
 

 

  

Abstract— A stationary free boundary model of solidification in 

the case of the vertical Bridgman crystal growth technique is 

considered. The Navier-Stokes and heat equations are employed and 

upper bounds for the velocity and temperature fields are determined 

theoretically. Then the determined properties are validated through 

numerical simulations in an axi-symmetric domain, based on a fixed 

point algorithm, performed using FreeFem++ software. 

 

Keywords— Free boundary problem, Stationary problem, 
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I. INTRODUCTION 

In 1924, Bridgman developed a method for growing crystals in 

a cylindrical crucible. The crystal grows as the crucible moves 

in a certain temperature  configuration and layout of the 

furnace [1]. Most known temperature configurations are 

Grenoble (corresponding to adiabatic insulation among the 

ampoule’s sidewall) and MIT (corresponding to three zones of 

temperature among the ampoule’s sidewall). As for the layout 

of the furnace, it can be vertical or horizontal.  

The Bridgman technique is used to grow single crystals of 

As, Ag, LiI, SiAs, GaAs, GaGe, etc.  

The properties of the resulting crystal depend on: 

- the temperature gradient in the furnace; 

- the value of the gravitational field; 

- the properties of the material (such as specific heat, 

density, kinematic viscosity, thermal expansion 

coefficient, solidification temperature, and initial 

dopant concentration in case of binary alloys); 

- the ampoule’s velocity of translation in the furnace; 

- the shape of solid-melt interface, which is given by two 

conditions: constant temperature and constant heat flux. 

In the case of binary alloys, the rejection of the dopant at the 

solidification interface represents a serious problem for 

practical crystal growers. Hence, the properties of the 

semiconductor crystals are strongly dependent of the dopant 

rejection which is controlled by the shape of the solid/liquid 

interface.  On the other hand, the interface is a free boundary, 

unknown apriori, reason for which this kind of problems 

request more theoretical investigations. In literature, there are 
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some investigations based on the model proposed in [2], but 

they were made under the assumption that the solidification 

interface is apriori known [3]-[7]. 

In this paper the free boundary model proposed by Chang 

and Brown is considered [2]. The furnace configuration is of 

MIT type, i.e., the furnace presents three zones: (i) the hot 

zone; (ii) the gradient zone; and (iii) the cold zone.  

Some properties of the solution for the considered boundary 

value problem are established. These are validated through 

numerical simulations, based on a fixed point algorithm, 

performed using FreeFem++ software. 

II. PROBLEM STATEMENT 

A. Dimensional governing equations for the process 

Consider the Bridgman method for growing crystals in a 

MIT furnace. A schematic representation for the ampoule’s 

transition and heat profile in the furnace is given in Fig.1.  

 
Fig. 1: Configuration of the MIT furnace 

 

The equations governing the process are: 

- for the velocity field in melt: 
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The corresponding boundary conditions are: 

- the walls of the ampoule are no-slip surface: 

SVv =  

Ss Vv =  

- the solid/melt interface is no-slip surface: 

( )tePetv z ⋅⋅=⋅  

( ) ( )nePenv z ⋅⋅=⋅σ  

- the temperature for the upper and the lower side of the 

ampoule is equal to the temperature of the furnace; 

- the temperature of the sidewall of the ampoule is equal 

to the temperature of the furnace in the hot zone and in 

the cold zone and decreases linearly in the adiabatic 

zone; 

- at the solid/melt interface the following two conditions 

for temperature hold: 

a) constant temperature: 

2
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b) constant heat flux: 

( ) ( ) trlssll unHTnkTnk ⋅∆=∇−∇ ρ  

The initial conditions are: 
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B. Dimensionless governing equations 

In order to obtain the dimensionless equations describing 

the process, the dimensional parameters are scalled as follows: 
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In this way, the dimensionless velocity field in the melt ( u ), 

the dimensionless velocity field in the crystal (
cu ), the 

dimensionless pressure field in the melt ( p ), the 

dimensionless coordinate ( x ), the dimensionless temperature 

in the melt (θ ), and the dimensionless temperature in the 

ctystal (
cθ ) are obtained. 

Since the crucible presents axial symmetry, the three-

dimensional problem describing the solidification process is 

reduced to a two-dimensional one. 

In the following, the domain occupied by the melt is 

denoted as 
lΩ , and the domain occupied by the crystal  as 

sΩ , i.e.,  

{ })r(h<z<0andR<r0|R)z,r(= 2

s ≤∈Ω  

{ }A<z<)r(handR<r0|R)z,r(= 2

l ≤∈Ω  

where )(rh  is the function describing the solidification 

interface. Note that the function )(rh  satisfies 
2

=)(
A

Rh . A 

schematic representation of the domain 
sl Ω∪ΩΩ =  is given 

in Fig. 2. 
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Fig. 2: The domains occupied by melt and solid, the corresponding 

boundaries, and the temperature profile in the furnace. 

