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Abstract:Financial and actuarial mathematics offer various problems related to estimation of distributions. Classical models
for premium calculations usually require some estimates for both the distribution of individual claim size and also the
number of claims. In this work we mainly consider the problem of estimation of individual claim size, but also some
basics on the fitting of the distribution of claim number and tools to find rough estimates for risk premium are provided
to complete the model. Most of the ideas are applied to a real-life data from Estonian traffic insurance from mid 2006 to
mid 2007. The research was initiated by Estonian Traffic Insurance Fund and therefore is of practical importance. The first
four sections of the article focus on the distribution of the individual claim size, we search answers for questions like:

• what candidate distributions to use for fitting the data?
• what fitting techniques to use?
• how to measure which of the proposed candidates is best?

We choose five commonly used distributions as possible estimates: lognormal, Pareto, Weibull, beta and gamma. The fitting
techniques are based on moment matching or maximum likelihood estimators. For testing goodness of fit (GOF) several
classical tests including Chi-square test and Kolmogorov-Smirnov test are used. The accuracy of our approach is evaluated
by matching the first and second moments and by plotting PDF-s and CDF-s. The last section of the article focuses on
estimation of the the claim amount for the whole portfolio and also describes a simple idea how the standard deviance
principle can be used to find a first rough estimate for risk premium when the available history is limited. The estimates
for risk premiums are found by the classical collective risk model. Several simplifications are made due to the lack of
information, turns out that the resulting estimates are comparable with those used in practice by insurance companies.

Key–Words:estimation of distributions, heavy-tailed distributions, goodness-of-fit tests, collective risk model, premium
calculation

I. I NTRODUCTION

To offer insurance with reasonable price for both
the insurer and the insured, the insurer must somehow
model the overall behaviour of the claims. Important
aspect to notice is that although by description a classical
distribution fitting problem, the focus and topics related to
insurance data are somewhat different to those of ”regular”
mathematical statistics. This work can be viewed as a
preliminary work to introduce the specifics of insurance
data and to open the problems related to classical distri-
bution fitting tests and techniques. We propose a simple
method consisting of few classical tests and, during a case
study, point out the limitations of this approach and the
possible directions to work further. We refer to [6],[7] and
[9] for most of the techniques used here. In this paper
we study the Estonian traffic insurance claims data from
period 01.07.2006 - 30.06.2007 (obtained from Estonian
Traffic Insurance Fund) and propose some methods to find
out which distribution suits best to describe the individual
claim sizes. Fitting by well-known (and suitable for insur-
ance data) distributions like lognormal, Pareto, Weibull,

gamma and beta distributions is observed. The goodness
of fit of a distribution is determined by analyzing the
statistical tests, probability plots, quantiles and estimating
suitability by visual estimation. The fitting of distributions
is done separately for whole dataset and for vehicle types
with most claims. In the visual estimation all histograms
of data showed the best fit to the lognormal distribution.
Unfortunately the statistical tests rejected the null hy-
pothesis (that theoretical distribution suits to describe the
data) in most cases. Test rejection is most likely caused
by the large sample size and large-scale deviation. The
probability plots and the table of quantiles showed the
same result. Although all distributions were rejected, the
values of test-statistics for lognormal distribution were
again best compared to other distributions (in some cases
also the beta distribution showed good fit for tail). In
conclusion, we choose lognormal distribution to describe
the claim size data and are aware that one must be careful
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while making decisions concerning the tail probabilities.
In the final section of the article we also address

the problems related to the number of claims, to the
aggregated claims of a portfolio, and to risk premiums.
We make use of the well-known collective risk model
and apply it to same set of data that was used before
for estimation of individual claim size distributions. The
main problem we are focusing is the case when the history
is very limited and the estimation of claim numbers is
therefore not straightforward and needs additional assump-
tions. The resulting rough estimates for risk premiums are
found using standard deviation principle and provide an
acceptable starting point for more thorough research.

