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Abstract: In this work we introduce the kinematic model and 

dynamic model of an omnidirectional mobile robot with three-center 

directional wheels. These models allow us to simulate the behavior of 
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I. INTRODUCTION: 

 

In the framework of robotics and unlike the industrial 

manipulator robots which work in many automated factories, 

mobile robotics plays an integral role. The space within which 

mobile robot should move is often very large, geometrically 

unknown and owning a proper dynamic   

 

   Some mobile robots, wheeled robots occupy a privileged 

place. The relative simplicity of their structure and mechanical 

energy consumption, make the vehicles most frequently 

encountered, both in indoor environments that use 

external. Wheeled vehicles have limited capacity to cross 

directly related to the size of their wheels. Maneuvers are 

often required to perform specific movements or to move in a 

cluttered environment.  

 

    As for robot manipulators, the control of a mobile robot 

requires knowledge of the kinematic model and dynamic 

model of vehicle. Estimating the position of a mobile robot 

can be derived directly from the measuring position of its 

joints. Each configuration of the joints is not a unique position 

of the platform. Connections wheel / ground are the seat of 

friction phenomena that induce significant inaccuracies in 

control and in the estimation of vehicle position.  

 

II. KINEMATIC MODLING [7]: 

 

   The posture of a vehicle is the position of the marker linked 

to the vehicle in a coordinate system related to the 

environment. It is a non-homogeneous vector, whose first two 

components define the position of the reference robot in the 

reference mark and the latter defines the orientation of the 

robot reference relative to fixed frame. 

 

Variables of the robot:  

 

 

 

 

 
Fig. 1. variable (a) absolute position and (b) modeling of robot omni 

kinematics 

 

Vector notation:  

𝑋  = 𝜉  𝛽  𝜑   𝑇  

𝜉 =  𝑥 𝑦 𝜃 
 
 
𝑇
 describes posture of the robot in the Galilean 

reference  

𝛽 =  𝛽1  𝛽2  𝛽3    
𝑇  describes the steering angles of wheels  

𝜑 =  𝜑1𝜑2𝜑3  𝑇  describes the angle of rotation of the 

wheels  

𝑞 =  𝛽  𝜑   𝑇  describes the joint variables  

 

The inversed kinematic model links the derivate of posture 

vector to joint velocities vector. Knowing the speed of the 

vehicle in the space of postures, it allows calculating all 

actuators speed instructions. This design is used to command 

the robot. The relations between operational speeds and joint 

velocities are gotten from the hypothesis of wheel/ ground 

point contact and the non-sliding roll of vehicule wheels.  

They allows the interference of wheels geometric parameters 

as well as the architecture of the platform.  
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    To determine the kinematic constraint equations of the 

steerable wheel off center, we make two assumptions:-roll 

without slippage of the wheel-rolling without slippage of the 

wheel in the horizontal plane.  

 No skating:   

 cos 𝛽 sin 𝛽 𝑥𝑎 sin 𝛽 − 𝑦𝑎 cos 𝛽 𝑅 𝜃 . 𝜉  + 𝑟𝜑 = 0 (1) 

 No slippage: 

 sin 𝛽 − cos 𝛽 𝑒 − 𝑥𝑎 cos 𝛽 − 𝑦𝑎 sin 𝛽 𝑅 𝜃 . 𝜉  + 𝑒𝛽 = 0                                                                  

(2) 

With 𝑅 𝜃 =  
cos 𝜃 sin 𝜃 0

− sin 𝜃 cos 𝜃 0
0 0 1

               (3) 

III. MOBILITY OF THE ROBOT : 

    The robots are classified according to their mobility and 

number of independently steerable wheels centered [9]. For 

this, we consider a general mobile robot equipped with wheels 

Nf fixed, centered orientable wheel Nc, Nd -center directional 

wheels or N= Nf+ Nc+ Nd the total number of wheels.  

