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Abstract— In this paper, we examine the stabilization prob-
lem of systems described by partial differential equations and
delay differential equations. The control of a partial differential
equation with a time delay is a challenging problem with
many applications that include physical, chemical, biological,
economic, thermal, and fluid systems. The semigroup method
is a unified approach to addressing systems that include
ordinary differential equations, partial differential equations,
and delay differential equations. Using semigroup theory, we
introduce the concept of an abstract delay system that can be
used to characterize the behavior of a wide class of dynamical
systems. This paper examines the stabilization problem of an
abstract delay system on a Banach lattice on the basis of
semigroup theory. To tackle this problem, we take advantage
of the properties of a non-negativeC0 semigroup on a Banach
lattice. The objective of this paper is to propose a stabilization
method for an abstract delay system on a Banach lattice. We
derive a sufficient condition under which an abstract delay
system is delay-independently stabilizable. Furthermore, we
provide illustrative examples to verify the effectiveness of the
proposed method.

Keywords— Stabilization, Partial differential equation,
Time delay,C0 semigroup, Banach Lattice, Abstract Cauchy
Problem, Infinite dimensional system

I. INTRODUCTION

PARTIAL differential equations arise from many
physical, chemical, biological, thermal, and

fluid systems which are characterized by both spatial
and temporal variables [1]-[5]. Fig. 1 illustrates
that the time evolution of a solution of a partial
differential equation is depending on both spatial
and temporal variables.

Time delays also arise in many dynamical sys-
tems because, in most instances, physical, chemical,
biological, and economic phenomena naturally de-
pend not only on the present state but also on some
past occurrences [6]-[8]. Fig. 2 illustrates that the
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Fig. 1. A schematic view of the time response of a partial differential
equation.

time evolution of the solution of a delay differential
equation is depending on both the present and
past solutions. The importance of the control of
partial differential equations and delay differential
equations is well recognized in a wide range of
applications. Hence, this paper examines the sta-
bilization problem of partial differential equations
with time delays.

Partial differential equations and delay differen-
tial equations are known to be infinite-dimensional
systems, while ordinary differential equations are
finite-dimensional systems. The control of infinite-
dimensional systems is a challenging problem at-
tracting considerable attention in many research
fields. It has been recognized that semigroups have
become important tools in infinite-dimensional con-
trol theory over the past several decades. The semi-
group method is a unified approach to addressing
systems that include ordinary differential equations,
partial differential equations, and delay differen-
tial equations. The behaviors of many dynamical
systems including infinite-dimensional systems and
finite-dimensional systems can be characterized by
semigroup theory. The recent well-developed theory
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Fig. 2. A schematic view of the time response of a delay differential
equation.

in such a framework has been accumulated in sev-
eral books [9]-[13]. In this paper, using semigroup
theory, we introduce the concept of an abstract
delay system that can be used to describe the
behavior of a wide class of dynamical systems.
Fig. 3 shows that an abstract delay system is a
generalized model that includes ordinary differential
equations, partial differential equations, and delay
differential equations. From this point of view, the
control method proposed here for an abstract delay
system is advantageous for its applicability to a wide
class of dynamical systems.

The linear quadratic control problem for an ab-
stract delay system has been studied in [15]-[17].
Furthermore, theH1 control problem for such a
system has been examined in [18]. The problems
addressed in [15]-[18] have been reduced to finding
a solution of the corresponding operator Riccati
equation in Hilbert spaces. The feedback stabiliz-
ability of an abstract delay system on a Banach
space has been investigated in [19]. The analytic

Fig. 3. An abstract delay system is a generalized model.

approach in [19] is based on the compactness of
Banach spaces, while the problem in [15]-[18] is
formulated in Hilbert spaces to make use of the
properties of the inner product.

In this paper, we study the stabilization problem
of an abstract delay system on a Banach lattice,
which is a Banach space supplied with an order
relation. To tackle this problem, we take advantage
of the properties of a non-negativeC0 semigroup on
a Banach lattice. The objective of this paper is to
propose a stabilization method for an abstract delay
system on a Banach lattice. We derive a sufficient
condition under which an abstract delay system is
delay-independently stabilizable. Furthermore, we
provide illustrative examples to verify the effective-
ness of the proposed method.

This paper is organized as follows. Some notation
and terminology are given in Sec. II. The system
considered here is defined in Sec. III. Moreover,
Sec. III is devoted to the introduction of a stability
criterion for an abstract delay system on a Banach
lattice. The main results are provided in Sec. IV.
In Sec. IV, we study the control design problem
for an abstract delay system on the basis of the
stability criterion provided in Sec. III. Then, we
derive a sufficient condition for the stabilization of
an abstract delay system under the assumption that
the system has a non-negative delay operator. Fur-
thermore, we provide illustrative examples to verify
the effectiveness of the proposed method. Finally,
some concluding remarks are given in Sec. V.

