
 

 

  

Abstract—This paper presents the results of an investigation of a 

model for short-term heat demand forecasting. Forecast of this heat 

demand course is significant for short-term planning of heat 

production and it is most important for technical and economic 

consideration. Weather forecasts are an important input to many heat 

demand forecasting models. In this paper we propose the forecast 

model of heat demand based on the assumption that the course of 

heat demand can be described sufficiently well as a function of the 

outdoor temperature and the weather independent component (social 

components). Time of the day affects the social components. The 

time dependence of the load reflects the existence of a daily heat 

demand pattern, which may vary for different week days and seasons. 

Forecast of social component is realized by means of Box-Jenkins 

methodology. We have studied half-hourly heat demand data, 

covering a three (four) month period in two concrete district heating 

systems (DHS) of the Czech Power and Heating company. 

Comparison of accuracy of the prediction model with inclusion and 

without inclusion of outdoor temperature for 12 and 24 hours-ahead 

forecast are presented. 

 

Keywords—Box-Jenkins, Control algorithms, District Heating 

Control, Prediction, Time series analysis. 

I. INTRODUCTION 

HE paper deals with the utilization of time series 

prediction for control of technological process in real 

time. An improvement of technological process control level 

can be achieved by time series analysis in order to prediction 

of their future behavior. We can find an application of this 

prediction also by the control in the Centralized Heat Supply 

System (CHSS), especially for the control of hot water piping 

heat output [2].  

In order to improve the control level of district heating 

systems, it is necessary for the energy companies to have 

reliable optimization routines, implemented in their 

organizations [11]. However, before a plan of heat production, 

a prediction of the heat demand first needs to be determined. 

Due to the large operational costs involved, efficient 

operation control of the production sources and production 

units in a district heating system is desirable. Knowledge of 

heat demand is the base for input data for operation 

preparation of CHSS. Term “heat demand” is instantaneous 

required heat output or instantaneous consumed heat output by 

consumers. Term “heat demand” relates to term “heat 

 
 

 

consumption”. It express heat energy, which is the customer 

supplied in a specific time interval (generally day or year). 

The course of heat demand and heat consumption can be 

demonstrated by means of heat demand diagrams. The most 

important ones are: 

• Daily Diagram of Heat Demand (DDHD) which 

demonstrates the course of requisite heat output during 

the day. (See Fig. 1) 

• duration heat demand diagram - Y-coordinates represent 

heat demand and distance from zero represents duration 

of corresponding heat demand. Daily and yearly duration 

heat demand diagrams are currently known.  

These diagrams are most important for technical and 

economic consideration. Therefore forecast of these diagrams 

course is significant for short-term and long-term planning of 

heat production. It is possible to judge the question of peak 

sources and namely the question of optimal distribution 

loading between cooperative production sources and 

production units inside these sources according to time course 

of heat demand. The forecast DDHD is used in this case. 

II. PROBLEM FORMULATION 

Most forecasting models and methods for load prediction 

have already been suggested and implemented with varying 

degrees of success. They may be classified into two broad 

categories: classical (or statistical) approaches and artificial 

intelligence based techniques. 

The statistical methods forecast the current value of a 
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Fig. 1: DDHD for the concrete locality 
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variable by using a mathematical combination of the previous 

values of that variable and previous or current value of 

exogenous factors, specially weather and social variables. 

These include linear models, solving by means of non-linear 

models, spectral analysis method, ARMA models, Box-Jenkins 

methodology etc. In recent times, much research has been 

carried out on the application of artificial intelligence 

techniques. These techniques are based on processing mass 

data. These include expert systems, neural networks, fuzzy 

neural models etc. However, the models that have received the 

largest attention are the artificial neural networks [7], [12], 

[13]. 

Most applications in the subject consider the prediction of 

electrical-power loads. Nevertheless was created several 

works, which solve the prediction of DDHD and its use for 

control of DHS. A number of these works are based on mass 

data processing [7], [9]. But these methods have a big 

disadvantage. It consists in out of date of real data. From this 

point of view is available to use the forecast methods 

according to statistical method. The basic idea of this approach 

is to decompose the load into two components, whether 

dependent and whether independent. The weather dependent 

component is typically modeled as a polynomial function of 

temperature and other weather factors. The weather 

independent component is often described by a Fourier series, 

ARMA model, Box-Jenkins methodology or explicit time 

function. Previous works on heat load forecasting [1], [6], 

show that the outdoor temperature, together with the social 

behavior of the consumers, has the greatest influence on 

DDHD (with respect to meteorological influences). Other 

weather conditions like wind, sunshine etc. have less effect and 

they are parts of stochastic component.  