Vector of orientation variables 

𝛽 =  𝛽𝑐
𝛽𝑑

  Vector of orientation variables for the centered 

adjustable wheels and the decentered adjustable wheels 

Vector of rotation variables  

𝜑 =  
𝜑𝑓
𝜑𝑐
𝜑𝑑

  Vector of rotation variables for different 

wheels  

The kinematic constraints of the robot are written as 

the following matrix: 

 
𝐽1 𝛽𝑐 , 𝛽𝑑 𝑅 𝜃 𝜉  + 𝑟𝜑    = 0

𝐶1 𝛽𝑐 , 𝛽𝑑 𝑅 𝜃 𝜉  + 𝑒𝛽    = 0
                                                 (4) 

with  

𝐽1 =  

𝐽1𝑓

𝐽1𝑐

𝐽1𝑑

 , 𝐶1 =  

𝐶1𝑓

𝐶1𝑐

𝐶1𝑑

  

Or  

J1f ,C1f  are matrices of (Nf x 3) dimension 

J1c ,C1c  are matrices (Nc x 3) dimension 

J1d ,C1d  are matrices (Nd x 3) dimension 

Differents types of constraints 

the equations of links between solids are of 2 types: 

* holonomic equations, f (q, t) = 0. 

Holonomic equations reflect geometric links between solids. 

* non-holonomic équations, f(q,𝑞 ,t) = 0. 

Non-holonomic equations reflect kinematic links between 

solids. 

 

We call pseudo-holonomic equations, equations of non-

holonomic type that could be reduced to holonomic equations 

through integration. 

 

mobility Degree –Degree de directionality [7] 

the expressions of kinematic constraints of fixed wheels and 

centered orientable wheels are written as follows: 

𝐶1𝑓𝑅 𝜃 𝜉    = 0  

𝐶1𝑓𝑅 𝜃 𝜉    = 0                                                                      (5) 

At each moment, the robot motion is equivalent to a pure 

rotation around the instantaneous center of rotation (ICR) the 

position of which varies. The instantaneous velocity vector of 

each point of the robot is orthogonal to the straight line joining 

this point to RIC. Consequently, all the axes of fixed and 

orientable centered wheels are concurrent to ICR. 

𝑅 𝜃 𝜉    belongs to the core C1
* 
defined as follows : 

𝐶1
∗ =  

𝐶1𝑓

𝐶1𝑐
  

The rank of C1
* 

expresses motion possibilities of the robot. 

the mobility degree of the robot δm is defined from the rank of 

C1
*:

 

δm = dim ker 𝐶1
∗  = 3 − 𝑅𝑎𝑛𝑔(𝐶1

∗)                                 (6) 

if𝑅𝑎𝑛𝑔 𝐶1
∗ = 3, δm = 0, no motion is possible 

if𝑅𝑎𝑛𝑔 𝐶1
∗ = 0, δm = 3, all motion are possible 

if the robot is mobile 1≤ δm≤ 3: 

if the robot possesses at least 2 fixed wheels, their axes of 

rotation should be confused otherwise robot displacement is 

limited to rotations around competition point of these axes, 

that to say rank ( C1
f
)≤ 1. 

the degree of mobile robots directionality is expressed as 

follows : δs=Rang(C1c) 

with 0 ≤ δs ≤ 2 

δs  presenting the number of centered wheels possible to 

orient the ones from the others independently, in a way that 
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the instantaneous centre of rotation exists we can orient only 

centered wheels ; the extra wheels will necessarily have a 

movement coordinated with the two first ones. 

