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Abstract: The steady, laminar flow of a third grade fluid with heat transfer through a flat channel is studied. We
propose and apply a successive linearisation method (SLM) and an improved spectral-homotopy analysis method
(ISHAM), to obtain approximate analytical solutions for the velocity and temperature profiles. The methods are
primarily based on blending non-perturbation techniques with Chebyshev spectral methods to produce efficient
algorithms for solving highly nonlinear systems. The effects of the Brinkman number, pressure gradient and the
non-Newtonian parameter on the velocity, temperature, skin friction and heat transfer coefficients are discussed.
Exact solutions are also constructed and compared with the SLM and ISHAM solutions.
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1 Introduction

The study of non-Newtonian fluids offers many inter-
esting and exciting challenges due to their technical
relevance in modelling fluids with complex rheolog-
ical properties (such as polymer melts, synovial flu-
ids, paints, etc). Viscoelastic fluids also present some
highly peculiar characteristics and mathematical fea-
tures such as the non-unidirectional nature of the flow
of such fluids and the increase in the order of the dif-
ferential equations characterizing such flows, [1, 2].
A lot of work on the flow and heat transfer character-
istics of non-Newtonian fluids has also been done in
order to control the quality of the end product in many
manufacturing and processing industries, see for in-
stance, [1, 3] and the references therein.

Various constitutive models currently exist to de-
scribe the properties of non-Newtonian fluids. The
major problem however is that none of these mod-
els can adequately describe all non-Newtonian flu-
ids. Among the several constitutive equations that
have been suggested in the literature is a Rivlin-
Erikson model, the third grade fluid model that is
capable of describing the normal stress effects for
steady unidirectional flow and to predict shear thin-
ning/thickening, [4, 5]. This model has been analyzed
in great detail in previous studies by Dunn and Ra-
jagopal [6] and Fosdick and Rajagopal [7].

A large number of recent studies have investi-

gated various aspects of the third-grade fluid model,
including some that have merely used this model to
test the effectiveness of a slew of new solution tech-
niques for nonlinear equations. Makinde [4] studied
the thermal stability of a reactive third-grade liquid
flowing steadily between two parallel plates with sym-
metrical convective cooling at the walls while slip ef-
fects on the on the peristaltic flow of a third grade fluid
have been studied by among others, Ali et al. [8, 9],
El-Shehawy et al. [10] and Motsa et al. [21]. Studies
by, among others, Aksoy and Pakdemirli [11], Hayat
and his co-workers [12, 13, 14, 15, 16, 17], have, to a
large extent, mainly been concerned with the develop-
ment and testing of new perturbation techniques.

The present study deals with the problem of flow
and heat transfer characteristics of a third grade fluid
flow between two parallel plates. Exact analytical so-
lutions for the steady Poiseuille flow, the skin fric-
tion and the heat transfer coefficients are found. We
use innovation, the successive linearisation technique
(SLM) (see Makukula et al. [18] and Motsa and
Sibanda [20]) and the improved-spectral-homotopy
analysis method (ISHAM) to solve the governing non-
linear equations. The accuracy of each methods is de-
termined by comparing the solutions with the exact
results.
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2 Governing equations

The flow of an incompressible third grade fluid placed
between two horizontal parallel impermeable plates is
investigated.

The constitutive law for the Cauchy stress tensor
T associated with an incompressible homogeneous
fluid of third grade is given in [4, 7, 22]. This has
the form

T = −pI + μA1 + α1A2 + α2A2
1 + β1A3

+β2[A1A2 + A2A1] + β3(trA2
1)A2, (1)

where

A1 = ∇v + (∇v)T ,

An =
d

dt
(An−1) + An−1∇v + (∇v)T An−1.