II. NOTATION AND TERMINOLOGY

Let R andR+ denote the sets of real numbers
and non-negative real numbers, respectively. LetN+
denote the set of positive integers. LetX be a
Banach space endowed with the operator normk�k.
Let L(X;Y ) denote the set of all bounded linear
operators from a Banach spaceX to another Banach
spaceY . Let L(X) be defined byL(X;X). LetId 2 L(X) denote the identity operator onX.

Definition 1: A family (T (t))t�0 of bounded lin-
ear operators on a Banach spaceX is called aC0
semigroup if all the following properties hold:

(i) T (0) = Id.
(ii) T (t+ s) = T (t)T (s) for all t; s 2 R+.

(iii) The orbit mapst 7! T (t)x are continuous
maps fromR+ into X for everyx 2 X.
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Definition 2: Let (T (t))t�0 be aC0 semigroup on
a Banach spaceX and letD(A) be the subspace ofX defined asD(A) := �x 2 X : limh&0 1h(T (h)x� x) exists

� :
For everyx 2 D(A), we defineAx := limh&0 1h(T (h)x� x):
The operatorA : D(A) � X ! X is called
the generator of the semigroup(T (t))t�0. In the
following, let (A;D(A)) denote the operatorA with
domainD(A).

Definition 3: Let (A;D(A)) be the generator of
a C0 semigroup(T (t))t�0.!0(A) := inff! 2 R : 9M > 0 such thatkT (t)k �Me!t;8t 2 R+g
is called the semigroup’s growth bound.

Definition 4: Let (A;D(A)) be a closed operator
on a Banach spaceX. The set�(A) := f� 2 C : �Id �A is bijectiveg
is called the resolvent set ofA, and the set�(A) := C n�(A)
is called the spectrum ofA. For � 2 �(A),R(�;A) := (�Id �A)�1
is called the resolvent ofA at �.s(A) := sup fReal part of � : � 2 �(A)g
is called the spectral bound ofA.

Definition 5: A C0 semigroup (T (t))t�0 with
generator(A;D(A)) is said to be uniformly expo-
nentially stable if!0(A) < 0.

Definition 6: A Banach spaceX is called a Ba-
nach lattice ifX is supplied with an order relation
such that all the following conditions hold:

(i) f � g ) f + h � g + h for all f; g; h 2 X.
(ii) f � 0 ) �f � 0 for all f 2 X and� 2 R+.

(iii) jf j � jgj ) kfk � kgk for all f; g 2 X.
Definition 7: A C0 semigroup (T (t))t�0 on a

Banach latticeX is said to be non-negative if0 � x 2 X ) 0 � T (t)x; for all t � 0:
An operatorT (x) 2 L(X) on a Banach latticeX is
also said to be non-negative ifT (x) � 0 whenever0 � x 2 X.

III. PRELIMINARIES

In this section, we introduce the concept of an
abstract delay system that can be used to describe
the behavior of a wide class of dynamical systems.
For a Banach spaceY and a constant� 2 R+,
let C([��; 0℄; Y ) denote the set of all continuous
functions with domain[��; 0℄ and rangeY . For a
Banach spaceX := C([��; 0℄; Y ), let� 2 L(X;Y )
be a delay operator, and let(B;D(B)) be the genera-
tor of aC0 semigroup onY . With these notations, an
abstract delay system is described by the following
equation with an initial function' : [��; 0℄! Y :� _x(t) = Bx(t) + �(x(t� � )) for t � 0;x0 = ' 2 X: (1)

A continuous functionx : [��;1) ! Y is called a
solution of (1) if all the following properties hold:

(i) x(t) is right-sided differentiable att = 0 and
continuously differentiable for allt > 0.

(ii) x(t) 2 D(B) for all t � 0.
(iii) x(t) satisfies (1).