In this paper we propose the forecast model of DDHD based 

on the previous approach. The model is based on the 

assumption that the course of DDHD can be described 

sufficiently well as a function of the outdoor temperature and 

the weather independent component (social components). We 

have studied heat demand data in two concrete DHS of the 

Czech Power and Heating company. Comparison of accuracy 

of the prediction models is presented and some conclusions are 

given. 

Many others works solve the question of economical heat 

production and distribution in DHS. Some methods able to 

predict dynamic heat demand for space heating and domestic 

warm water preparation in DHS, using time-series analysis was 

presented [10]. Other work present one step ahead prediction 

of water temperature returned from agglomeration based on 

input water temperature, flow and atmospheric temperature in 

past 24 hours [14]. 

III. FORECAST MODEL OF HEAT DEMAND 

As mentioned above, the model is based on the assumption 

that the course of DDHD can be described sufficiently well as 

a function of the outdoor temperature and the weather 

independent component (social components). Time of the day 

affects the social components. The time dependence of the 

load reflects the existence of a daily heat demand pattern, 

which may vary for different week days and seasons. Forecast 

of social component is realized by means of Box-Jenkins 

methodology [3]. This method works with fixed number of 

values, which are update for each sampling period. 

For inclusion of outdoor temperature influence in 

calculation of prediction of DDHD was proposed general plan 

specified in Section 3.2. 

A. The Box-Jenkins method 

This methodology is based on the correlation analysis of 

time series and it works with stochastic models, which enable 

to give a true picture of trend component and also of periodic 

components. Because this method achieves very good results 

in practice, it was chosen for prediction of social component of 

DDHD. 

The course of time series of DDHD contains mostly two 

periodic components (daily and weekly period). But general 

model according to Box-Jenkins enables to describe only one 

periodic component. We can propose two eventual approaches 

to calculation of forecast to describe both periodic components 

[5]. 

• The method that uses the model with double filtration 

• The method – superposition of models 

First we introduce simplified form (2) of general model 

according to BJ for the next using, when there is used 

substitution in the form (1). We can find more detailed 

analysis of general model in work [3]. 

 

( ) ( ) ( )  11      Bθ  BΘ(B)    BΦF dD

sq

s

Q

-

p

s

P

−−− ∇⋅∇⋅⋅⋅⋅= φ  (1) 

 

tt aFz ⋅=  (2) 

 

where: 
tz is real value of heat demand in time t, at is white 

noise process, B is backward shift operator, s – seasonal 

period, ( ) ( )  BΘBΦ s

Q

s

P , are polynomials in B
s
 of degree P and 

Q of the seasonal AR and MA processes, ( )B θ(B) qp ,φ  

( ) ( )  BΘBΦ s

Q

s

P , are polynomials in B of degree p and q of the 

AR and MA processes,  D

s∇ is the seasonal difference operator 

of order D, d∇  is the difference operator of order d 

 

The method that uses model with double filtration 

We can describe model with double filtration through the 

substitution (1). The model in the form (3) is the result of it. 

 

t

D

st aFz
*

* ⋅∇⋅=  (3) 

 

where: D – degree of seasonal difference – daily (in 

equation 1), D* - degree of seasonal difference – weekly, s – 

seasonal period - daily (in equation 1), s* - seasonal period - 

weekly 
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It is important to adhere to this general plan for using the 

method that uses model with double filtration for calculation 

of DDHD prediction. 

a) The filtration of time series is executed for the reason of 

elimination of weekly periodic component. 

b) This filtered time series can be described by means of 

general model according BJ and then calculation of 

forecast by means of course can be executed; that is 

provided in work [3]. 

c) It is important to do back transformation that is inverse to 

the point a), because we have executed elimination of 

weekly periodic component. 

The model in the form (3) enables to describe the DDHD 

course (i.e. it describes daily periodic component and also 

weekly one). It can be used for analysis and prediction of 

following regular influence of calendar (Saturday, Sunday). 

