieved once, or the growth 
angle is achieved twice. If the growth angle is achieved on the 
concave part of the meniscus, then the computed gap 
thickness in Fig. 6 e=ra-rc1=0.0055-0.00083=0.00467 m is 
equal to e2=0.00467 m given by formula (24) and in Fig. 7, 
e=ra-rc1=0.0055-0.00155=0.00395m is equal to e2=0.00395 m. 
If the growth angle is achieved on the convex part of the 
meniscus, then the computed gap thickness e=ra-rc2=0.0055-
0.00516=0.00035 m is equal to e1=0.00035m given by 
formula (23), as can be observed in the Fig. 7. 

(iii) If  c

a

cos
P ;

r
γ θ⎡ ⎞

Δ ∈ − + ∞ ⎟⎢
⎣ ⎠

, then the meniscus is 

concave and the growth angle can be achieved once. 
In the case of achievement of the growth angle the 
gap thickness is given by e2 expressed in (24). The 
numerical results show that the meniscus is concave, 
and that for παθ <+=+ 25112 , 

[ )40 28 6c

a

cos
P ; . ;

r
γ θ⎡ ⎞

Δ = ∈ − + ∞ = + ∞⎟⎢
⎣ ⎠

 the growth 

angle is achieved (Fig. 8). The computed gap 
thickness e=ra-rc1=0.0055-0.00165=0.00385 m is 
equal to e2=0.00385 m given by formula (24). 

IV. DISCUSSION 
Under zero gravity conditions the pressure inside the liquid 

is imposed by the hot free surface of the liquid and depends 
only on the crucible radius ar  and on the contact angle cθ  (Fig. 
2). Then the curvature of the meniscus at the solid-liquid 
interface is totally fixed. 

The experimental observations under microgravity 
conditions have shown, that the crystal-crucible gap is 
remarkably stable [5] which is in agreement with the above 
analysis: in microgravity, the meniscus is convex (i.e., the 
second derivative of the function which describes the 
evolution of the meniscus height is positive) as its curvature is 
imposed by the melt free surface at the hot side. Only in case 
of large pressure difference PΔ , the shape of the meniscus at 
the liquid- solid -gas triple line can be concave. 

 
 

 
Fig. 8 Meniscus shape z(r) (a) and meniscus angle ( )rφ  (b) 
corresponding to a pressure difference 40P PaΔ =  and 

112 25c eθ α+ = +  for InSb. The places where the growth angle 
(25°) is achieved are shown by the black dots. 
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