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 Abstract -  In this paper, we discuss the  properties of some simple 
SI, SR, SIR and SEIR epidemic models  where their parameterizing 
functions (such as per-capita death rate, disease transmission, 
removal rate  etc. ) might be  eventually time-varying  but  either 
time-integrable or not.  

 
Keywords— Epidemic models, SI (susceptible/infectious), SR 
(susceptible/immune), SIR (susceptible/infectious/immune) and 
SEIR (susceptible/ infected/infectious/immune)  epidemic models.  

 
I.  INTRODUCTION 

    
 Important control problems nowadays related to Life 
Sciences are the control of ecological  models  like, for 
instance, those of population evolution (Beverton-Holt model, 
Hassell model, Ricker  model etc.) via the online adjustment 
of the species environment carrying capacity,  that of the 
population growth or that of the regulated harvesting quota as 
well as the disease propagation via vaccination control.  In a 
set of papers, several variants and generalizations of the 
Beverton-Holt model (standard time–invariant, time-varying 
parameterized, generalized model or modified generalized 
model) have been investigated at the levels of stability, cycle- 
oscillatory behavior, permanence and control through the 
manipulation of the carrying capacity (see, for instance,  [1-
5]). The design of related control actions has been proved to 
be important in those papers at the levels, for instance, of 
aquaculture exploitation or plague fighting. On the other hand, 
the literature about  epidemic mathematical models is 
exhaustive in many books and papers . A non-exhaustive list 
of references is given in this manuscript, cf. [6-14] (see also 
the references listed therein). The sets of models include the 
most basic ones, [6-7]: 

-  SI- models where not removed- by – immunity 
population is assumed. In other words, only susceptible 
and infected populations are assumed. 

- SIR models, which include susceptible plus infected 
plus removed- by –immunity populations.  

- SEIR- models where the infected populations is split 
into two ones (namely, the “ infected” which  incubate 
the disease but do not still have any disease symptoms 
and the “ infectious” or “ infective” which do have the 
external disease symptoms). 

    Those models have also two major variants, namely, the so-
called “pseudo-mass action models”, where the total 
population is not taken into account as a relevant disease 
contagious factor and the so-called “true-mass action models”, 

 
 
 

where the total population is more realistically considered as 
an inverse factor of the disease transmission rates.  There are 
many variants of the above models, for instance, including 
vaccination of different kinds: constant [8], impulsive [12], 
discrete – time etc., incorporating point or distributed delays 
[12-13], oscillatory behaviours  [14] etc. . On the other hand, 
some ´ad- hoc´variants of such models  are known to become  
considerably simpler for the illness transmission among plants 
[6-7]. It is also well-known that robust control is a powerful 
tool to deal with stabilization and control  in the presence of 
unmodeled dynamics and perturbations ( see , for instance 
[15-18]).  In [19], a control point of view of a vaccination 
strategy in continuous- time has been proposed for the true 
mass action (namely, the whole population numbers influence 
the rate of disease transmission) so-called SEIR (i.e. 
susceptible/infected/ infectious and immune populations) 
epidemic model under constant whole population assumption. 
This model generalizes simpler SIR epidemic models where 
infected (ie. those still without symptoms) and infectious (i.e. 
those already with disease symptoms) are not mutually 
distinguished. The vaccination strategy involves an auxiliary 
control being proportional to either the susceptible or to the 
whole population so that the unsuitable dynamics is  removed  
and replaced for an asymptotically stabilizing term of the 
susceptible dynamics. In this paper, we discuss  four 
elementary epidemic models of respective types as follows: SI 
(susceptible/infectious), SR (susceptible/ immune)  and SIR( 
susceptible / infected/ immune) models whose parameterizing 
functions  (per-capita death rate, disease transmission etc.) 
might be  eventually time-varying  but  either time-integrable 
or not.  
 