Let Cr be the set of allr-times continuously dif-
ferentiable functions. Let(A;D(A)) be the corre-
sponding delay differential operator onX defined
by Af := _f , (2)D(A) := ff 2 C1([��; 0℄; Y ) :f(0) 2 D(B)

and _f (0) = Bf(0) + �(f(�� ))g:
Lemma 1 ([9]): The operator(A;D(A)) in (2)

generates aC0 semigroup(T (t))t�0 on X.
Lemma 2 ([9]): If ' 2 D(A), then the functionx : [��;1)! Y defined byx(t) := � '(t) if � � � t � 0;[T (t)'℄ (0) if 0 < t;

is the unique solution of (1).
In the subsequent discussion, we assume that each

Banach spaceX, Y in (1) is a Banach lattice.
Lemma 3 ([9]): If B generates a non-negativeC0 semigroup onY and the delay operator� 2L(X;Y ) is non-negative, then theC0 semigroup(T (t))t�0 generated by(A;D(A)) in (2) is also non-

negative, and the following equivalence holds:s(A) < 0, s(B + �) < 0:
Lemma 4 ([9]): Assume that(T (t))t�0 is a non-

negativeC0 semigroup with generator(A;D(A))
on X. Then, s(A) = !0(A):
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The following proposition directly follows from
Lemmas 3 and 4.

Proposition 1: Under the assumption thatB gen-
erates a non-negativeC0 semigroup onY and the
delay operator� 2 L(X;Y ) is non-negative, theC0
semigroup(T (t))t�0 generated by(A;D(A)) in (2)
is uniformly exponentially stable if and only if the
spectral bounds(B + �) < 0.

Note that the equality in Lemma 4 might not
hold in general. This means that aC0 semigroup(T (t))t�0 generated by(A;D(A)) is not neces-
sarily uniformly exponentially stable even if the
spectral bound is negative, i.e.,s(A) < 0. It can
be seen from Proposition 1 that the non-negativity
assumption enables us to determine the stability of
an abstract delay system simply by examining the
spectral bound.

IV. STABILIZATION OF ABSTRACT
DELAY SYSTEMS

Let (B;D(B)) be the generator of aC0 semigroup
on a Banach latticeY . For a Banach latticeX :=C([��; 0℄; Y ), let � 2 L(X;Y ) be a delay operator.
In this section, we consider the stabilization problem
of an abstract delay system described by� _x(t) = Bx(t) + �(x(t� � )) + Cu(t);x0 = ' 2 X; (3)

whereu(t) : t 2 R+ ! Y is the control input, and(C;D(C)) is the generator of aC0 semigroup onY .
Assumption 1:� is assumed to be non-negative.

Next, we consider the feedback stabilization prob-
lem of (3). Letu(t) be given byu(t) = Kx(t); (4)

where(K;D(K)) is the generator of aC0 semigroup
on Y .

Definition 8: System (3) is said to be delay-
independently stabilizable if there existsu(t) in (4)
such that the equilibrium pointx = 0 of the result-
ing closed-loop system is uniformly exponentially
stable.
Now, we state the following theorem.

Theorem 1:If there existsK such that(B+ CK)
generates a non-negativeC0 semigroup ands(B + CK + �) < 0 (5)

is satisfied, then system (3) is delay-independently
stabilizable.

Proof of Theorem 1: Under the assumption that� is non-negative and(B + CK) generates a non-
negativeC0 semigroup, we see from Proposition 1
that the resulting closed-loop system is uniformly
exponentially stable ifs(B + CK + �) < 0 holds.

An illustrative example is shown below. Let̀
be a constant. We consider the following partial
differential equation with a time delay, defined fort � 0; x 2 [0; `℄; s 2 [��; 0℄, as�z(x; t)�t = �2z(x; t)�x2 � d(x)z(x; t)+ b(x)z(x; t� � ) + u(x; t); (6)

with the Dirichlet boundary conditionz(0; t) = z(`; t) = 0 for all t � 0; (7)

and with the initial conditionz(x; s) = h(x; s): (8)

This equation can be interpreted as a model for
the growth of a population in[0; `℄. z(x; t) is the
population density at timet and spacex. The
term�2z(x; t)=�x2 describes the internal migration.
Moreover, the continuous functionsd(x) and b(x)
represent space-dependent death and birth rates,
respectively.� is the delay due to pregnancy. Letd(x) andb(x) be given as follows:d(x) = 1 + os(8�x=`); (9)b(x) = 1 + 2 sin(�x=`): (10)

Let u(x; t) be given byu(x; t) = �k(x)z(x; t): (11)

To rewrite system (6) as an abstract delay system,
we introduce the spacesY := C[0; `℄ and X :=C([��; 0℄; Y ). Moreover, we define the following
operators� := d2dx2 ; (12)D(�) := �f 2 C2[0; `℄ : f(0) = f(`) = 0	 ; (13)B := ��Md �Mk; D(B) := D(�); (14)� := Mb�� 2 L(X;Y ); (15)

whereMd, Mk, andMb are the multiplication oper-
ators induced byd(x), k(x), andb(x), respectively.�� : X ! Y denotes the point evaluation int 2 [��; 0℄. We see from (14) and (15) that system
(6) can be rewritten as an abstract delay system (1).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 4, 2010 215