 

Hence, the dimensionless form of the Navier-Stokes and 

heat equations in the liquid and crystal is given by: 
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where the following dimensionless parameters are introduced: 

- Rayleigh number  
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and γ  is the ratio of the solid and melt thermal diffusivities. 

 

The boundary conditions corresponding to problem (1) are: 
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where:  

- 
ztrtr uu e= ⋅  is the dimensioneless velocity of 

translation,  

- t - tangent unit vector to the solidification interface,  

- n  - outward normal unit vector,  

- σ  - ratio of the solid and melt densities,  

- A  - dimensionless length of the ampoule,  

- 
gL  - dimensionless length of gradient zone,  

- k  - ratio of the solid and melt thermal conductivities, 

- 
)( rcpll

l

TTc

H
S

−

∆
=

ρ
 - dimensionless Stefan number  

( H∆  is the latent heat of melt, 
plc  - heat capacity of 

melt). 

 

The translation of the ampoule in the furnace is simulated by 

supplying melt into the ampoule at Az = , and pulling crystal 

at 0=z .   

III. SOME PROPERTIES OF THE BVP’S SOLUTION 

A. Homogenization of the boundary conditions 

In order to determine the solution’s properties for problem 

(1)-(10), the boundary conditions for the Navier-Stokes 

equation are first homogenized. After that, a global equation 

for the temperature field is considered (based on the heat 

equations in melt, solid and the corresponding boundary 

conditions). 

Let ),,,( ccuu θθ  be a solution of the problem (1)-(10), 

truuu −=1
 and 

trcc uuu −=1
 the velocity fields obtained after 

homogenizing the Navier-Stokes’ boundary conditions. 
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the “global temperature”, and defining the coefficients α  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 4, 2010 60



 

 

and β  as follows: 
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the problem (1) becomes: 
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Note that Θ , α  and β  are continuous functions defined on  

Ω . The corresponding boundary conditions are: 
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B. An upper bound for the temperature 

Multiplying equation 

Θ∇−∆ΘΘ∇ truβα =  

by Θ  and integrating over Ω , we get:  
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Relation (22) implies that the growth of the temperature 

field is finite in Ω . Since 0=|
1

ΓΘ , it follows that Θ  is finite, 

and hence 
12 C

L
≤Θ , with 

1C  a real positive constant. 

 

C. An upper bound for the velocity field 
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Applying the Friedrichs inequality, which in our case is 

written 
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Inequality (24) implies that the growth of the velocity field 

is finite in Ω . Since 0=|1 Ω∂u , it follows that 
1u  is finite, or 

truuu +1=  is finite. 

IV. NUMERICAL EXAMPLE 

In the following, numerical simulations, based on a fixed point 

algorithm, are performed using FreeFem++ software [8]. 

FreeFem++ is a software developed at the Universite Pierre et 

Marie Curie, Paris, under freeware license, dedicated to solve 

two-dimensional and three-dimensional partial differential 

equations using the finite element method. 

The values for the parameters involved in (1)-(10), 

corresponding to Ga-dopped Ge grown in two distinct gravity 

conditions: terrestrial ( 610=Ra ) and zero-gravity ( 0=Ra ), 

are given in Table I. 
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Table I: Values of the parameters 

Symbol Value Symbol Value 

A  1 tru   0.01 

gL  0.125 γ   1  

Pr  0.01 k   1  

Ra  
610,0  S   1  

Pe   0.01  σ   1  

 

The algorithm for solving problem (1)-(10) consists in the 

following: 

 

INPUT DATA:  

- 
2

)()0( A
rh =  

- 
truzru =),()0(  

- τ=Θ ),()0( zr  

 

OUTPUT RESULTS: 

- )(rh  

- ),( zru  

- ),( zrΘ   

 

STEPS:  

1. Solve the “global” heat equation with the boundary 

condition (20). 

2. Find the isotherm corresponding to condition (19). 

3. Construct a domain deformation, in order to overlap the 

boundary to the isotherm found at step 2. 

4. Solve the Navier-Stokes equation on de deformed 

domain. 

5. Repeat steps 1-4 until both the variations of temperature 

field and velocity field become less than a sufficiently 

small error, ε . 

 

A schematic representation of the computed free solid-melt 

interface, following the described algorithm is given in Fig. 3. 

Following the steps described previous, first the “global” 

heat equation with constant heat flux as boundary condition on 

5Γ  is solved, and a temperature profile on Ω  is found. 

Because the isotherm corresponding to condition (19) is not 

necessarily overlapping the boundary 
5Γ , its position should 

be determined. For this aim:  

(i) the points ),( iii zrP (with 7,1=i ) for which 5.0)( =Θ iP  

are found, and 

(ii) the Bezier curve )(rhθ  determined by the computed 

points ),( iii zrP  is constructed. 

Once determined the parametric equation of the isotherm 

corresponding to 5.0=Θ , the next step consists in domain’s 

deformation, in order to overlap the isotherm to the inner 

boundary (solidification interface). It is not necessarily to 

construct another analytic curve for the inner boundary, 

because this is exactly the Bezier curve computed at the 

previous iteration.  