II. A SIMPLE TIME-VARYING SI EPIDEMIC - MODEL 
    Bernouilli proposed in 1760 a simple epidemic model 
where the infection is  removed instantaneously so that all the 
population  passes from susceptible to removed by immunity 
(the simplest  SR model), [20] . The model was assumed in 
particular  for instantaneous infective effect  via inoculation of 
the smallpox.  Since them a lot of investigation has been 
devoted to epidemic models including the incorporation of 
infected and infectious populations (SIR and SEIR epidemic 
models), the presence of delays  in the disease transmission 
etc.  The following simple one-parameter time-varying model 
is a generalization to the time- varying one of the simpler 
time- invariant SI (susceptible/infectious) epidemic model: 
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with initial conditions 0)0( 0 SSN ,  

0)0( 00  SNIIN  such that the total population 
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time and the disease transmission function   00: RR  

with  0:0   RR . Thus, one gets for N > 0: 
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where   00: RR cl , i.e. , the image is the closure of the 

nonnegative real numbers so that the  - point is added,  in  

is defined  by        t dt
0

:  with  0 if 

  00
1 R,RL  and  , otherwise. The solution 

of (1)-(2) is obtained from (5) as follows:  
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which are nonnegative for all time , so that (1)-(3) is a positive 
dynamic system ( see [15-17]), and have finite nonnegative 
limits as t  which is a global attractor of the trajectory- 

solution and it is also a  globally asymptotically stable 
endemic ( in the sense that the disease propagates) equilibrium 
point: 
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which becomes in particular if   the following 

strongly endemic ( in the sense that the whole population 
becomes infectious) equilibrium point: 
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   Thus, the solution of (1)-(2) is nonnegative for all time if the 
initial conditions are nonnegative and converge asymptotically 
to a stable equilibrium point for any given nonnegative initial 
conditions satisfying a constant population constraint 

)0()0( ISN  . Simple calculations yield: 
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1) If  0  then 0
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, 0

)0(
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. Thus, if I (0) 

increases (decreases) then the susceptible limit decreases 
(increases) and infected limit  increases ( decreases). 
 
2) If   or if 0N  (leading to the trivial solution of 

(1)-(2)) then    

 0
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. Then, the equilibrium point  

coincides with the initial conditions. 
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if I (0) increases (decreases) then the limit infected increases 
(decreases)  and the limit susceptible decreases (increases). 
   The solution of (1)-(2) may be alternatively written as 
follows with given upper-bounding functions: 
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Also, one gets from (6): 
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   Thus, the infected  population at any time t  increases 
(decreases)  when I (0)  is increased (decreased) . The 
susceptible population behaves in the contrary sense. That is 
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conversely, 
 
Also, the infected (susceptible) population is a  monotone 
strictly increasing (decreasing) function  for all time for any 
initial condition in  N,0 . 

 
III. A SIMPLE TIME-VARYING SR- EPIDEMIC MODEL 

    
A simple SR (susceptible/ immune –also called removed by 
immunity-) time-varying epidemic model extending its time- 
invariant counterpart is (see [20]): 
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differential equations are independent. The transmission 
function is   00: RR  and  

  00: RR  is the per capita death ratio at time t . The 

unique solution of (13)-(15) is: 
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which take nonnegative real values for all time. Define 
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following properties hold: 
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whole population again asymptotically extinguishes as in 
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   Thus, the whole population and  the susceptible and immune 
populations are monotone decreasing functions  so that they 
have a finite limits. Also, the immune population increases / 
decreases as the susceptible one increases (decreases). 
 
   An  equivalent result to (16.b)  for the immune population 
is   calculated directly from (15) and (16.a) as follows 
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IV. A SIMPLE TIME-VARYING SIR-EPIDEMIC MODEL 
     
A simple SIR (susceptible/infectious/immune)  time-varying 
epidemic model extending its time- invariant counterpart 
(Kermack-McKendrick model - 1927), [20] is: 
 

    )()( tItSttS                                                        (19) 

      )()()( tIttItSttI                                            (20) 

    )(tIttR                                                                     (21) 

 
where    00: RR  is the removal rate with initial 

conditions 0)0(,0)0(,0)0( 000  RRIISS and 

where the  new parameterizing function right hand- sides of 
(19)-(21) yields a constant total population 

0000)0( RISNN  . The use of (21) in (19) 

yields      
  )t(S
t

tRt
tS


 

   which together with (19) 

yields the two equivalent expressions for the susceptible: 
 