 

The method – superposition of models 

We can use second method i.e. superposition of models for 

elimination of regular influence of calendar. This method was 

published in the work [5]. This method is being used on two 

models in the form (2). These models are discerned by means 

of symbols * and **. The time series inscribed with symbol *, 

is series of values of DDHD outputs in every sampling period 

(e.g. 1 hour, 30 minutes, 15 minutes, etc.). And the time series 

inscribed by means of symbol ** is series of values of heat 

demand per day (the sampling period is 1 day). The plan of 

calculating prediction by means of the method of superposition 

of models is shown on the Fig. 2. We can find more detailed 

analysis in work [5].  

Legend to the Fig. 2: *

*tz  is real value of heat demand in 

every sampling period, **

**tz  is value of heat demand per day, 

**

**th  is ratio of transformation, tr

tz*

*
 is transformed real value of 

heat demand in every sampling period, +tr

tz*

*
 is predicted value 

of transformed time series, +*

*tz  is predicted value of heat 

demand (after back transformation), +**

**tz  is predicted value of 

daily heat demand, +**

**th  is ratio of transformation for predicted 

values of daily heat demand,. 

 

1) Identification of Box-Jenkins model 

Identification of time series model parameters is the most 

important and the most difficult phase in the time series 

analysis. Identification process firstly includes determination 

of a degree of differencing. After differencing the time series, 

we have to identify the order of autoregressive process AR(p) 

and order of moving average process MA(q). In our case, the 

Akaike Information Criterion (AIC) in the form (4) is used for 

testing. Adequacy of the model was tested [4] by means of 

Portmanteau test.  

 

)(2ˆln),( 2 qpnqpAIC a ++⋅= σ  (4) 

 

where: p, q is order of AR and MA process respectively, 
2ˆ
aσ  is a variance of residuals, n is a number of residuals. 

B. Forecast algorithm for inclusion of outdoor temperature 

Above mentioned methods do not describe sudden 

fluctuation of meteorological influences. In this case we have 

to include these influences in calculation of prediction. For 

inclusion of outdoor temperature influence in calculation of 

prediction of DDHD was proposed this general plan:  

a) The influence of outdoor temperature filter off from time 

series of DDHD by means of heating characteristic 

(function that describes the temperature-dependent part of 

heat consumption) 

b) Prediction of DDHD by means of Box-Jenkins method 

for this filtered time series 

c) Filtration of predicted values for the reason of inclusion 

of outdoor temperature influence (on the base of weather 

forecast)  

From the previous plan is evident that the principal aim is to 

derive an explicit expression for the temperature-dependent 

part of the heat demand. It is obvious that the temperature 

dependence is non-linear. For relatively high outdoor 

temperatures, the temperature has less influence. For example, 

the load will almost be the same for 25 °C and 27 °C. A 

corresponding conclusion is also true for relatively low 

temperatures, e.g. whether the outdoor temperature is -28 °C 

or -30 °C does not matter, the production units will produce at 

their maximum rate anyway.  

 

 
 

Fig. 2: Superposition of models - plan of calculating prediction  

 
 

Fig. 3: The sample of heating characteristic (cubic function) 
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Regarding to previous consideration we can used the 

temperature-dependent part of heat demand in the form (5). 

Example of the course of heating characteristic for constants 

x1 = 0.002, x2 = 3.5 is shown in the Fig. 3.  

 

tt

kor

t TxTxz ⋅−⋅= 2

3

1
 (5) 

 

where: kor

tz is correction value of heat demand in time t 

including outdoor temperature influence, Tt is real value of 

outdoor temperature in time t , x1, x2 are constants. 

The temperature dependent part can assumed to vary as a 

piecewise linear function [5], see the illustrating example in 

Fig. 4. Here a function with five segments is used, but the 

number of segments can of course be chosen arbitrarily.  

Given the number of segments as a Ns. and the temperature 

levels as τi, i = 1,2…, Ns+1. The parameters of heating 

characteristic are changed in these temperature levels. Now we 

can consider the temperature-dependent part of heat demand in 

the form (6). 