 

 
Fig. 3: The computed solid-melt interface deformation 

 

The deformation of the domain must satisfy the following 

conditions: 

- the horizontal displacement must be zero on the 

domain and its boundaries; 

- on 
1Γ  and 

3Γ the vertical displacement must be zero; 

- on 
5Γ  the vertical displacement must be equal to the 

difference )()( rhrh −θ .  

Thus, the deformation must satisfy the following system: 
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Once the position of the solidification interface is 

determined, the Navier-Stokes equation is solved. 

 

The values of the temperature and velocity field depend on 

the domain on which the corresponding equations are solved. 

The shape of this domain depends on the position of the 

solidification interface. This implies that it is not sufficient that 

the solidification interface overlap the isotherm 5.0=Θ , but it 

requests also that the values for the temperature and velocity 

fields have a sufficiently small variation.  

 

The computed temperature and velocity fields for two 

Rayleigh numbers ( 610=Ra , corresponding to terrestrial 
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conditions, and 0=Ra , corresponding to zero-gravity 

conditions) are presented below. 

 

 
Fig. 4: Flow field in the stationary case for Ga-dopped Ge grown 

in terrestrial conditions ( 610=Ra ) 

 

 
Fig. 5: Flow field in the stationary case for Ga-dopped Ge grown 

in zero-gravity conditions ( 0=Ra ) 

 

 
Fig. 6: Temperature in the stationary case for Ga-dopped Ge 

grown in terrestrial conditions  ( 610=Ra ) 

 
Fig. 7: Temperature in the stationary case for Ga-dopped Ge 

grown in zero-gravity conditions  ( 0=Ra ) 
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Computations show that the behaviour of the flow field in 

the melt is strongly determined by the Rayleigh number. 

For 610=Ra , two convection cells are observed: a strong 

one, in the lower part of the melt, and a weaker one in the 

upper part. The computed streamlines are equally spaced 

between the maximum (0.1526) and the minimum (-0.0118) 

values (Fig. 4).  

For 0=Ra , there is no convection. The computed 

streamlines are equally spaced between the maximum 

(0.000304) and the minumum ( 61081.7 −⋅ ) values (Fig. 5). 

 

In case of the temperature field, for 610=Ra , it can be 

observed that the shape of the isotherms tend to flatten in melt 

toward the solidification interface. Because the velocity in 

crystal is constant, and equal to the growth rate, the shape of 

the isotherms in crystal is not affected by the gravity condition. 

The computed isovalues for temperature are equidistant 

between a minimum (0) and a maximum (1) value (Fig. 6).  

For 0=Ra , the shape of isotherms in melt is similar to the 

shape of isotherms in crystal. This is due to the absence of 

convection. The computed isovalues for temperature are 

equidistant between a minimum (0) and a maximum (1) value 

(Fig. 7).  

 

A larger view of the region containing the computed 

solidification interface is presented in Fig. 8 and Fig. 9.  

 

 
Fig. 8: The solidification interface for 610=Ra  

 

 
Fig. 9: The solidification interface for 0=Ra  

 

It can be observed that in case of 610=Ra  the shape of the 

solidification interface tends to lower at 0=r , due to the 

strong convection in melt. Thus, the difference between the 

computed interface and the input data (
2

)()0( A
rh = ) is 

significant. For 0=Ra , the absence of convection causes no 

significant deviation of the computed interface and the input 

data.  

It can be also observed that in case of zero-gravity 

conditions ( 0=Ra ), a straight line of equation 
2

)(
A

rz =  

represents a good approximation for the shape of the 

solidification interface, but in case of terrestrial gravity 

conditions ( 610=Ra ), it is no longer possible to approximate 

solidification interface as a straight line. 

 

In conclusion, a larger Ra  number, corresponding to a 

stronger gravitational field, produces a stronger convective 

flow in the melt. This influences the shape of isotherms in 

melt: a stronger convective flow causes flattened isotherms 

toward the solidification interface. Since the shape of solid-

melt interface is determined by the isotherm 5.0=Θ , it 

follows that the interface shape is affected by the value of the 

gravitational field.  

 

It should be underlined that in previous investigations [3]-

[7], the numerical solution of the problem (1)-(10) was 

computed under the assumption that the solidification interface 

is a straight line, on which a constant temperature is imposed, 

but the heat flux at the interface was neglected. The approach 

proposed here is more realistic because it considers both 

conditions of constant temperature and prescribed heat flux at 

the interface. 

V. CONCLUSIONS 

A free boundary stationary model for the Bridgman crystal 

growth technique was considered. From the properties of the 

considered BVP’s solution, upper limitations for the velocity 

field and temperature were estimated. Numerical simulations, 

based on a fixed point algorithm, were performed using 

FreeFem++ software. 

Further investigations of the present work will focus on the 

non-stationary case able to give more useful information for 

optimizing crystal growth processes.  
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