  
)0()0()( 00

/)()()()(
SeSetS

dRdI
tt  

 

  

;  0Rt                                                                         (22) 

 
   Eq. 20 might be rewritten equivalently as  

       )()( tIttSttI    what leads to the following 

solution: 
 

 
0)0()(

)()()(
0 


IetI

dS
t 

;  0Rt           (23)  

which is well-posed if  
 

 
)0()0()0()0(

)()()(
0 RISNIe

dS
t

  
 

;  0Rt                                                                          (24)     

 
or, equivalently, if  
 

 
)(R)(S)(Ie

d)()(S)(
t

00010 












  

;  0Rt  (25) 

which holds irrespective of  any nonnegative values of the 

initial conditions if 
 

1
)()()(

0    dS
t

e ;  0Rt . 

That is guaranteed if     )(/ tStt   ;  0Rt  . Looking 

now at the susceptible population given by (22), one gets that 
if     )(/ tStt   ;  0Rt , guaranteeing non- negativity 

for all time of the infectious population then  
 

)0()0(0)0(1
)()(

0 RISe
dI

t














 

;  0Rt    (26) 

so that the susceptible population is also nonnegative for all 
time under the same sufficiency – type condition  as the 
infectious one is nonnegative, that is,     )(/ tStt    for 

all time.  On the other hand, it also follows directly from  
integration of (22)-(23) through time that:  
 

   dIRtR t )()0()(
0  

   
)0(

´´´´
)0(

)()()(

0
0 IdeR

dSt













 


 


;  0Rt   (27) 

which is  nonnegative for all time if  the infectious population 
is also nonnegative for all time which is guaranteed if  the 
disease transmission function is sufficiently small to satisfy 
the upper- bounding condition     )(/ tStt   ;  0Rt . 

Then, it follows as a global result that if      )(/ tStt   ; 

 0Rt  then  NtRtItS  )(,)(),(0 for all time. Since 

this condition is always guaranteed for t=0, it follows by 
complete induction that if the stronger 
condition     Ntt /  ;  0Rt  holds then 

NtRtItS  )(,)(),(0  for all time  for any set of well-posed 

initial conditions  so that the given  SIR- model is positive. 
On the other hand, it follows by observing (27) that the 
condition     Ntt /  ;  0Rt  implies that  

)(tR  if R)(t for  all time what makes the 

epidemic mathematical model to be  not well-posed. However, 
those conditions can fail on time intervals of finite measures 
and the model to be still well-posed.  
A necessary condition for well-posed model is 

)0()0()0()( RISNtR  ;  0Rt  for any given initial 
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conditions what in view of (27) translates into the following 
constraint:  

   
)0(/)0(1

´´´´ )()()(

0
0 ISde

dSt  
 



; 

 0Rt                                                                            (28) 

 
The worst case of (28) is when 













 


)0()(0)(0)0(
)(

0 IetItSS
d

t 
;  0Rt  

from (22) –(23) so that the necessary condition,  irrespective 
of the disease transmission function,  for  well-posed model  
for the worst-case of (28), and then valid for any set of initial 
conditions,  is  
  

  1
´´ )(

0
0 

 


de
dt ;  0Rt                             (29) 

 
what is guaranteed in particular  with an upper-bounding  

function  of exponential order teK   of the left-hand-side of 

(29) if there exist constants     RR  K,0  such that  

 

        dt/Klnt/min t

Rt


 0
1

0

                    (30) 

     
The combination of (19) and (20) leads to: 
 

     tStIttI   )(                                                       (31) 

 
so that 
 

       dItStISI t
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)()()0()0(0  

                  )0()(
0

RtRdRt    ;  0Rt              (32) 

provided that the model is well-posed so that the infectious 
population is nonnegative for all time what implies: 
   

)()()0()0( tStISI  ; 

)()()()()0()0()0()0( tRtStItNRSIN  (as 

expected);  0Rt  

 
so that the joint susceptible plus infected population is a 
monotone decreasing real function  independent of initial 
conditions and the whole population is constant (the constant 
property of the whole population was already known from 
simple inspection of (19)-(21). Equivalently, (20) may be 
integrated via integration by parts as follows by also using 
(19): 
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                                                                                           (33) 
 