It is shown in [9] that� generates a non-negativeC0 semigroup. Sincee�t(Md+Mk) is non-negative,
we see from the Trotter product formula [9] thatB in (14) generates a non-negativeC0 semigroup.
Moreover, we see from (10) and (15) that� is a
non-negative operator. Consequently, it follows from
Lemmas 3 and 4 that!0(�+Mb�Md �Mk) = s(�+Mb�Md�Mk):

In the following, we designK such thats(B + �) < 0
is satisfied. LetÆ be defined byÆ := infx2[0;`℄ (d(x) + k(x)� b(x)) :
If Æ > 0, then the operator(�+Mb�Md�Mk+Æ)
is dissipative. Hence, we obtain!0(� +Mb �Md �Mk) < �Æ:
This condition shows that ifb(x)� d(x)� k(x) < 0; for all x 2 [0; `℄;
then a solution of (6) is uniformly exponentially
stable. For example, if we designk(x) = 2� d(x) + b(x); (16)

then system (6) is delay-independently stable.
The effectiveness of controller (16) is verified by

numerical simulations. To solve equation (6) using
a numerical algorithm, we must discretize equation
(6) into the finite difference equation. The Crank-
Nicolson method [21] is a finite difference method
used for numerically solving a partial differential
equation. It is a second-order method in time and
space, and is numerically stable. For the sake of
completeness, a brief description of the Crank-
Nicolson method applied to this problem is provided
in the subsequent discussion.

We divide the space and time intoM 2 N+
steps andN 2 N+ steps, respectively. This means
that each step size is given by�x := `=(M � 1)
and �t := tf=(N � 1), where tf denotes the
terminal time of the simulation. By means of the
discretization,z(x; t); (0 � t � tf ) can be described
as zi;j (i = 1; � � � ;M; j = 1; � � � ; N), where the
subscriptsi andj denote the space and time, respec-
tively. For other variables, we adopt such notation

without explanation. Note that equation (6) can be
discretized as follows:zi;j+1 � zi;j�t = 12 �zi+1;j+1 � 2zi;j+1 + zi�1;j+1�x2+ zi+1;j � 2zi;j + zi�1;j�x2 � � fd(xi) + k(xi)g zi;j+ b(xi)zi;j��=�t (17)

Taking Dirichlet boundary condition (7) into ac-
count, we see that (17) yields the following equa-
tion:Azj+1 = (C �D�K)zj +Bzj��=�t; (18)

where letr be defined byr := �t2�x2 ;
and letA, B, C, D 2 RM�M, and zj 2 RM be
defined asA := 2666666664 1 + 2r �r 0 0 � � � 0�r 1 + 2r �r 0 . . .

...0 �r . . . . . . . . . 00 . . . . . . . . . �r 0
...

. . . 0 �r 1 + 2r �r0 � � � 0 0 �r 1 + 2r 3777777775 ;C := 2666666664 1� 2r r 0 0 � � � 0r 1 � 2r r 0 . . .
...0 r . . . . . . . . . 00 . . . . . . . . . r 0

...
. . . 0 r 1� 2r r0 � � � 0 0 r 1 � 2r 3777777775 ;D := �t2666666664 d(x1) 0 0 0 � � � 00 d(x2) 0 0 . . .

...0 0 . . . . . . . . . 00 . . . . . . . . . 0 0
...

. . . 0 0 . . . 00 � � � 0 0 0 d(xM ) 3777777775 ;K := �t2666666664 k(x1) 0 0 0 � � � 00 k(x2) 0 0 . . .
...0 0 . . . . . . . . . 00 . . . . . . . . . 0 0

...
. . . 0 0 . . . 00 � � � 0 0 0 k(xM) 3777777775 ;
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B := �t2666666664 b(x1) 0 0 0 � � � 00 b(x2) 0 0 . . .
...0 0 . . . . . . . . . 00 . . . . . . . . . 0 0

...
. . . 0 0 . . . 00 � � � 0 0 0 b(xM) 3777777775 ;zj := 266664 z1;jz2;j

...zM�1;jzM;j 377775 :
Consequently, it follows from (18) thatzj+1 = A�1f(C�D�K)zj +Bzj��=�tg: (19)

Therefore, we see thatzj(t)(j=1;��� ;N) is calculated
recursively by (19), for a given initial stateh(x; s).
The parameters employed in the numerical simula-
tions are listed in Table I.M 101 [steps]N 101 [steps]` 10 [m]tf 10 [sec]�x 0:1 [m]�t 0:1 [sec]� 1 [sec]h(x;s) j sin(2�x=`)j for all s 2 [��; 0℄

TABLE I
THE PARAMETERS EMPLOYED IN THE NUMERICAL SIMULATIONS.