In the above equations, p is the pressure, μ denotes the
viscosity; α1, α2, β1, β2, β3 are the material moduli,
d/dt is the material derivative, v denotes the velocity
field, while A1,A2 and A3 are the first three Rivlin -
Ericksen tensors. The spherical stress p I is due to the
constraint of incompressibility. The flow is subject to
the restrictions

μ ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√

24μβ3 (2)

β1 = β2 = 0 and β3 > 0. (3)

If β3 = 0 the model collapses to that of a second grade
fluid. The equations of motion are given by [22, 23];

∇ · v = 0, (4)

ρ
dv
dt

= ∇ ·T + ρb, (5)

ρcp
dθ

dt
= κ∇2θ + T · ∇v, (6)

where ρ is the mass density, κ the thermal conductiv-
ity, cp is the specific heat at constant pressure, b is
a body force, and θ is the temperature. The x-axis
tangential to the plate surface, the y-axis normal to it.
The fluid is confined between parallel plates located
at y = −h and y = h. We assume unidirectional flow
so that

v = u(y)i and θ = θ(y).
The temperature of the upper plate is maintained at
θ1 and that of lower plate at θ0 to give a tempera-
ture difference Δθ = θ1 − θ0. The fluid motion is
driven either by a constant pressure gradient or by the
boundary conditions. Equations (4) - (6) reduce to
(see, [4, 22, 21]);

d2u

dy2

[
1 + 6β

(
du

dy

)2
]

= −B, (7)

d2θ

dy2
+ λ

(
du

dy

)2
[
1 + 2β

(
du

dy

)2
]

= 0, (8)

where

β =
β∗U2

μ h2
, λ =

μU2

κΔθ
,

B = − h2

μU

dp

dx
, β∗ = β2 + β3.

The parameters are the characteristic velocity U and
the Brinkman number λ which determines the relative
importance between the viscous dissipation and fluid
conduction.

The appropriate boundary conditions are

u(−1) = 0, u(1) = 0 (9)

θ(−1) = 0, θ(1) = 1. (10)

In a recent study Motsa et al. [21] showed that the
exact solution for the skin friction is

u′(y) =
1
6β

[F (y)]1/3 − [F (y)]−1/3, (11)

where

F (y) = 6β2

⎡
⎣−9By +

√
6 + 81βBy2

β

⎤
⎦ . (12)

It is evident that this result is only valid when

β ≥ − 2
27B2

.

The temperature equation now simplifies to

θ′′ = λBy u′(y). (13)

Equation (13) can easily be solved using any numeri-
cal method.

3 The linearisation method

In this section we apply the successive linearisation
method (SLM) to solve equations (7) - (10). Since
equation (7) is decoupled from the temperature equa-
tion (8) we only need apply the SLM to equation (7).
The SLM is based on the assumptions that

• the unknown function u(y) can be expanded as

u(y) = Ui(y)+
i−1∑
n=0

un(y), i = 1, 2, 3, . . . (14)

where Ui are unknown functions and un are ap-
proximations which are obtained by recursively
solving the linear part of the equation that results
from substituting (14) in equation (7), and that
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• Ui becomes increasingly smaller as i becomes
large, that is

lim
i→∞

Ui = 0. (15)

Substituting (14) in equation (7) and neglecting non-
linear terms in Ui, U

′
i , U

′′
i and using Ui ≈ ui gives

⎡
⎣1 + 6β

(
i−1∑
n=0

u′
n

)2
⎤
⎦ u′′

i

+

[
12β

i−1∑
n=0

u′
n

i−1∑
n=0

u′′
n

]
u′

i = −B +
i−1∑
n=0

u′′
n

+6β

(
i−1∑
n=0

u′
n

)2 i−1∑
n=0

u′′
n, (16)

which may be written in a more compact form as,

ai−1u
′′
i + bi−1u

′
i = ri−1, (17)

subject to the boundary conditions

ui(−1) = ui(1) = 0, (18)

where,

ai−1 = 1 + 6β

(
i−1∑
n=0

u′
n

)2

,

bi−1 = 12β
i−1∑
n=0

u′
n

i−1∑
n=0

u′′
n,

ri−1 = −

⎡
⎣B +

i−1∑
n=0

u′′
n + 6β

(
i−1∑
n=0

u′
n

)2 i−1∑
n=0

u′′
n

⎤
⎦ .

Once each solution ui (i ≥ 1) has been found by
iteratively solving equations (16), starting from an ini-
tial approximation u0(y), the approximate solutions
for u(y) are obtained as

u(y) ≈
M∑

n=0

un(y) (19)

where M is the order of the SLM approximation. The
initial approximation u0(y) is chosen in such a way
that it satisfies the boundary conditions (9). In this
study, a suitable initial approximation was chosen to
be

u0(y) = 0. (20)

We observe that, by making use of the symmetry con-
dition u′

i(0) = 0, equation (16) has an integrating fac-
tor (IF) given by

IF = 1 + 6β

(
i−1∑
n=0

u′
n

)2

. (21)

Integrating (16) gives

u′
i = − 1

IF 2

⎡
⎣By +

i−1∑
n=0

u′
n + 2β

(
i−1∑
n=0

u′
n

)3
⎤
⎦ .