;  0Rt . Then, under any of the 

conditions     )(/ tStt   ;  0Rt or     Ntt /  ; 

 0Rt  guaranteeing that  the mathematical model is 

positive, it follows that : 
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;  0Rt                                                                          (34) 

 
irrespective of any well-posed set of initial conditions. Now, 
one can easily obtain from (19) to (21): 
 

          tRtSNttRtItS  )(  

  ;  0Rt                                                                        (35) 

 
      Then,  

         )(tSNttRttR   ;  0Rt             (36)                   

which has the following solution by using (22): 
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If     )(/ tStt   ;  0Rt or     Ntt /  ; 

 0Rt for any set of well-posed initial conditions. This 

leads to the following integral constraint:  
 

0
´´´

1
´

0

)()(´)(
00 











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dee
t dId

t

          (38) 

what  follows directly by contradiction arguments by choosing  
initial conditions NS )0( ,  0)0()0(  RI  so that if (38) is 

false for some time t then 0)( tR  under the positivity 

constraint for  the model (19)-(21) 
    )(/ tStt   ;  0Rt or     Ntt /  ;  0Rt  

what is impossible.   Some simple concerns with the spreading  
or not of the disease are now discussed. 
 

1) From (20) and (23), 

  0;0)()(0)0(0)0( RttItIII    

and the disease does not spread through time. 
2) Assume that 0)0( I  and  tttS  /)()(  ; 

 0Rt  (a necessary condition being R)(t ). 

Then , one gets 0)( tI , so that )0()( ItI  and 

    )(tIttS  ;  0Rt  and the disease still 

does not spread out through time so that 
       

         dIdIStttS tt
 
00

)0(0/)0()()0(/)()(

;  0Rt  

from (19)-(20). The above equation is equivalent to the 
subsequent rule for the disease transmission function: 

   
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
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0
1 )0(00

;  0Rt                    (39)  

since the denominator of (39) cannot be negative at any time. 

It is necessary that    
  )0(0

0
0 I

d
t




  ;  0Rt  so that it 

is also required  as a result   00
1 , RRL  (needing in 

addition   0t as t ) with sufficiently small bound 

for the integral  on 0R  depending on the initial infectious 

population and the initial values of the average initial disease  
removal rate and initial disease transmission function value. In 
this case, it follows from (21) that  the immune population  is 
given by: 
 

   d)(I)(R)t(R t


0
00 ;  0Rt                      (40)  

 
which introduced and additional constraint on  the average 
removal  rate of the disease  which together with the former 
one  deriving from (39)  yields the stronger  necessary 
constraint for non-propagation of the disease under  initial 
nonzero infected population which remains constant for all 
time: 
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 One has also from (20)-(21) that  
 
  01

)(
)(/)( 

t

tSt
tRdtId




;  0Rt   

so that the infected population is a monotone decreasing 
function (eventually being constant) with respect to the 
immune one. 
    

3) The disease still does not spread if 0)0( I  and 

 tttS  /)()(  ;  0Rt  what implies   0tI  ; 

 0Rt  so that )0()( ItI  ;  0Rt . Then,  

 

          d)(I)(S)t(St/)t( t

0

0 ;  0Rt  

 
so that , one has instead of (39),  
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which requires the necessary condition  by taking also into 
account (40) 

   )(Smin
)(I

d
t

0
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1
0    ;   0Rt                       (43)                         

    This condition is weaker than  (41) but still guarantees that 
the disease does not spread with the infectious population 
being a monotone decreasing  function including eventually to 
be a constant function defined by the initial conditions. 
 

 4) The disease spreads through time if 0)0( I  and    

 tttS  /)()(  :  0Rt  and , furthermore, 

 tttS  /)()(  ;  0RTIt   with the interval TI  

being some non necessarily connected subset of 0R of 

infinite measure. Thus,   0tI ; ITt  so that 

  00: RRI  is monotone increasing.  Then,  
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what is guaranteed under the necessary condition  (43)  if  
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  ; ITt                          (44) 

and  ttR p  /)(: is said to be the basic reproduction ration 

of the disease at time t  which allows its propagation. This 
condition implies also from (20)-(21) that 
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infected population is a monotone increasing function with 
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respect to the immune one. Since the above derivative is 
strictly positive on the time interval IT then the infected 
population is a strictly monotone increasing function with 
respect to the immune on the time interval IT. 
 