II. PROBLEMS

A. Distributions

It is worth mentioning that the fitting problem for
claims size distributions (and generally in insurance math-
ematics) is quite different from the fitting problem in
classical statistics, since the importance in insurance math-
ematics lies on the tail [2], [7], [15]. Therefore good fit
near expectation is not enough, we need to extra carefully
study the tail fit. Most of the claim size distributions
in insurance mathematics usually belong to the class of
heavy-tailed distributions (particularly those with heavy
right tail), or, even more specifically, to the class of
subexponential distributions. Note also that besides the
insurance related topics, heavy-tailed distributions are also
used in a wide range of areas, most common examples
are survival analysis and reliability analysis, but they
can also be used in internet traffic models [13] or even
automatic music generation [1]. We will now briefly recall
the definitions of these classes of distributions [7].

Definition 1 (Heavy-tailed distribution):The distri-
bution of a random variableX is said to have a heavy
right tail if

lim
x→∞

eλx
P (X > x) = ∞ for all λ > 0.

We may go to more detail and define an important
subclass of heavy-tailed distributions, called long-tailed
distributions, as follows.

Definition 2 (Long-tailed distribution):The distribu-
tion of a random variableX is said to have a long right
tail if for all t > 0,

lim
x→∞

P (X > x + t|X > x) = 1.

From here we can go even further, obtaining the class of
subexponential distributions, where most of the common
claim distributions used in insurance practice (Pareto, log-
normal, Weibull, but also Burr, log-gamma, transformed
beta) belong.

The work is supported by Estonian Science Foundation Grant No
7313.

Definition 3 (Subexponential distribution):Let us
have a random variable with distribution functionF such
that F (x) < 1 for all x > 0. ThenF is a subexponential
distribution function if the following condition holds:

lim
x→∞

1 − Fn∗(x)

1 − F (x)
= n, n ≥ 2,

whereFn∗ is then-fold convolution ofF .
Subexponential distributions are a subclass of long-tailed
distributions.

In the following we shortly introduce the distributions
that are used in current study.

• Lognormal distribution,LnN(µ, σ), with probability
density function (pdf)

f(x) =
1

σx
√

2π
e−

(ln x−µ)2

2σ2

for x > 0. Lognormal distribution is a subexponential
distribution, also very applicable in practice because
of the close relations to thoroughly studied normal
distribution. The parametersµ (−∞ < µ < ∞)
and σ (σ > 0) are the expectation and the standard
deviation of the corresponding normal distribution,
respectively, i.e. ifX ∼ LnN(µ, σ) then Y =

lnX ∼ N(µ, σ).
• Weibull distribution,W (c, σ), pdf

f(x) =
cxc−1

σc
e−( x

σ
)

c

for x > 0. Weibull distribution is also a subexpo-
nential distribution, widely used in survival analysis,
reliability analysis and also in insurance mathematics.
The parameterc (c > 0) is referred to as a shape
parameter and the parameterσ (σ > 0) is a scale
parameter.

• Pareto distribution,Pa(α, λ), pdf

f(x) =
αλα

(x + λ)α+1

for x > 0. Because of its tail behavior, Pareto
distribution is also an obvious choice for crucial and
conservative models. The parameterα (α > 0) is a
shape parameter and the parameterλ (λ > 0) is a
scale parameter. Pareto distribution also belongs to
the class of subexponential distributions.

• Beta distribution,B(α, β, σ), pdf

f(x) =
Γ(α + β)

Γ(α)Γ(β)

xα−1(σ − x)β−1

σα+β−1

for 0 < x < σ. The three parameters offer much
variety and also several combinations of those pro-
vide distributions suitable for insurance practice, also
transformed beta distribution belongs to the class
of subexponential distributions. The parametersα

(α > 0) and β (β > 0) are shape parameters and
the parameterσ (σ > 0) is a scale parameter.
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• Gamma distribution,Γ(α, σ), pdf

f(x) =
1

σΓ(α)

(x

σ

)α−1

e−
x

σ

for x > 0. Gamma distribution is mainly considered
here since some of the previous studies indicated
it could have good fit as well, the similarities and
differences between gamma, lognormal and Weibull
are also studied in [14]. The parameterα (α > 0) is
a shape parameter and the parameterσ (σ > 0) is a
scale parameter.