 

siti

iti

kor

t

NiT

Tz

,...,1  ,

     ,

1 =<<

+⋅=

+ττ

βα
 (6) 

 

where: 
kor

tz is correction value of heat demand in time t 

including outdoor temperature influence, Tt is real value of 

outdoor temperature in time t , αi is the slope of i-th segment, 

βi is absolute equation term of i-th segment  

Constants (x1, x2 and ,αi, βi) have to be determined for 

concrete locality empirically. 

Filtration time series of DDHD that input in prediction 

model is defined in the form (7). 

 
kor

tt

filtr

t zzz −=  (7) 

 

where: filtr

tz is heat demand in time t with filtering off 

the influence of outdoor temperature, kor

tz is correction value 

of heat demand in time t including outdoor temperature 

influence, 
tz is real value of heat demand in time t  

The predicted values are necessary to filtrate after 

prediction calculation of filtering off time series for the reason 

of inclusion of outdoor temperature influence (on the base of 

weather forecast). We can define this operation in the form (8). 

 

kor

t

filtr

tt zzz +=
++  (8) 

 

where:  
+filtr

tz is predicted value of filter off time series of 

heat demand in time t, kor

tz is correction value of heat demand 

in time t including outdoor temperature influence, +
tz  is 

predicted value of heat demand in time t. 

The value 
+filtr

tz  is obtained by application of the equation 

(5) or (6) for this operation. We use weather forecast 

(temperature forecast). 

IV. CALCULATION OF FORECAST FOR SPECIFIC LOCALITY 

Pursuant to the mentioned theory and literature a program 

was created in Matlab, which enables to choose available 

mathematical statistical model for calculation of prediction of 

DDHD course. All testing is based on lot of real data. These 

data were obtained in specific locality and they are processed 

for next using in text file form (see Fig. 5). The program is 

drawn in user’s menu and by help of that it is possible to 

choose many parameters of forecast calculation (see Fig. 6).  

Selection of calculation method of prediction of DDHD 

course is a other possibility of submitted program. We can 

realize the calculation of prediction by means of the method 

that uses model with double filtration and the method – 

superposition of models. 

After choosing one of the methods the calculation of 

prediction is started. At first in the course of calculation it is 

searched for the most suitable model, it is for optimum number 

of autoregression parameters and optimum number of 

parameters of moving average process. After following 

calculation of prediction, resulting graphic window is 

displayed. The example of this window is presented in the Fig. 

9, Fig. 10, Fig. 12 and Fig. 13. In this window there is drawn 

course of DDHD, course of predicted data and probability 

 

 
 

Fig. 4: The sample of heating characteristic (piecewise linear 

function)  

 
 

Fig. 5: The sample of text file 
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limit. The result can be represented in concrete value form. 

These values are followed by calculation and they can be 

displayed in resulting window. The example of this window is 

shown on Fig. 11 and Fig. 14. In this window it is possible to 

find also optimum number of autoregression parameters and 

optimum number of parameters of moving average process. 

A. Data for experiments 

It is necessary to stress that the real data are used for all 

experiments and tests of proposed forecast model. The real 

data were obtained due to close cooperation of our research 

workplace with energy plant operations. In our case it is close 

cooperation with company MST a.s. – Power and Heating 

plant Olomouc, Power and Heating Plant Otrokovice, a.s. and 

company United Energy a.s. - Power and Heating plant Most-

Komořany.  

Measured data from two district heating systems in the 

region Most, Czech Republic are used in our experiments. The 

larger system is situated to locality Most-Komořany. This 

system has a typical day load (winter day) of about 100-140 

MW. The smaller system is situated to locality Litoměřice and 

it has typical day load of about 28-35 MW. These time series 

contain besides time and type of the day, the value of heat 

demand and outdoor temperature for every 30 minutes. 

Measured data of period November, 2008 – February, 2009 

for the locality Most-Komořany and period January, 2004 – 

March, 2004 for locality Litoměřice were available.  

In Fig. 7 measured values of heat demand and outdoor 

temperature in the locality Most-Komořany for 3 weeks of 

January, 2009 are presented. In Fig. 8 measured values of heat 

demand and outdoor temperature in the locality Litoměřice for 

2 weeks of February, 2004 are presented. 

The course of both previous time series of DDHD displays 

only one periodic component (daily period). Therefore general 

model according to Box-Jenkins is used for forecast of social 

component. 