Fig. 4 shows that the initial stateh(x; s) is given
by h(x; s) = j sin(2�x=`)j for all s 2 [��; 0℄. Fig. 5
shows the space-dependent death and birth rates,d(x) andb(x), respectively. Moreover, we see from
Fig. 5 that the conditionb(x)� d(x)� k(x) < 0 is
satisfied for allx 2 [0; `℄.

The simulation results with the proposed method
are shown in Figs. 6-7. Fig. 6 shows the free
response ofz(x; t) without control. We see that the
population density increases over time. Fig. 7 shows
the time response ofz(x; t) in which the controller
(16) is employed. We see that the population density
is uniformly stabilized atz = 0. The figures reveal
the effectiveness of controller (16).

In the following, we consider system (6) with the
Neumann boundary condition�z(0; t)�x = �z(`; t)�x = 0 for all t � 0;
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Fig. 4. The initial conditionh(x; s).
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b(x)−d(x)−k(x)

Fig. 5. The space-dependent death and birth rates.

and with the same initial condition as (8). In this
case, we can also rewrite the system as an abstract
delay system by introducing the following opera-
tors:� := d2dx2 ;D(�) := �f 2 C2[0; `℄ : dfdx(0) = dfdx(`) = 0� ;B := ��Md �Mk; D(B) := D(�);� := Mb�� 2 L(X;Y );
Similarly, we see that ifb(x)� d(x)� k(x) < 0; for all x 2 [0; `℄
is satisfied, then the system is uniformly exponen-
tially stable. To perform numerical simulations for

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 4, 2010 217



0
5

10

0

5

10
0

100

200

300

t
x

z(
x,

t)

Fig. 6. Free response ofz(x; t) without control with the Dirichlet
boundary condition.
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Fig. 7. Time history ofz(x; t) controlled by (16) with the Dirichlet
boundary condition.

system (6) with the Neumann boundary condition,
we also obtain the discretized equation as in (19),
whereA andC are changed as follows:A = 2666666664 1 + 2r �2r 0 0 � � � 0�r 1 + 2r �r 0 . . .

...0 �r . . . . . . . . . 00 . . . . . . . . . �r 0
...

. . . 0 �r 1 + 2r �r0 � � � 0 0 �2r 1 + 2r 3777777775 ;
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Fig. 8. Free response ofz(x; t) without control with the Neumann
boundary condition.
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Fig. 9. Time history ofz(x; t) controlled by (16) with the Neumann
boundary condition.C = 2666666664 1 � 2r 2r 0 0 � � � 0r 1� 2r r 0 . . .

...0 r . . . . . . . . . 00 . . . . . . . . . r 0
...

. . . 0 r 1 � 2r r0 � � � 0 0 2r 1� 2r 3777777775 :
Likewise,zj(t)(j=1;��� ;N) is calculated recursively by
(19), for a given initial stateh(x; s).

The simulation results with the Neumann bound-
ary condition are shown in Figs. 8-9. Fig. 8 shows
the free response ofz(x; t) without control. We
see that the population density increases over time.
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Fig. 9 shows the time response ofz(x; t) in which
the controller (16) is employed. We see that the
population density is uniformly stabilized atz = 0.
The figures also reveal the effectiveness of controller
(16).

V. CONCLUSION

In this study, the stabilization problem of a partial
differential equation with a time delay was exam-
ined using semigroup theory. We first introduced
the concept of an abstract delay system that can
be used to characterize the behavior of a wide
class of dynamical systems. Next, we examined the
stabilization problem of an abstract delay system
on a Banach lattice on the basis of the properties
of a non-negativeC0 semigroup. In Sec. IV, we
derived a sufficient condition for the stabilization
of an abstract delay system under the assumption
that the system has a non-negative delay operator.
An abstract delay system is a generalized model
that includes ordinary differential equations, partial
differential equations, and delay differential equa-
tions. From this point of view, the control method
proposed here for an abstract delay system is ad-
vantageous for its applicability to a wide class of
dynamical systems. Illustrative examples revealed
that the stabilization method proposed here is use-
ful for designing a controller to stabilize a partial
differential equation with a time delay.
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