B. Estimation

After choosing the class of distributions we focusing
on, the next step is to estimate their parameters. Parame-
ters are found mainly by maximum likelihood estimators,
using The SAS System and The R project software,
the maximum likelihood estimates are found using the
iterative Newton-Raphson or Nelder-Mead method [4],
[12], [16].

Next step is to evaluate the goodness of fitting, we
are using several criteria to find out which of the proposed
theoretical distributions suit best. First impression comes
from visual estimation of the data, but this is of course
unreliable for making any thorough decisions [10].

Secondly, we use two classical goodness-of-fit tests,
but keep in mind that they may not suit best to current
problems, so more insurance-specific solutions could work
better (a subject for later works). More details about these
tests can be found, e.g., in [3] and [8].

• Kolmogorov-Smirnov test: can be troublesome with
huge amount of data, since it reacts to each small
difference. The problem is quite uncharacteristic for
usual setup in statistics, where the main problem is
to have enough data to get the asymptotic properties
to work correctly. In our setup one could say that we
have ”too much data”.

• Chi-squared test: because of the nature of the data
(very many small claims, rare huge claims) we cannot
have classes with equal claim interval, instead we
take classes with equal probability.

Lastly, we also use the method of probability plots, where
we (graphically) compare the empirical and theoretical
quantiles. The closer the empirical and theoretical curves
are, the better the estimation.

In short we can describe our proposed simple method
for finding the best candidate distributions for further
studies as follows:

A. choose a suitable class of distributions (using general
or prior information about the specific data);

B. estimate the parameters (by finding maximum likeli-
hood, e.g., with Newton-Raphson method);

C. estimate the goodness of fit:

1) visual estimation;

2) classical goodness-of-fit tests (Kolmogorov-
Smirnov, chi-squared with equiprobable
classes);

3) probability plots.

Similar ideas can be used in other fields as well, see,
e.g., how distribution fitting problems are addressed in
the analysis of wind speed data [17], also the theory of
extreme values can be used to solve related problems [11].

III. E STIMATION OF CLAIM DISTRIBUTIONS, A CASE

STUDY

A. Description of the data

The data is obtained from the Estonian Traffic Insur-
ance Fund and it contains all Estonian traffic claims from
01.07.2006 to 30.06.2007.

In the following we give brief overview of the data:

• 39 306 observations (claims) in total;
• average claim per accident is 22 448 EEK;
• most claims lie in region 5 000 - 15 000 (EEK), 15

claims over 1 mln EEK (3.4 % of total claim size);
• 8 different types of vehicles, cars (77.1%), small

trucks (6.9%), trucks (4.5%), trailer trucks (3.9%),
buses, trolleys, trams (1.8%), tractors (0.6%), mo-
torcycles (0.5%), trailers (0.1%). For 4.6% of the
observations the vehicle type was not given.

B. Estimation of the claim distribution for all claims

We will now start to compare how well different
distributions fit to our claims data. As it is hard to see
the behaviour and shape of the claim distribution from
full diagram, we will present a figure of the region where
most of the claims lie (but keep in mind that the tail should
be treated with extra care).

Claims
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Fig. 1. Fitting different distributions to whole data

From Figure 1 it seems that lognormal distribution
follows the data best, it is also suitable for both small and
large claims. It is hard to compare the tail fit, but clearly
the rest distributions have high discrepancies at small and
frequent claims region.

In the following we present the parameters for esti-
mated distributions and the results of goodness of fit tests.
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Table 1. Estimates of parameters for different distri-
butions (whole data)