5) The  susceptible population can be calculated  through 
time independent of the other populations as follows. One 
gets combining (19) and (21) by using (23): 
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d)(I

´´´´

e)(S

e)(S)t(S

0
0

0

0
0

0





   

    ;  0Rt . 

 
V. SEIR EPIDEMIC MODEL 

 
    The following SEIR- model distinguishes as tow separate 
populations the “infected” E(t) which do not  still have 
external disease symptoms from the “infectious” I(t) (also so-
called “ infective” ) which exhibit already such symptoms. Let 
S (t) be the “susceptible” population of infection at time t, E 
(t) the “ infected” ( i.e. those which incubate the illness but do 
not still have any symptoms) at time t, I (t ) is the “ infectious” 
(or “infective”) population at time t, and  R (t) is the “removed 
by immunity ” ( or “ immune”) population at time t. Consider 
the SEIR-type  epidemic model:  
 

         
      tVtN
tN

tItS
tRtStS  1          (45) 

     
     tE
tN

tItS
tE                                     (46) 

       tEtItI                                            (47) 

             tVtN tItRtR   1           (48)   

                                                       
subject to initial conditions   000  SS ,   000  EE , 

  000  II and   000  RR  under  the vaccination 

function   00: RRV . The vaccination control is either the 

vaccination function itself or some appropriate four 
dimensional vector depending on it defined “ad –hoc” for 
some obtained  equivalent representation of the SEIR- model 
as a dynamic system.  In the above SEIR – model, N(t) is the 
total population,   is the rate of deaths from causes unrelated 

to  the infection,   is the rate of losing immunity,   is the 

transmission constant (with the total number of infections per 

unity of time at time t  being 
   
 tN

tItS ), 1  and 1 are, 

respectively,  the average durations of the latent and infective 
periods. All the above parameters are nonnegative. The 
parameter   is that of rate of immunity lost since it makes the 
susceptible to increase and then the immune to decrease. The 

usual simplified SEIR- model  is obtained with    and 

0 . In that case, 

         tRtItEtStN    

 
           0 tRtItEtStN ;  0Rt  

                                                 
          00 0  NN)(NtRtItEtS:tN  

 
If    then the new-born lost of maternal immunity is 

considered in the model. If    then there is a considered 

mortality incidence by external causes to the illness. The 
parameter  10 ,  is the per- capita probability of dying 

from the infection.  If either    and 0  or 

  and 0 , and otherwise,      


 tN
tI

  

occurs eventually on a set of zero measure only then the total 
population varies through time as obtained by correspondingly 
summing- up both sides of (45)-(48). Furthermore, (45) and 
(48) and (46) and (47) might be separately summed up to 
obtain the evolution dynamics of the separate  populations of 
joint susceptible and immune and joint infected and 
infectious. This leads to:  
 

       tItNtN                                             (49) 

   tRtS    

      
     tNtI
tN

tS
)t(RtS  








 1    (50) 

        
   tI
tN

tS
)t(ItEtItE 








          (51) 

  
  Note that (49) is identically zero if 0  and  

 
        d)(Ie)(Ne)t(N t tt   

0
0  

    )(RSe)t(RtS t 00    

     
    

 dI

N

S
)(Net t



















   1

0
        (52) 

    )(IEe)t(ItE t 00     

                
    

 dI

N

S
et t









  

0
                  (53) 

  
  In order to further solve (52), an integration by parts is 
performed as follows: 
 

         tt d,tqp,tqdp
00

   

    de)(Nt t 
0

      d)(N,tq,tq)(N tt

00

                               (54) 
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where 

     
 

00
0

ttt
t t ,tq

e
de:tq 





 


          

   0
1

,tqt,tq
e t







                                              (55) 

 

so that /)t,t(q 1  and  /e),t(q t0  and  then using 

(49) in (54) yields 
 

    )(NetNde)(N tt t 0
1

0



    