(22)
Thus starting from an initial guess u0(y) = 0, the
solutions for ui (i ≥ 1) can be obtained iteratively
from equation (16). The first three solutions for i =
1, 2, 3, ..., are given as

u′
1(y) = −By, (23)

u′
2(y) =

2βB3y3

1 + 6βB2y2
, (24)

u′
3(y) = −−8β3B7y7(3 + 16βB2y2)

k1(1 + 6k2βB2y2)
, (25)

where

k1 = 1 + 6βB2y2,
k2 = 3 + 14βB2y2 + 16β2B4y4.

The explicit solutions for u′4, u′
5, u

′
6, . . . can be ob-

tained in the same manner.
The analytic solution for the skin friction coeffi-

cient Cf is obtained as

u′(1) ≈ u′
0(1) + u′

1(1) + u′
2(1) + u′

3(1) + . . . (26)

Since the coefficient parameters and the right
hand side of equation (16), for i = 1, 2, 3, . . ., are
known (from previous iterations), equation (16) can
easily be solved using analytical means or numeri-
cal methods. Solving equation (16) analytically for
ui was only possible for the first two iterations. For
higher order iterations (i > 3) numerical integra-
tion was employed. In this work, equations (16) was
integrated using the Chebyshev spectral collocation
method. This method is based on approximating the
unknown functions by the Chebyshev interpolating
polynomials in such a way that they are collocated at
the Gauss-Lobatto points defined as

yj = cos
πj

N
, j = 0, 1, . . . , N. (27)

where N is the number of collocation points used.
The second derivative of ui at the collocation points
are represented as

d2ui

dy2
=

N∑
k=0

D2
kjui(yk), j = 0, 1, . . . , N (28)

where D is the Chebyshev spectral differentiation ma-
trix. Substituting equations (27) - (28) in (17) results
in the matrix equation

Ai−1Ui = Ri−1, (29)
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with boundary conditions

ui(y0) = ui(yN ) = 0, (30)

in which Ai−1 is a (N+1)×(N+1) square matrix and
Ui and Ri−1 are (N + 1)× 1 column vectors defined
by

Ui = [ui(y0), . . . , ui(yN−1), ui(yN )]T ,

Ri−1 = [ri−1(y0), . . . , ri−1(yN−1), ri−1(yN )]T ,

Ai−1 = ai−1D2 + bi−1D,

where bi−1 is a diagonal matrix of size (N + 1) ×
(N + 1). After modifying the matrix system (29) to
incorporate boundary conditions (30), the solution is
obtained as

Ui = A−1
i−1Φi−1. (31)

The solution for θ(y) is obtained by applying the
Chebyshev spectral collocation method to (13).

4 The improved spectral homotopy
analysis method (ISHAM)

In this section we describe and apply the ISHAM to
solve the governing equation (7) with boundary con-
ditions (10). The ISHAM algorithm seeks to improve
the initial approximation that is then used in the origi-
nal SHAM [19] algorithm to solve the governing non-
linear equation. The basic assumption is that the solu-
tion u(y) can be expanded as

u(y) = Ui(y) +
i−1∑
n=0

un(y), i = 1, 2, 3, . . . , (32)

where Ui are unknown functions whose solutions are
obtained using the SHAM algorithm at the ith itera-
tion and un(y), (n ≥ 1) are known from previous
iterations. The algorithm begins with an initial ap-
proximation

u0(y) = αB(1 − y2), (33)

which is chosen to satisfy the boundary conditions
(10) and α is a scaling parameter. Substituting equa-
tion (32) and using Ui ≈ ui in the governing equation
(7) gives

a1,i−1u
′′
i + a2,i−1u

′
i + 6βu′′

i (u
′
i)

2 = ri−1, (34)

subject to the boundary conditions

ui(−1) = ui(1) = 0, (35)

where the coefficient parameters ak,i−1 (k = 1, 2),
ri−1 are defined as

a1,i−1 = 1 + 6β

(
i−1∑
n=0

u′
n

)2

,

a2,i−1 = 12β
i−1∑
n=0

u′
n

i−1∑
n=0

u′′
n,

ri−1 = −

⎡
⎣B +

i−1∑
n=0

u′′
n + 6β

(
i−1∑
n=0

u′
n

)2 i−1∑
n=0

u′′
n

⎤
⎦ .