 

    Classification of mobile robots by their degree of 

mobility δm - δs degrees of directionality [9]  

Table I: Classification of mobile robots by type (δm, δs) 

IKM (inverse kinematics model) allows the robot to move: 

Cartesian variables derived 𝜉   joint variables derived 𝑞   or 

𝑞  = 𝑓(𝜉  , 𝜉 , 𝛽 ) 

It follows that V (CЄ Wheel/R0) = 0  

So:  

𝑉 (CЄ Wheel /R0)= 𝑉 (CЄ pl /R0)+ 𝑉 (CЄ Wheel /pl)             (7) 

 

    The kinematic equations are expressed in the landmark was 

Rp  

𝑉 (CЄ Wheel /pl)= 

𝑟𝜑 𝑖𝑟 

−𝑒𝛽 𝑗𝑟 
0

                                                     (8) 

 

𝑉 (CЄ pl /R0)= 𝑉 (AЄ pl /R0)+Ω  (pl /R0)∧ 𝐴𝐶                            (9) 

 

𝑉 (AЄ pl /R0)= 𝑉 (PЄ pl /R0)+Ω  (pl /R0)∧ 𝑃𝐴                 (10) 

With  Ω  (pl /R0)= 

0
0

𝜃𝑍0
    

                                              (11) 

    In writing these equations for each wheel, we obtain the 

inverse kinematics model of the robot in the following matrix 

form:  
𝐽1𝑅 𝜃 𝜉  + 𝑟𝜑  = 0

𝐶1𝑅 𝜃 𝜉  + 𝑒𝛽  = 0
                                                   (12) 

With  

 

𝐽1= 

cos 𝛽1 sin 𝛽1 𝑥𝑎1 sin 𝛽1 −𝑦𝑎1   cos 𝛽 1

cos 𝛽2 sin 𝛽2 𝑥𝑎2 sin 𝛽2 −𝑦𝑎1   cos 𝛽 2

cos 𝛽3 sin 𝛽3 𝑥𝑎3 sin 𝛽3−𝑦𝑎3   cos 𝛽 3

                              (13)

 

 

𝐶1= 

sin 𝛽1 −cos 𝛽1 𝑒−𝑥𝑎1 sin 𝛽1 −𝑦𝑎1   cos 𝛽 1

sin 𝛽2 −cos 𝛽2 𝑒−𝑥𝑎2 sin 𝛽2 −𝑦𝑎1   cos 𝛽 2

sin 𝛽3 −cos 𝛽3 𝑒−𝑥𝑎3 sin 𝛽3−𝑦𝑎3   cos 𝛽 3

                  (14)

 

 
𝜑  = −

1

𝑟
𝐽1𝑅 𝜃 𝜉  

𝛽  = −
1

𝑒
𝐶1𝑅 𝜃 𝜉  

                               (15) 

 

Or 𝑋   = 𝑆 𝑋  𝜉                               (16) 
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𝑆 𝑋  =  

𝐼3𝑋3

−
1

𝑒
𝐶1𝑅 𝜃 

−
1

𝑟
𝐽1𝑅 𝜃 

                       (17) 

 

    If 𝜉  = 0  , then  𝑋   = 0  . There is no joint movement 

possible without moving the platform; it can not be any 

internal reconfiguration of the robot. This point is important 

for design. Indeed if you look matrices j1 and C1, we see that 

the position of the wheels is required to calculate the joint 

velocities, especially at the start of the movement. Now, we 

can reconfigure the wheels. Simple encoder stepper requiring 

research tops of zero are not sufficient. It is necessary to know 

the absolute positions of wheels relative to the platform. The 

absolute position encoders are needed. 

 

 

 

IV. DYNAMIC MODEL 

    The dynamic model of the robot represents the 

relationship between pairs of actuators and the accelerations, 

velocities, joint positions and external forces. They are 

expressed as follows:  

Γ = f X,  X   , X  , F   

With the vector  Γ  couples joint  

The direct dynamic model is written: 

X  = f X,  X   , F , Γ   

    The use of this model is very new for the synthesis of 

control laws for mobile robots[14],[15].  

To calculate the dynamic model of wheeled mobile robots, the 

most common approach is the use of Lagrangian formalism. 