Distribution Scale parameter Shape parameter(s)
Lognormal µ = 9.40 σ = 1.06

Weibull σ = 2.05 · 10
4 c = 0.89

Pareto λ = 6.35 · 10
4 α = 4.01

Beta α = 0.83, β = 176.42

Gamma σ = 2.38 · 10
4 α = 0.95

Table 2. Results of K-S andχ2 tests
Distribution χ2-stat. χ2 crit. K-S K-S

value statistic p-value
Lognormal 2 043 14.1 0.0653 p < 0.001

Weibull 8 776 14.1 0.1174 p < 0.001

Pareto 7 661 14.1 0.1255 p < 0.001

Beta 10 772 14.1 0.1477 p < 0.001

Gamma 8 074 14.1 0.1278 p < 0.001

By visual observation, the best-fitting distribution is
lognormal, but as seen from the table, both Kolmogorov-
Smirnov andχ2 test reject all proposed distributions. This
result is somewhat expected, as we have a very large
dataset, and K-S test reacts to each small discrepancy. It
is now suitable to recall the famous quote by prof. George
E. Box: ”All models are wrong, but some are useful”
[5]. So the goal that remains is to take the best choice
out of bad choices. Note that the values of test statistics
are by far best for lognormal distribution (χ2-statistic is
about 4 times smaller than the rest and Kolmogorov-
Smirnov statistic is 2 times smaller). We now also measure
the performance of proposed theoretical distributions by
comparing the corresponding probability plots, best fit
is again by lognormal distribution, with gamma, Pareto
and Weibull distributions behaving slightly worse. The
corresponding probability plots are shown on figures 2-
5.
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Fig. 2. Probability plot for lognormal distribution

It can be seen that large amount of the sample suits
quite well with the proposed theoretical distributions, but
after 0.99-quantile the theoretical tail is too light (estimate
is too optimistic), fitting by Pareto distribution gives more
conservative estimate for tail, but it is also too conser-
vative for most of the data. For more information, also
corresponding quantile tables are included in Appendix 1.

These results would actually be really good for most
situations, but in insurance we have to be extra careful

Percentile

C
la

im
s

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

99.9999590500

Fig. 3. Probability plot for gamma distribution
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Fig. 4. Probability plot for Weibull distribution

with the tail estimation.
To get more similar claim behaviour and to achieve

more homogeneous data structure we also conduct the
same study by vehicle type. The results are presented in
the next section.

C. Estimation of the claim distributions for different ve-
hicle types

Similarly to the previous section we follow the same
general procedure for each vehicle type separately. In this
paper we only give the results for three most common
vehicle types: cars, small trucks and trucks.

The corresponding parameter estimates and test statis-
tics for Kolmogorov-Smirnov andχ2 tests are given in
the following tables 3-8. Also the corresponding quantile
tables are given in appendices 2-4.

Table 3. Estimates of parameters for different distri-
butions (cars)

Distribution Scale parameter Shape parameter(s)
Lognormal µ = 9.38 σ = 1.05

Weibull σ = 1.98 · 10
4 c = 0.89

Pareto λ = 7.06 · 10
4 α = 4.51

Beta α = 0.87, β = 118.03

Gamma σ = 2.17 · 10
4 α = 0.98

Table 4. Results of K-S andχ2 tests (cars)
Distribution χ2-stat. χ2 crit. K-S K-S

value statistic p-value
Lognormal 1 267 14.1 0.0684 p < 0.001

Weibull 6 201 14.1 0.1178 p < 0.001

Pareto 5 631 14.1 0.1273 p < 0.001

Beta 7 190 14.1 0.1422 p < 0.001

Gamma 5 458 14.1 0.1242 p < 0.001

Table 5. Estimates of parameters for different distri-
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Fig. 5. Probability plot for Pareto distribution

butions (small trucks)
Distribution Scale parameter Shape parameter(s)
Lognormal µ = 9.48 σ = 1.00

Weibull σ = 2.16 · 10
4 c = 0.89

Pareto λ = 7.29 · 10
4 α = 4.31

Beta α = 0.58, β = 43.53

Gamma σ = 2.34 · 10
4 α = 0.99

Table 6. Results of K-S andχ2 tests (small trucks)
Distribution χ2-stat. χ2 crit. K-S K-S

value statistic p-value
Lognormal 127 14.1 0.0539 p < 0.001

Weibull 664 14.1 0.1247 p < 0.001

Pareto 599 14.1 0.1345 p < 0.001

Beta 1 721 14.1 0.2072 p < 0.001

Gamma 605 14.1 0.1301 p < 0.001

Table 7. Estimates of parameters for different distri-
butions (trucks)