Starting from the initial approximation (33) the subse-
quent solutions ui, (i ≥ 1) are obtained by recursively
solving equation (34) using the SHAM approach. To
find the SHAM solutions of (34) we begin by defining
the following linear operator

L[Ui(y; q)] = a1,i−1
∂2Ui

∂y2
+ a2,i−1

∂Ui

∂y
, (36)

where q ∈ [0, 1] is the embedding parameter, and
Ui(y; q) are unknown functions. The zeroth order de-
formation equation is given by

(1− q)L[Ui(y; q)−ui,0(y)] = qh̄N [Ui(y; q)]− ri−1,
(37)

where h̄ is the non-zero convergence controlling aux-
iliary parameter and N is a nonlinear operator given
by

N [Ui(y; q)] = a1,i−1
∂2Ui

∂y2
+a2,i−1

∂Ui

∂y
+6β

∂2Ui

∂y2

(
∂Ui

∂y

)2

.

(38)
Differentiating (37) m times with respect to q and then
setting q = 0 and finally dividing the resulting equa-
tions by m! yields the mth order deformation equa-
tions

L[ui,m(y) − χmui,m−1(y)] = (39)

h̄
(
a1,i−1u

′′
i,m−1 + a2,i−1u

′
i,m−1

+6β
m−1∑
j=0

u′′
i,m−1−j

j∑
n=0

u′
i,j−nu′

i,n − (1 − χm)ri−1

⎞
⎠ ,

subject to the boundary conditions

ui,m(−1) = ui,m(1) = 0, (40)

where

χm =

{
0, m ≤ 1
1, m > 1

. (41)

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 4, Volume 4, 2010 224



The initial approximation ui,0 that is used in the
higher order equation (39) is obtained by solving the
linear part of equation (34) given by

a1,i−1u
′′
i,0 + a2,i−1u

′
i,0 = ri−1, (42)

with the boundary conditions

ui,0(−1) = ui,0(1) = 0. (43)

Applying the Chebyshev spectral method, described
in the SLM section, to solve equation (42) yields the
matrix form

Ai−1Ui,0 = Qi−1, (44)

subject to the boundary conditions

ui,0(y0) = ui,0(yN ) = 0, (45)

where

Ai−1 = a1,i−1D2 + a2,i−1D, (46)

Ui,0 = [ui,0(y0), ui,0(y1), . . . , ui,0(yN )]T ,

Qi−1 = [ri−1(y0), ri−1(y1), . . . , ri−1(yN )]T .

After modifying the matrix system (44) to incorporate
the boundary conditions (45), the solution is obtained
as

Ui,0 = A−1
i−1Qi−1. (47)

Similarly, applying the Chebyshev spectral transfor-
mation on the higher order deformation equation (39)
gives

Ai−1Ui,m = (χm + h̄)Ai−1Ui,m−1 (48)

− h̄(1 − χm)Qi−1 + h̄Pi,m−1,

where Ai−1 and Qi−1, are as defined in (46) and

Ui,m = [ui,m(y0), ui,m(y1), . . . , ui,m(yN )]T ,

Pi,m−1 = 6β
m−1∑
j=0

D2ui,m−1−j

j∑
n=0

Dui,j−nDui,n.

To implement the boundary conditions on the right
hand side of equation (48), we set the first and last
rows and columns of Ai−1 to be zero and similarly
the first and last columns of Qi−1 and Pm−1 to be
zero. This results in the following recursive formula
for m ≥ 1

Ui,m = (χm + h̄)A−1
i−1Ãi−1Ui,m−1 (49)

+ h̄A−1
i−1[Pi,m−1 − (1 − χm)Qi−1],

where Ãi−1 is the modified matrix Ai−1 on the right
hand side of (48) after incorporating the boundary

conditions. Thus starting from the initial approxima-
tion, which is obtained from (47), higher order ap-
proximations ui,m(y) for m ≥ 1, can be obtained
through the recursive formula (49). The solutions for
ui are then generated using the solutions for ui,m as
follows

ui = ui,0 + ui,1 + ui,2 + ui,3 + . . . + ui,m. (50)

The [i,m] approximate solution for u(y) is then ob-
tained by substituting ui obtained from (50) into equa-
tion (32).