                


 dINet t 
0

1
 

 
which, after grouping identical terms,  leads to  
 

    de)(Nt t 
0

  

      




    


 dIe)(NetN t tt

0
0

1    

                                                                                             (56)                           
Thus, combining (8)-(9) and (12) yields: 
                                                                                                                                                         

      tI)t(EtN)t(RtS  te   

   
    


















  


 dI

N

S
e)(N)(RS t

0
000  

   
    


















  


 dI

N

S
e)(IEe tt

0
00      (57)                                                        

 
VI. VACCINATION CONTROL 

 
   If the control objective  /)t(N)t(S   for all time is 

achieved with a positive vaccination control in  10 , , it is 

proven below that the whole population converges 
exponentially to the sum of the susceptible population plus the 
immune population while  both the infectious and infective  
converge exponentially to zero. This is theoretically the ideal 
objective since the infection is collapsing as time increases 
while the susceptible plus the immune populations are 
approximately integrating the whole population for large time. 
Other alternative objective has been that the immune 
population be the whole one but this is a more restrictive 
practical objective since the whole susceptible population 
should asymptotically track the immune one even those of the 
susceptible who  are not contacting the  disease. 
 
Theorem 1. Assume that 0 and that the vaccination 

function is such that  /)t(N)t(S   ;  0Rt with a 

vaccination control in  10 ,  for all time. Then, the SEIR 

model (45)-(49) is positive for all time. Furthermore,  
 

      tI)t(EtN)t(RtS   

    )(N)(RSe t 000     

    )(IEe t 00                                                (58) 

for all time what implies the following constraint for the initial 
conditions: 
 

 )(R)(I)(E
)(N

)(S 000
0

0 









 

   As a result,  

  )(IEe)t(S)t(N)t(R t 00    

  )(IEe)t(N t 00 


 



 

          )t(N)(SRe)t(N t








  







   00 ; 

 0Rt  and )t(N)t(R

   as t  

Furthermore, the following two limits exist: 
 

        0


tI)t(ElimtN)t(RtSlim
tt

  

                                                                                             (59) 
   If , in addition, 0  then 

 
  )t(RtSlimN)(N)t(N

t



0  ;  

 0


)t(Ilim)t(Elim
tt

                                                (60) 

 
Proof: The mathematical SEIR- model (45)-(49) is positive 
since the vaccination control is in  10 ,  for all time so that 

no population takes negative values at any time. On the other 
hand, Eqs. 58-59 follow directly from (57) and 

 /)t(N)t(S   for all time. Eqs. 16 follow from (58)-(59) 

since 0   imply  

N(0)N(t)  ,   0tN from (49).                                                               

 
An associate stability result follows: 
 
Theorem 2. Assume that 0 .Then, the following 

properties hold: 
 
 (i) The SEIR model is globally  stable if  0  and  the 

vaccination law fulfills  100 ,:V R . 

 
  (ii) If  /)t(N)t(S   and 0  then the following 

conditions are jointly necessary for global stability under 
Theorem 1 

  ; 0        d)(Ie)(N 
 
0

0 , 

0


)t(Nlim
t
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 (iii) If 0  and    
)t(NtI


  ; 

   00 Rfinitett  then global stability of the SEIR-model 

(45)-(49) is guaranteed if  100 ,:V R . If 0  , 

 100 ,:V R  and    
)t(NtI


   is replaced with 

the weaker condition      teo)t(NtI 

   for 

some R then the SEIR – model (45) –(48) is globally 

stable. 
 
 
Proof: (i) If  0  and 0  then 

            0 tNtItNtN  ;  0Rt  

so that  )(N)t(N 0 ;  0Rt . Since the SEIR – model 

is positive if  100 ,:V R  then all the populations are 

nonnegative  and upper-bounded by N(0).  
 