B. Results of heat demand forecast in concrete locality  

The models were tested on data from the locality Litoměřice 

from two following weeks (28.2.2004 - 12.3.2004) and on data 

from the locality Most-Komořany from two following weeks 

(13.1.2009 – 26.1.2009). 24 hours-ahead and 12 hours-ahead 

forecast were made twice a day at 6.00 AM and 6.00 PM. The 

model with inclusion of outdoor temperature and without 

inclusion of outdoor temperature was used. Accuracy of the 

forecast is analyzed and summarized by means of Mean 

Absolute Percent Error (MAPE). MAPE is defined in the form 

(9) and it can be used to compare different predictions [8]. 

Root Mean Squared Error (RMSE) is defined in the form (10) 

and it is the square root of the arithmetic mean of the sum of 

the squares of the prediction errors [8]. 

 

∑
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i i
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1

21  (10) 

 

 
 

Fig. 6: User’s menu of calculation program 
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Fig. 7: Heat demand and Outdoor Temperature (dotted line) for 

system in the locality Most-Komořany 

 

 
 

Fig. 8: Heat demand and Outdoor Temperature (dotted line) for 

system in the locality Litoměřice 
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where: ei is the difference between the actual value of time 

series zi  and the forecast value, n is the number of forecasted 

values 

Table 1. presents results of heat demand prediction with 

inclusion of outdoor temperature for the locality Most-

Komořany. Accuracy of heat demand forecast without 

inclusion of outdoor temperature is presented in Table 2. The 

samples of the graphic output of these forecasts are shown in 

the Fig. 9 and Fig. 10. 

 

Table 1: Accuracy of the forecast model for 24, 12 hours ahead 

forecasts with inclusion of outdoor temperature for the locality Most-

Komořany 

Date, Time 

24 hours-ahead forecast 12 hours-ahead forecast 

MAPE 

[%] 

RMSE 

[MW] 

MAPE 

[%] 

RMSE 

[MW] 

13.1.2009, 6:00 AM 1.75 2.97 1.78 3.21 

13.1.2009, 6:00 PM 2.95 5.24 1.74 2.73 

14.1.2009, 6:00 AM 3.99 6.07 4.17 6.88 

14.1.2009, 6:00 PM 4.35 6.26 4.84 6.63 

15.1.2009, 6:00 AM 3.33 4.89 3.36 5.27 

15.1.2009, 6:00 PM 3.62 4.90 3.08 4.20 

16.1.2009, 6:00 AM 4.72 5.53 3.86 5.14 

16.1.2009, 6:00 PM 6.90 9.38 5.63 6.37 

17.1.2009, 6:00 AM 5.09 7.60 7.41 10.25 

17.1.2009, 6:00 PM 4.35 6.36 2.01 2.27 

18.1.2009, 6:00 AM 5.65 7.08 6.78 8.82 

18.1.2009, 6:00 PM 5.79 7.01 4.39 4.56 

19.1.2009, 6:00 AM 4.95 6.03 5.98 7.14 

19.1.2009, 6:00 PM 3.33 4.18 3.02 3.36 

20.1.2009, 6:00 AM 2.99 3.64 3.40 4.45 

20.1.2009, 6:00 PM 2.70 3.28 2.63 2.62 

21.1.2009, 6:00 AM 3.48 4.13 2.76 3.85 

21.1.2009, 6:00 PM 6.55 7.37 4.36 4.54 

22.1.2009, 6:00 AM 5.58 6.82 8.02 9.07 

22.1.2009, 6:00 PM 7.51 9.78 3.56 3.68 

23.1.2009, 6:00 AM 9.47 10.75 10.59 12.54 

23.1.2009, 6:00 PM 8.26 8.29 8.75 8.61 

24.1.2009, 6:00 AM 6.59 7.38 7.72 7.93 

24.1.2009, 6:00 PM 4.15 5.18 4.75 6.01 

25.1.2009, 6:00 AM 5.40 7.07 3.23 3.79 

25.1.2009, 6:00 PM 9.57 11.16 7.93 9.52 

26.1.2009, 6:00 AM 7.34 8.63 9.83 10.88 

26.1.2009, 6:00 PM 5.39 6.29 4.99 5.73 

Average value 5.21 6.55 5.02 6.07 

 
Table 2: Accuracy of the forecast model for 24, 12 hours ahead 

forecasts without inclusion of outdoor temperature for the locality 

Most-Komořany 

Date, Time 

24 hours-ahead forecast 12 hours-ahead forecast 

MAPE 

[%] 