Distribution Scale parameter Shape parameter(s)
Lognormal µ = 9.63 σ = 1.01

Weibull σ = 2.54 · 10
4 c = 0.94

Pareto λ = 9.62 · 10
4 α = 4.74

Beta α = 0.58, β = 43.53

Gamma σ = 2.47 · 10
4 α = 1.06

Table 8. Results of K-S andχ2 tests (trucks)
Distribution χ2-stat. χ2 crit. K-S K-S

value statistic p-value
Lognormal 59 14.1 0.0476 p < 0.001

Weibull 321 14.1 0.0981 p < 0.001

Pareto 292 14.1 0.1208 p < 0.001

Beta 532 14.1 0.1527 p < 0.001

Gamma 275 14.1 0.1214 p < 0.001

Unfortunately the results for different vehicle types do
not differ much from the results obtained for whole data.
As cars form 77% of the data, the similarity to previous
results was quite expected, but turns out that lognormal
distribution is best fit for small trucks and trucks as
well (although only 6.9% of the claims were related to
small trucks and 4.5% to trucks). Also, the values of test-
statistics for gamma, Weibull and Pareto are quite close
(but noticeably worse than lognormal) and the fitting by
beta distribution is worst in all cases. The goodness-of-fit
test results together with visual estimation and probability
plots lead us to same conclusion as for whole data: the

lognormal distribution fits best from these choices, but not
too well. The fit on the main part is generally tolerable,
but the tail fit needs to be revised.

IV. ROUGH ESTIMATION OF THE TOTAL CLAIM

AMOUNT AND THE RISK PREMIUM

While the individual claim distribution gives as valu-
able information about the risk behaviour, even more im-
portant question is how well can we describe the behaviour
of total claims for whole portfolio, and, eventually, how
to find a reasonable price for risk, i.e. how to calculate the
risk premium. The usual way is to apply certain aggregate
risk models, e.g. the collective risk model. Thus we need
(beside the estimates for individual claims) also some
estimates for the number of claims. We refer to [6] for
the setup used here.

By the collective risk model the total claim amount
can be calculated as

S =

N
∑

i=1

Xi,

whereXi are individual claims andN is the number of
claims. It is assumed thatXi are iid random variables and
also independent ofN . It is known that in this case the
expectation and variance of total claim amountS can be
calculated as:

ES = ENEX1 (1)

and
V arS = ENV arX1 + V arN(EX1)

2. (2)

We are particularly interested in question how to find
some first ”rough” estimates in case when the history
of claims is very limited, which obviously makes the
situation more complicated. In our example we have only
data from one year available, which makes it impossible
to estimate the distribution of the number of claims unless
we bring in additional assumptions or simplifications.
Therefore we assume that

• each vehicle can have only one loss per year (this
restriction is used since we do not have corresponding
information);

• claim numberN is binomially distributed,N ∼
Bin(n, p) (follows from the first assumption, but
Poisson or negative binomial can also be used for
more conservative estimates);

• total claim amount is approximately normally dis-
tributed S ∼ N(µ, σ) (is justified if we have huge
homogeneous portfolio, in practice we need to be
careful as the estimates might be too optimistic).

If N follows binomial distribution, then formulas (1) and
(2) simplify to:

ES = npEX1 (3)

and
V arS = npV arX1 + np2(EX1)

2. (4)
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As we usually not have a fixed number of insured
vehicles during period of interest, we could use the infor-
mation about how long each vehicle was insured during
given period and calculate the number of insured vehicles
as

n =
total days insured in given period

length of given period
. (5)

In our example the insurance period is one year
(01.07.2006–31.06.2007), so formula (5) simplifies to

n =
total days insured

365
. (6)

Also, the parameterp describing the probability of a
loss event can be found in the usual way as

p =
number of claims in period

vehicles insured in period
. (7)

Applying formulas (1), (2), (6) and (7) to our case
study data, we obtain the following results.

Table 9. The expected values and variances by
vehicle type for aggregate loss size (in mln EEK)

Vehicle type ES V arS

Cars 618.7 1 491.3
Small trucks 58.0 133.9
Trucks 45.3 105.8
Trailer trucks 55.5 132.8
Busses, trolleys, trams 15.9 44.1
Tractors 6.7 14.5
Motorcycles 4.5 12.1
All 797.1 1 945.2

Next we try to find a rough estimate for ”reasonable”
risk premium. We choose the standard deviance princi-
ple for premium calculation as it obtains certain simple
intuitive explanation in this example.