5 Results and Discussion

In this section we present a comparison of the succes-
sive linearisation method (SLM), improved spectral-
homotopy analysis method (ISHAM) and the exact
analytical results. All the SLM and ISHAM results
were generated using N = 100 collocation points. To
show the accuracy and effectiveness of the methods, a
limited parametric study is undertaken.

Table 1 shows a comparison of the convergence
rate of the SLM, ISHAM and the exact solution
when B = 1 and for increasing values of the non-
Newtonian parameter β. A match between the SLM
results and the exact results, accurate to 10 decimal
places is achieved at the sixth order of the SLM se-
ries solution for all the selected values of β while the
ISHAM converges to the exact solution at order [4,4].
The difference in convergence rates of the two meth-
ods is clearly shown in Table 2 where a comparison of
the absolute errors in the SLM and ISHAM approxi-
mate solutions for u′(1) is given for various values of
β when B = 1.

In Table 3 the non-Newtonian parameter is fixed
at β = 1 while the pressure gradient term increases
monotonically from β = 0.2. For B ≤ 1, full conver-
gence of the SLM approximations to the exact solu-
tion is achieved at the fourth-order of the SLM series
solution while the ISHAM converges at order [3,3].
The precision of the SLM however deteriorates faster
than that of the ISHAM with increasing B with more
terms needed in the SLM series to match the exact re-
sults. Full convergence to the exact results (to ten dec-
imal places) is achieved at the 4th order of the SLM
series for B ≤ 1 and at order [3,3] for ISHAM so-
lutions. For B > 1 The SLM converges fully at the
sixth order of approximation while the ISHAM ap-
proximate solutions converge at order [4,4]. These is
clearly indicated in Table 4 where a comparison of the
absolute errors between the SLM and ISHAM approx-
imate solutions for u′(1) are given for various values
of B when β = 1.
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Table 1: Comparison of the approximate values of u′(1) using the SLM and ISHAM with the exact solution for
various values of β when B = 1.

SLM solution

β 3rd order 4th order 5th order 6th order Exact
0.2 -0.7972810885 -0.7972810583 -0.7972810583 -0.7972810583 -0.7972810583
0.5 -0.6823395826 -0.6823278039 -0.6823278038 -0.6823278038 -0.6823278038
1.0 -0.5900220423 -0.5897545943 -0.5897545123 -0.5897545123 -0.5897545123
2.0 -0.5023901750 -0.5000085354 -0.5000000001 -0.5000000000 -0.5000000000

ISHAM solution
[2,2] [3,3] [4,4] [5,5] Exact

0.2 -0.7972810449 -0.7972810583 -0.7972810583 -0.7972810583 -0.7972810583
0.5 -0.6823218302 -0.6823278038 -0.6823278038 -0.6823278038 -0.6823278038
1.0 -0.5896283020 -0.5897545122 -0.5897545123 -0.5897545123 -0.5897545123
2.0 -0.4991584068 -0.4999999475 -0.5000000000 -0.5000000000 -0.5000000000

Table 2: Comparison of the absolute errors between the SLM and ISHAM approximate solutions for u′(1) and the
exact solution for various values of β when B = 1.

SLM solution

β 3rd order 4th order 5th order 6th order
0.2 0.0000000302 0.0000000000 0.0000000000 0.0000000000
0.5 0.0000117788 0.0000000001 0.0000000000 0.0000000000
1.0 0.0002675300 0.0000000820 0.0000000000 0.0000000000
2.0 0.0023901750 0.0000085354 0.0000000001 0.0000000000

ISHAM solution
[2,2] [3,3] [4,4] [5,5]

0.2 0.0000000134 0.0000000000 0.0000000000 0.0000000000
0.5 0.0000059736 0.0000000000 0.0000000000 0.0000000000
1.0 0.0001262103 0.0000000001 0.0000000000 0.0000000000
2.0 0.0008415932 0.0000000525 0.0000000000 0.0000000000

Table 3: Comparison of the approximate values of u′(1) using the SLM and ISHAM with the exact solution for
various values of B when β = 1.