RMSE 

[MW] 

MAPE 

[%] 

RMSE 

[MW] 

13.1.2009, 6:00 AM 2.56 4.21 3.20 5.15 

13.1.2009, 6:00 PM 4.81 8.03 3.90 5.44 

14.1.2009, 6:00 AM 5.41 7.48 4.31 7.31 

14.1.2009, 6:00 PM 17.36 21.45 13.00 14.72 

15.1.2009, 6:00 AM 6.48 9.28 8.32 11.69 

15.1.2009, 6:00 PM 10.83 13.21 7.88 8.56 

16.1.2009, 6:00 AM 5.65 7.36 3.25 5.08 

16.1.2009, 6:00 PM 7.11 10.76 5.09 6.63 

17.1.2009, 6:00 AM 6.07 10.21 9.46 14.05 

17.1.2009, 6:00 PM 5.68 8.52 2.61 3.10 

18.1.2009, 6:00 AM 7.54 9.29 8.59 11.47 

18.1.2009, 6:00 PM 7.98 8.73 6.46 6.36 

19.1.2009, 6:00 AM 7.92 8.67 8.40 9.11 

19.1.2009, 6:00 PM 5.00 5.70 5.33 5.96 

20.1.2009, 6:00 AM 3.83 4.39 4.63 5.40 

20.1.2009, 6:00 PM 3.00 3.54 2.89 2.93 

21.1.2009, 6:00 AM 4.33 5.10 2.99 3.94 

21.1.2009, 6:00 PM 8.22 9.68 5.49 5.93 

22.1.2009, 6:00 AM 8.74 9.78 9.33 10.76 

22.1.2009, 6:00 PM 11.67 13.63 9.30 9.72 

23.1.2009, 6:00 AM 14.34 14.81 14.09 16.65 

23.1.2009, 6:00 PM 17.97 16.30 16.42 13.82 

24.1.2009, 6:00 AM 12.19 13.24 17.02 17.21 

24.1.2009, 6:00 PM 7.89 8.26 9.09 9.44 

25.1.2009, 6:00 AM 10.39 11.28 6.57 6.91 

25.1.2009, 6:00 PM 13.99 16.02 12.98 13.65 

26.1.2009, 6:00 AM 10.44 10.71 11.25 12.26 

26.1.2009, 6:00 PM 9.87 9.86 11.26 10.27 

Average value 8.47 9.98 7.97 9.05 

 

 

 
 

Fig. 9: 24 hours ahead forecast (with inclusion of outdoor 

temperature) of heat demand on 15.1.2009 6:00 AM in the locality 

Most-Komořany 

 

 
 

Fig. 10: 24 hours ahead forecast (without inclusion of outdoor 

temperature) of heat demand on 15.1.2009 6:00 AM in the locality 

Most-Komořany 
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From the results, we conclude that the prediction model with 

inclusion of outdoor temperature achieves for the locality 

Most-Komořany very good results. MAPE for the test period 

is at any time less than 10 percent and RMSE seldom exceed 

the value of 10MW. Average value of MAPE in the test period 

is approximately 5% and average value of RMSE is 

approximately 6 MW. Obviously, we also observe that the 

value of MAPE and RMSE are lower for a half a day ahead 

forecast than for a day ahead forecast. 

Further, the results of heat demand prediction with inclusion 

of outdoor temperature for the locality Litoměřice are 

presented in Table 3. Accuracy of heat demand forecast 

without inclusion of outdoor temperature is presented in Table 

4. The samples of the graphic output of these forecasts are 

shown in the Fig. 12 and Fig. 13. 