There is the advantage of providing an explicit model directly 

usable for the simulation model directly under the general 

form:   

  𝐽  = 𝑄𝑒
   + 𝑄𝑖

 + 𝐿                                                           (18) 

or  

𝐽      represents the vector of generalized actions of inertia  

𝑄𝑒
    represents the vector of external actions  

𝑄𝑖
 represents the vector of internal actions  

𝐿   represents the vector of generalized action liaison  

    The dynamic model of the robot is determined by assuming 

that the robot is a material system composed of non-

deformable, hence 𝑄𝑖
 =0 

The previous equation reduces to 𝐽  = 𝑄𝑒
   + 𝐿                     (19) 

A. Shares generalized inertia  

    The generalized action of inertia Ji is calculated from the 

Lagrange formula for the qi : 

   𝐽𝑖 =
𝑑

𝑑𝑡
 

𝜕𝐸𝑐

𝜕𝑋 𝑖
 −  

𝜕𝐸𝑐

𝜕𝑋𝑖
                                            (20) 

    The calculation of partial derivatives of the energy Ec 

can, by arrangement, to obtain expression measures 

generalized inertia:  

𝐽   X,  X   , X   = T X  X  + h  X,  X                                              (21) 

Or T X   is the matrix of inertia  

h  X,  X     is the vector of centrifugal terms and the terms of 

Coriolis  

B. External actions  

    The vector of external actions 𝑄𝑒
    can be decomposed into 

three terms:  

  𝑄𝑒  
    = 𝑄𝑔

    + 𝑄𝑚
    + 𝑄𝑑

                                                             (22) 

With 𝑄𝑔
     actions due to gravity.  

𝑄𝑚
     shares due to the engine.  

𝑄𝑑
     actions dissipation due to viscous friction and dry.  

 

 Review 𝑄𝑔
     : the dynamic model is 

established on a ground plane and horizontal.  

Shares of zero gravity are:  

𝑄𝑔
     =0                                                                     (23) 

 Review 𝑄𝑚
    : actions engines are due only to 

torque provided by motor-driven actuators in the 

joints:  

𝑄𝑚
    = 𝐵𝜏 𝑚𝑜𝑡                                                           (24) 

Or B (9x9) is a matrix selection motorized joints.  

 Review  𝑄𝑑
     : the dissipation due to viscous 

and dry friction in wheel movement in tension and 

guidance:  

𝑄𝑑
    = −𝜏 𝑟é𝑠                                                            (25) 

    These frictions preclude couples directly applied on the 

joints.  

The external actions are as follows:  

         𝑄𝑒
   = 𝐵𝜏 𝑚𝑜𝑡 − 𝜏 𝑟é𝑠                                                      (26) 

 

C. Shares Generalized Relation 

 

    Shares generalized liaison representing the forces and 

torques due to bonds of contacts. For wheeled mobile robots, 

this condition reflects the rolling without slipping. These 

actions are the product of the kinematic constraint matrix by a 

vector of Lagrange multiplier.  

                 𝐿 = 𝐴𝑇 𝑋  . 𝜆                                                    (27) 

With 𝐴 =  
𝐶1 𝑒. 𝐼3𝑋3 03𝑋3

𝐽1 03𝑋3 𝑟. 𝐼3𝑋3
 , 𝜆  (6x1) vector of Lagrange 

multipliers  
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D. Equation of dynamics  

T X  X  + h  X,  X    = 𝐵𝜏 𝑚𝑜𝑡 − 𝜏 𝑟é𝑠 + 𝐴𝑇 𝑋  . 𝜆                (28) 

 

E. Kinetic Energy  

 

    The total kinetic energy is equal to the sum of kinetic 

energies of the different bodies constituting the system.  