(ii)  On the other hand, the solution of (49) for any initial 
conditions is  
 

      




      dIe)(Ne)t(N tt

0
0  

 
which is uniformly bounded for all time only if 

      dIe)(N 
 
0

0 since 0  . Also, 

)t(N ;  0Rt  only if 0)t(N  on a non-necessarily 

connected set of infinite Lebesgue measure. Thus, there is a 
finite sufficiently large finite time “ t” such that : 
 

       )t(R)t(I)t(E)t(S)t(NtI 




  

 )t(R)t(E)t(S)t(I 






 






1

 )t(R)t(E)t(S)t(I 






 

 
which requires the parametrical conditions 0  and 

  .  Since  I(t) is of exponential order of at most 

   from Theorem 1 [Eq. (58)] then  )t(R)t(E)t(S   

is also  of exponential of order of at most    so that N(t) 

extinguishes exponentially  as they do all the populations of 
susceptible, infected , infectious and immune.     
  

(iii)   If    
)t(NtI


   with     after some finite 

time 0t  then 00 tt;)t(N)t(N   and the SEIR -

model is positive since  100 ,:V R .  Thus, global 

stability follows. If      teo)t(NtI 

   replaces 

the above stronger condition    
)t(NtI


   after a 

finite time then  tN  is of exponential order   so that 

)t(N is uniformly bounded for all time and the global  

stability still holds.                                                                 
Note that  the case    is not  feasible in practice for 

0  since the population diverges . If  0 , it requires 

a collapsing effect of the illness on the population which is 
also unfeasible in practical situations. It is now discussed how 
the vaccination law is generated to keep simultaneously the 
SEIR- model positivity plus the tracking objective of Theorem 
1 which requires positivity. The tracking objective 

 /)t(N)t(S   for all time is equivalent for all time to any 

of the subsequent equivalent identities below: 
 

)t(R)t(I)t(E/)t(N)t(N    

)t(R)t(I)t(E)t(N 




 




 )t(R)t(I)t(E)t(N 







)t(I)t(E)t(N)t(R 



                                   (61) 

 
which requires as necessary condition 0 . Although 

unrelated to the physical problem at hand, the necessary 
condition will be also accomplished with 0 and 

0 with  /)t(N)t(S  . From Theorem 1, Eqs. 50-51 

imply that  
        0


tI)t(ElimtN)t(RtSlim

tt
   The 

solution of (51) is: 
 

    tetItE   

   
   




















  




dI
N

S
e)(IE t

0
00             (62) 

 
Then, the solution of (48) matches (61) for all time if and only 
if: 

)t(N)t(I)t(E)t(N)t(R




   

   
   




















  


 dI

N

S
e)(IEe tt

0
00  

  te  
         





     dVN)(Ie)(R t

0
10        (63) 

 
Define an  everywhere time- differentiable auxiliary function 

RR 0:h  defined as  
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such that 
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)t(N

tV 


 1
1                             (64) 

for all time so that  the last right-hand – side additive term in 
(63) becomes after integration by parts: 
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                                                                                             (65) 
   The replacement of (65) into (63) yields: 
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and equivalently, and since  /)t(N)t(S   for all time: 
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generated from: 
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                                                                                             (68)   
so that  
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The vaccination law which ensures the positivity of the 
mathematical SEIR- model (45) – (48) is generated as follows: 
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where 
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Define the indicator function  i(t) as follows: 
 

0)t(i  if    1,0tV  and 1)t(i  , otherwise  

                                                                                             (72) 
Then, one has instead of (57) 
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which coincides with (57) for all time if the indicator function 

is identically zero, that is, if  th  ism such that the auxiliary 

vaccination law (71) is in  10 ,  for all time. Also, for any 

given real 0  and )(TT  such that  
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)(R)(S)(N

lnT
0001

 

 
and Tt  ,   one gets from (57): 
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and the right-hand-side integral  takes into account the 
tracking deterioration  if there is a time interval of nonzero 
Lebesgue measure such that  tV)t(V  ;  0Rt . The 

following result is important to discuss stability when the 
vaccination law  10 ,)t(V   but it is not identically equal to 

 tV . In fact the positivity part of Theorem 1 still holds since 

the SEIR- model is positive since  10 ,)t(V  ;  0Rt and 
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the whole population evolution is independent of the 
vaccination law according to (49). However, the whole 
susceptible plus immune does not asymptotically track the 
whole population. In summary, one has: 
 
Theorem 3. The vaccination law (68), (70)-(71) makes the 
SEIR – model (1-(4) positive and globally stable under 
Theorem 2.   Furthermore, 
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