 
Table 3: Accuracy of the forecast model for 24, 12 hours ahead 

forecasts with inclusion of outdoor temperature for the locality 

Litoměřice 

Date, Time 

24 hours-ahead forecast 12 hours-ahead forecast 

MAPE 

[%] 

RMSE 

[MW] 

MAPE 

[%] 

RMSE 

[MW] 

28.2.2004, 6:00 AM 5.14 1.64 5.63 1.84 

28.2.2004, 6:00 PM 8.26 3.04 4.79 1.42 

29.2.2004, 6:00 AM 9.94 3.47 10.96 3.92 

29.2.2004, 6:00 PM 9.70 3.30 8.48 2.81 

1.3.2004, 6:00 AM 8.94 3.00 10.99 3.73 

1.3.2004, 6:00 PM 7.26 2.25 5.77 1.81 

2.3.2004, 6:00 AM 6.19 1.89 7.92 2.35 

2.3.2004, 6:00 PM 5.17 1.84 4.13 1.13 

3.3.2004, 6:00 AM 7.18 2.55 6.24 2.36 

3.3.2004, 6:00 PM 6.29 2.24 7.45 2.53 

4.3.2004, 6:00 AM 5.24 1.87 4.55 1.62 

4.3.2004, 6:00 PM 7.73 2.54 5.99 2.11 

5.3.2004, 6:00 AM 9.25 3.04 10.06 3.13 

5.3.2004, 6:00 PM 7.46 2.63 7.71 2.76 

6.3.2004, 6:00 AM 8.43 2.64 7.25 2.49 

6.3.2004, 6:00 PM 8.69 2.53 8.87 2.60 

7.3.2004, 6:00 AM 8.89 2.73 8.60 2.50 

7.3.2004, 6:00 PM 9.28 3.08 7.98 2.61 

8.3.2004, 6:00 AM 9.22 3.11 11.34 3.77 

8.3.2004, 6:00 PM 6.58 2.12 7.42 2.41 

9.3.2004, 6:00 AM 5.29 1.62 5.38 1.73 

9.3.2004, 6:00 PM 5.93 1.87 5.15 1.52 

10.3.2004, 6:00 AM 6.37 1.94 6.69 2.14 

10.3.2004, 6:00 PM 5.84 1.66 5.62 1.61 

11.3.2004, 6:00 AM 5.43 1.54 5.72 1.64 

11.3.2004, 6:00 PM 5.83 1.65 5.13 1.44 

12.3.2004, 6:00 AM 7.04 1.81 7.11 1.90 

12.3.2004, 6:00 PM 7.42 1.96 7.16 1.75 

Average value 7.28 2.34 7.15 2.27 

 

Table 4: Accuracy of the forecast model for 24, 12 hours ahead 

forecasts without inclusion of outdoor temperature for the locality 

Litoměřice 

Date, Time 

24 hours-ahead forecast 12 hours-ahead forecast 

MAPE 

[%] 

RMSE 

[MW] 

MAPE 

[%] 

RMSE 

[MW] 

28.2.2004, 6:00 AM 5.50 1.78 6.03 1.98 

28.2.2004, 6:00 PM 9.57 3.64 5.46 1.66 

 
 

Fig. 11: Result windows for 24 hours ahead forecast of heat demand 

on 15.1.2009 6:00 in the locality Most-Komořany 

 
 

Fig. 13: 24 hours ahead forecast (without inclusion of outdoor 

temperature) of heat demand on 2.3.2004 6:00 AM in the locality 

Litoměřice 

 
 

Fig. 14: Result windows for 24 hours ahead forecast of heat demand 

on 2.3.2004 6:00 in the locality Litoměřice 

 
 

Fig. 12: 24 hours ahead forecast (with inclusion of outdoor 

temperature) of heat demand on 2.3.2004 6:00 AM in the locality 

Litoměřice 
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29.2.2004, 6:00 AM 10.72 3.97 13.01 4.70 