 Kinetic energy of the platform (pl)  

Gpl is the centroid of the platform, we can then write 

speed Gpl:  

𝑉 (Gpl Є pl /R0)= 𝑉 (PЄ pl /R0)+Ω  (pl /R0)∧ 𝑃𝐺    
𝑝𝑙           (29)                                                   

avec 𝑃𝐺    
𝑝𝑙 =  

𝑥 𝑔
𝑦𝑔

 
𝑅𝑝

  

kinetic energy of the platform reads:  

            𝐸𝑐𝑝𝑙 =
1

2
𝑚𝑝𝑙 𝑉𝐺𝑝𝑙

2 +
1

2
𝐼𝑝𝑙 𝜃

2                                      (30) 

With mpl is the mass of the platform  

          Ipl denotes the moment of inertia of a platform relative 

to vertical axis passing through Gpl  

 

 Kinetic energy of the wheels  

 

Writing the absolute velocity of center of gravity 

Gpl the rotating part:  

 

 
 

Fig. 2 center of gravity Gpl 

   

𝑉 (Gpl /R0)= 𝑉 (PЄ pl /R0)+𝜃. 𝑍0
   ∧ 𝑃𝐺    

𝑝𝑙 + 𝛽 . 𝑍0
   ∧   𝐴𝑖𝐺      

𝑝𝑙                                                                        

(28) 

Calculating xGpl :  

We assume that the center of gravity of the yoke FHAG is at a 

distance e / 2 point Ai anchorage on Xb. 

We have 𝐴 𝑖𝐺      
𝑝𝑙 =  

𝑥 𝐺𝑝𝑙

0
 
𝑅𝑏

with 𝑥 𝐺𝑝𝑙 =
𝑒

2
+

𝑚𝑟 .
𝑒

2

𝑚𝑊𝑒𝑒𝑙 _𝑖
            (31) 

The kinetic energy of the wheel i:  

𝐸𝑐Wheel _𝑖 =
1

2
𝑚𝑊𝑒𝑒𝑙 _𝑖𝑉 𝐺𝑝𝑙

𝑇 𝑉 𝐺𝑝𝑙
 +

1

2
𝐼𝜑𝑖 𝜑𝑖

2 +
1

2
𝐼𝛽𝑖 (𝜃 + 𝛽𝑖

 ) 2                                                                                       

(32) 

With mWheel_i is the mass of the rotating part of the wheel i 

(wheel tread)  

       Iφi moment of inertia of the wheel i about the axis of 

traction (horizontal rotation)  

      Iβi moment of inertia of the wheel tread i around the axis 

direction (vertical rotation)  

 

 Total kinetic energy  

 

Total kinetic energy of the robot is written in the quadratic 

form:  

𝐸𝑐 = 𝐸𝑐𝑝𝑙 +  𝐸𝑐𝑊𝑒𝑒𝑙 _𝑖
3
𝑖=1 =

1

2
𝑋    

𝑇
𝑇 𝑋  𝑋                                  (33) 

with 𝑇 𝑋  the matrix of inertia symmetric positive definite 

of dimension 9x9  

𝑇 𝑋  =  

𝑅𝑇 𝜃 . 𝐹. 𝑅 𝜃 𝑅𝑇 𝜃 . 𝐺 03𝑥3

𝐺𝑇𝑅 𝜃 𝐼𝛽 03𝑥3

03𝑥3 03𝑥3 𝐼𝜑

                               (34) 

 

F. Action Motors  

 

    They are represented by the vector 𝜏 𝑚𝑜𝑡  (dim = 9x1) or 

assuming all joints are motorized.   

𝜏 𝑚𝑜𝑡 =  0  0  0  𝜏𝛽1  𝜏𝛽2  𝜏𝛽3  𝜏𝜑1  𝜏𝜑2   𝜏𝜑3  𝑇                 (35) 

The selection of the engine is made by the selection matrix B 

appropriate.  