The risk premiumH(S) is calculated by standard
deviation principle as

H(S) = ES + β
√

V arS,

where β > 0. It is easy to see that ifS is normally
distributed, then the portfolio premium can be thought of
as a solution of the following equation:

P {H(S) − S > 0} = p. (8)

On the other hand, givenn policy-holders with pre-
mium P , the portfolio premiumH(S) can be calculated
asnP , thus the formula (8) simplifies to

P {nP − S > 0} = p

from where the individual premium can be found as

P =
ES + Φ−1(p)

√
V arS

n
.

The corresponding individual premiums with three
different probabilitiesp are given in table 10.

Table 10. Estimated risk premiums
Vehicle type p = 0.9 p = 0.95 p = 0.99
Cars 1 728 1 765 1 833
Small trucks 2 465 1 609 2 876
Trucks 3 444 3 669 4 081
Trailer trucks 10 252 10 875 12 020
Busses, trolleys, trams 7 137 7 855 9 176
Tractors 619 695 835
Motorcycles 2 028 2 319 2 854
All 1 677 1 709 1 768

Note that these numbers are obtained after serious
simplifications and should be treated very carefully, they
can be though of as a starting point for more thorough
studies. But it is also worth mentioning that the actual
numbers that were used by Estonian insurance companies
in 2006 were quite close for most vehicle types.

V. CONCLUSIONS

1) The advantages of proposed simple method for dis-
tribution fitting are that it is easy to understand and
apply, the tools used are classical and well known.
The results obtained can be used as a starting point
for more thorough studies, e.g. using certain tools
from the theory of extreme values to estimate the
tail behaviour (work in progress).

2) There is a need for specific tests suitable for the
nature of insurance claims (where the data volume
is huge, distributions are heavy-tailed and the tail
behaviour is of key importance).

3) For the particular case study, none of the selected
distributions describe the data at hand well, the
goodness of fit tests reject everything.

4) By the values of test-statistics lognormal distribution
are best for the whole data and for most vehicle
types separately, lognormal distribution also fits best
by visual estimation and probability plots (good fit
up to 0.99-quantile).

5) The proposed method for premium calculation gives
reasonably good initial estimate for further applica-
tions.

APPENDIX

The quantile tables given in appendices are produced
using SAS software.

Appendix 1. Comparison of quantiles for empirical and
fitted distributions, in mln EEK, whole data

Quantiles for Lognormal Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00050 0.00103
5.0 0.00229 0.00212

10.0 0.00400 0.00312
25.0 0.00673 0.00594
50.0 0.01180 0.01214
75.0 0.02209 0.02481
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90.0 0.04300 0.04722
95.0 0.06863 0.06940
99.0 0.18097 0.14292

Quantiles for Weibull Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00050 0.00011
5.0 0.00229 0.00069

10.0 0.00400 0.00157
25.0 0.00673 0.00495
50.0 0.01180 0.01349
75.0 0.02209 0.02977
90.0 0.04300 0.05313
95.0 0.06863 0.07174
99.0 0.18097 0.11720

Quantiles for Gamma Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00050 0.00018
5.0 0.00229 0.00100

10.0 0.00400 0.00212
25.0 0.00673 0.00609
50.0 0.01180 0.01520
75.0 0.02209 0.03112
90.0 0.04300 0.05241
95.0 0.06863 0.06861
99.0 0.18097 0.10638

Quantiles for Beta Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00050 0.00011
5.0 0.00229 0.00076

10.0 0.00400 0.00179
25.0 0.00673 0.00578
50.0 0.01180 0.01579
75.0 0.02209 0.03417
90.0 0.04300 0.05934
95.0 0.06863 0.07868
99.0 0.18097 0.12391

Appendix 2. Comparison of quantiles for empirical and
fitted distributions, in mln EEK, cars

Quantiles for Lognormal Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00045 0.00103
5.0 0.00237 0.00211