29.2.2004, 6:00 PM 9.88 3.42 8.09 2.72 

1.3.2004, 6:00 AM 10.72 3.53 12.21 4.14 

1.3.2004, 6:00 PM 12.08 3.85 6.75 2.38 

2.3.2004, 6:00 AM 12.51 3.45 12.68 3.86 

2.3.2004, 6:00 PM 6.57 2.42 5.92 1.67 

3.3.2004, 6:00 AM 14.80 5.37 8.23 3.15 

3.3.2004, 6:00 PM 12.94 4.74 18.73 6.25 

4.3.2004, 6:00 AM 7.16 2.46 5.54 1.90 

4.3.2004, 6:00 PM 11.32 3.52 10.41 3.31 

5.3.2004, 6:00 AM 9.66 3.24 13.27 4.03 

5.3.2004, 6:00 PM 7.40 2.58 6.11 2.19 

6.3.2004, 6:00 AM 15.81 4.55 8.48 2.89 

6.3.2004, 6:00 PM 18.76 4.76 19.69 5.03 

7.3.2004, 6:00 AM 11.55 3.30 13.29 3.48 

7.3.2004, 6:00 PM 11.57 3.75 8.52 2.80 

8.3.2004, 6:00 AM 12.67 4.17 16.66 5.21 

8.3.2004, 6:00 PM 7.70 2.51 8.45 2.71 

9.3.2004, 6:00 AM 7.64 2.42 6.13 2.13 

9.3.2004, 6:00 PM 8.09 2.39 6.64 1.92 

10.3.2004, 6:00 AM 8.50 2.40 8.76 2.58 

10.3.2004, 6:00 PM 7.63 2.19 6.25 1.84 

11.3.2004, 6:00 AM 6.80 2.03 6.78 1.92 

11.3.2004, 6:00 PM 8.82 2.49 7.39 2.22 

12.3.2004, 6:00 AM 7.96 2.05 8.64 2.33 

12.3.2004, 6:00 PM 7.09 1.99 7.19 1.72 

Average value 10.05 3.18 9.48 2.96 

 

From the experiments for the locality Litoměřice, we 

conclude that the prediction model with inclusion of outdoor 

temperature achieves again very good results. MAPE for the 

test period is at any time less than 10 percent and RMSE 

seldom exceed the value of 3 MW. Average value of MAPE in 

the test period is approximately 7% and average value of 

RMSE is approximately 2 MW. Obviously, we also observe 

that the value of MAPE and RMSE are lower for a half a day 

ahead forecast than for a day ahead forecast. 

C. Review of the results  

Realized experiments for both district heating systems 

demonstrate possibility of using of forecast model with 

inclusion of outdoor temperature for improvement of heat 

demand prediction. Results in the Table 5 attest to this fact. 

Average values of MAPE and RMSE for all experiments of the 

both district heating systems are presented in the Table 5. 

From the results, we conclude that the MAPE for prediction 

with inclusion of outdoor temperature is approximately 3% 

less than MAPE without inclusion of outdoor temperature. 

Likewise, the RMSE is approximately 3 MW (locality Most-

Komořany) or 1 MW (locality Litoměřice) lower than RMSE 

for prediction without inclusion of outdoor temperature. The 

accuracy of prediction (expressed by MAPE) is better for 

district heating system in the locality Most-Komořany. This 

fact is due to higher typical day load (100-140 MW) than the 

typical day load (28-35 MW) in the smaller system (locality 

Litoměřice). 

Table 5: Overview of results of all experiments for the both district 

heating systems 

 Most-Komořany Litoměřice 

 
MAPE 

[%] 

RMSE 

[MW] 

MAPE 

[%] 

RMSE 

[MW] 

24 hours ahead forecasts 

with inclusion of outdoor 

temperature 
5.21 6.55 7.28 2.34 

24 hours ahead forecasts 

without inclusion of 

outdoor temperature 
8.47 9.98 10.05 3.18 

12 hours ahead forecasts 

with inclusion of outdoor 

temperature 
5.02 6.07 7.15 2.27 

12 hours ahead forecasts 

without inclusion of 

outdoor temperature 
7.97 9.05 9.48 2.96 

 

A deeper analysis of the results shows that the worse 

prediction was achieved on the days of weekend. 

A concluding remark is that accuracy of weather forecasting 

can have a great impact on the accuracy of heat demand 

forecasting. 

V. CONCLUSION 

This paper presents the Box-Jenkins methodology for 

building up the forecast model of time series of DDHD and the 

possibility of improvement of this forecast model with help of 

inclusion of outdoor temperature influence. The proposed 

forecast method was successfully applied to real data from 

concrete district heating systems. The effectiveness of 

proposed forecast model was demonstrated through a 

comparison of the real heat demand data with short-term (24, 

12 hours) forecasted values. In term of the average MAPE in 

the test period our approach achieved 5% and 7% error 

respectively.  

Heat demand forecast plays an important role in power 

system operation and planning. Accurate heat demand 

prediction saves costs by improving economic load 

dispatching, unit commitment, etc. Model described should 

prove useful for the control in the Centralized Heat Supply 

System (CHSS), especially for the qualitative-quantitative 

control method of hot-water piping heat output – the Balátě 

System [2]. 
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