SLM solution

B 3rd order 4th order 5th order 6th order Exact
0.2 -0.1869351878 -0.1869351878 -0.1869351878 -0.1869351878 -0.1869351878
0.5 -0.3854585785 -0.3854584985 -0.3854584985 -0.3854584985 -0.3854584985
1.0 -0.5900220423 -0.5897545943 -0.5897545123 -0.5897545123 -0.5897545123
2.0 -0.8564235361 -0.8355504792 -0.8351225255 -0.8351223485 -0.8351223485

ISHAM solution
[2,2] [3,3] [4,4] [5,5] Exact

0.2 -0.1869351878 -0.1869351878 -0.1869351878 -0.1869351878 -0.1869351878
0.5 -0.3854584608 -0.3854584985 -0.3854584985 -0.3854584985 -0.3854584985
1.0 -0.5896283020 -0.5897545122 -0.5897545123 -0.5897545123 -0.5897545123
2.0 -0.8318383437 -0.8351152280 -0.8351223485 -0.8351223485 -0.8351223485
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Table 4: Comparison of the absolute errors between the SLM and ISHAM approximate solutions for u′(1) and the
exact solution for various values of B when β = 1.

SLM solution

B 3rd order 4th order 5th order 6th order
0.2 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.5 0.0000000800 0.0000000000 0.0000000000 0.0000000000
1.0 0.0002675300 0.0000000820 0.0000000000 0.0000000000
2.0 0.0213011876 0.0004281307 0.0000001770 0.0000000000

ISHAM solution
[2,2] [3,3] [4,4] [5,5]

0.2 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.5 0.0000000377 0.0000000000 0.0000000000 0.0000000000
1.0 0.0001262103 0.0000000001 0.0000000000 0.0000000000
2.0 0.0032840048 0.0000071205 0.0000000000 0.0000000000

Figure 1 shows the velocity distribution for the
Poiseuille flow with β as calculated using the succes-
sive linearisation method. The velocity profiles de-
crease with β. These results are accurate and qualita-
tively similar to those obtained by Roohi et al. [25]
using the HAM, Motsa et al. [21] using the spectral
homotopy analysis method and Siddique et al. [22]
using the homotopy perturbation method.
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Figure 1: Velocity u(y) profiles for different values of
β

Figure 2 shows the effect of the pressure gradi-
ent on the temperature profiles for fixed β = 1 and
λ = 20. Figure 3 shows the effect of the Brinkman
number which determines the relative importance be-
tween viscous dissipation effects and fluid conduction
on the temperature profiles for fixed B and β. Simu-
lations show that as the Brinkman number increases,
more heat is generated by the viscous dissipation ef-
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Figure 2: Temperature θ(y) profiles for different val-
ues of B

fect and the temperature rapidly increases with λ, (see
also Saouli et al. [26]).

Figure 4 shows the variation of the skin-friction
with B and β for fixed λ. The skin friction increases
with β for increasing pressure gradient.

Figure 5 shows the growth of the wall heat trans-
fer rate for various values of the parameter B. Increas-
ing B increases the heat transfer rate.

6 Conclusion

In the present paper we considered the steady laminar
flow of a third grade fluid with heat transfer through
a flat channel. Two algorithms, namely the succes-
sive linearisation method (SLM) and the improved
spectral-homotopy analysis method (ISHAM) were
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Figure 3: Temperature θ(y) profiles for different val-
ues of λ
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Figure 4: Skin friction u′(1) for different values of B
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Figure 5: Wall heat transfer rate −θ′(1) for different
values of β when λ = 20

presented to compute the analytical results for the skin
friction coefficient and rate of heat transfer. New ana-
lytical results for the skin friction at the channel walls
have been found. A comparison of the rate of con-
vergence of the SLM and ISHAM approximations to
the exact result shows that while both methods con-
verge rapidly, the ISHAM however converges much
more rapidly than the SLM. Both methods converge
for all parameter values with the ISHAM showing bet-
ter convergence for larger parameter values. The SLM
and ISHAM were both applied successfully to com-
pute the analytical results for the steady laminar flow
of a third grade fluid with heat transfer through a flat
channel. The success together with consistency of our
results with earlier findings shows that the two meth-
ods can be efficiently used to solve nonlinear prob-
lems in science and engineering.
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