10.0 0.00400 0.00308
25.0 0.00660 0.00582
50.0 0.01170 0.01180
75.0 0.02119 0.02392
90.0 0.04080 0.04516
95.0 0.06438 0.06607
99.0 0.17209 0.13488

Quantiles for Weibull Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00045 0.00012
5.0 0.00237 0.00072

10.0 0.00400 0.00160
25.0 0.00660 0.00492
50.0 0.01170 0.01314
75.0 0.02119 0.02851
90.0 0.04080 0.05026

95.0 0.06438 0.06745
99.0 0.17209 0.10906

Quantiles for Gamma Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00045 0.00020
5.0 0.00237 0.00104

10.0 0.00400 0.00217
25.0 0.00660 0.00601
50.0 0.01170 0.01464
75.0 0.02119 0.02950
90.0 0.04080 0.04922
95.0 0.06438 0.06417
99.0 0.17209 0.09892

Quantiles for Beta Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00045 0.00013
5.0 0.00237 0.00083

10.0 0.00400 0.00187
25.0 0.00660 0.00575
50.0 0.01170 0.01513
75.0 0.02119 0.03193
90.0 0.04080 0.05465
95.0 0.06438 0.07195
99.0 0.17209 0.11216

Appendix 3. Comparison of quantiles for empirical and
fitted distributions, in mln EEK, small trucks

Quantiles for Lognormal Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00082 0.00128
5.0 0.00303 0.00252

10.0 0.00464 0.00363
25.0 0.00700 0.00666
50.0 0.01203 0.01306
75.0 0.02374 0.02563
90.0 0.04500 0.04700
95.0 0.07080 0.06757
99.0 0.20058 0.13350

Quantiles for Weibull Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00082 0.00013
5.0 0.00303 0.00078

10.0 0.00464 0.00174
25.0 0.00700 0.00536
50.0 0.01203 0.01434
75.0 0.02374 0.03114
90.0 0.04500 0.05492
95.0 0.07080 0.07371
99.0 0.20058 0.11922

Quantiles for Gamma Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00082 0.00023
5.0 0.00303 0.00119

10.0 0.00464 0.00244
25.0 0.00700 0.00669
50.0 0.01203 0.01614
75.0 0.02374 0.03231
90.0 0.04500 0.05369
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95.0 0.07080 0.06987
99.0 0.20058 0.10746

Quantiles for Beta Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00082 0.00002
5.0 0.00303 0.00031

10.0 0.00464 0.00104
25.0 0.00700 0.00522
50.0 0.01203 0.01961
75.0 0.02374 0.05128
90.0 0.04500 0.09858
95.0 0.07080 0.13607
99.0 0.20058 0.22490

Appendix 4. Comparison of quantiles for empirical and
fitted distributions, in mln EEK, trucks

Quantiles for Lognormal Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00100 0.00145
5.0 0.00312 0.00289

10.0 0.00499 0.00417
25.0 0.00860 0.00772
50.0 0.01463 0.01529
75.0 0.02832 0.03026
90.0 0.05345 0.05596
95.0 0.08014 0.08085
99.0 0.21562 0.16122

Quantiles for Weibull Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00100 0.00019
5.0 0.00312 0.00109

10.0 0.00499 0.00234
25.0 0.00860 0.00678
50.0 0.01463 0.01722
75.0 0.02832 0.03589
90.0 0.05345 0.06144
95.0 0.08014 0.08120
99.0 0.21562 0.12807

Quantiles for Gamma Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00100 0.00033
5.0 0.00312 0.00155

10.0 0.00499 0.00307
25.0 0.00860 0.00800
50.0 0.01463 0.01861
75.0 0.02832 0.03636
90.0 0.05345 0.05955
95.0 0.08014 0.07700
99.0 0.21562 0.11734

Quantiles for Beta Distribution
------Quantile------

Percent Observed Estimated
1.0 0.00100 0.00012
5.0 0.00312 0.00090

10.0 0.00499 0.00217
25.0 0.00860 0.00729
50.0 0.01463 0.02033
75.0 0.02832 0.04401
90.0 0.05345 0.07534
95.0 0.08014 0.09841
99.0 0.21562 0.14904
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