 

G. Scrubbing action  

 

    For the dynamic model of the robot, it is necessary to take 

into account friction. These phenomena are in practice 

difficult to model. For axis traction, we used a simplified 

model consisting of dry Coulomb friction and viscous friction 

as a function of speed. These frictions are taken into account 

in the actuators and transmission. They are written as follows:  

 

         𝐶𝑖 = 𝑓𝑠. 𝑠𝑖𝑔𝑛 𝑞 𝑖 + 𝑓𝑣. 𝑞 𝑖                                          (36) 

 

With fs: dry friction coefficient of coulomb  

        fv: coefficient of viscous friction  

    when changing direction of the robot, the steering axis must 

overcome a resisting torque of friction of the wheel on the 

ground. contact with the wheel on the ground is not reduced to 

a point but is a surface due to deformation of the tread under 

 the load of the robot.  

 

     If we consider that the wheel is cylindrical and non-ring, 

the contact surface wheel-ground is a rectangle of length L 

and width W. The pressure distribution on the ground is 

parabolic[12].  

Different methods are used to express the pressure. We have 

chosen the term of the pressure given by Nikravesh:  

                  𝑃 = 4
𝑃𝑚𝑎𝑥

𝑙
𝑥  𝑙 −

𝑥

𝑙
                                        (37) 

With Pmax=1,5 Fz/WL                                                 (38) 

Fz is the force of gravity on the wheel.  
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By integrating the pressure on the surface, we obtain the 

torque required to pivot the wheel to stop:  

                   𝑀𝑝𝑎 =  (𝑥 −
1

2
)𝜎𝑛𝑤𝑑𝑥 
 

1

0
                            (39) 

With  𝜎𝑛 = 𝜇. 𝑃 tangential coefficient  

μ the coefficient of friction.  

 

    The coefficient of friction depends on the nature of the tread 

of the wheel and the soil. When the wheel is in motion, the 

equation can no longer calculate the torque for pivoting the 

contact surface and the coefficient friction change. Pacejka 

proposes to model the pair of swinging motion as follows 

[13]:  

                            Mpm=Krés.φ                                               (40) 

 

    With Krés factor proportionality torque pivot  

The amount of pivoting φ is defined as the ratio of the speed 

guidance on the linear speed of the wheel, r is radius of the 

wheel.  

                               𝜙 =
𝛽 

𝑟 .𝜑 
                                                (41) 

 

    Pacejka determine experimentally the proportionality 

coefficient K0 of a wheel supporting a mass m0. the coefficient 

of proportionality Kres is in the following form:  

                     Krés = K0  
m

m0
  5/2                                       (42) 

    It expresses Mpi, the pair of pivoting by:  

If  𝑀𝑝𝑚  >  𝑀𝑝𝑎  ⇒ 𝑀𝑝𝑖 = 𝑠𝑖𝑔𝑛 𝛽  .  𝑀𝑝𝑎   

Otherwise  𝑀𝑝𝑖 = 𝑠𝑖𝑔𝑛 𝛽  .  𝑀𝑝𝑚   

The friction for the guiding i written:  

            𝐶𝑖 = 𝑓𝑠. 𝑠𝑖𝑔𝑛 𝑞  + 𝑓𝑣. 𝑞 𝑖 + 𝑀𝑝𝑖                           (43) 

The vector of shares of friction is written:  

         𝜏 𝑟é𝑠 =  0  0  0  𝐶1  𝐶2  𝐶3  𝐶4  𝐶5  𝐶6  𝑇                     (44) 

 

V. DYNAMIC MODEL 

 

     Given the various terms of kinetic energy, engine 

friction and the equation of the Lagrange formalism is 

written as follows:  

d

dt
 

∂ 
1

2
X    

T
T X  X   

∂X  
−  

∂ 
1

2
X    

T
T X  X   

∂X 
  = Bτ mot − τ rés +

AT X  . λ                                                                             (45) 

The elimination of Lagrange multipliers is done using the 

kinematic constraint matrix 𝐴𝑇 𝑋  and relation 𝑋   = 𝑆 𝑋  𝜉   . 

Since 𝑆 𝑋  belongs to the kernel of 𝐴𝑇 𝑋  , we multiply the 

above equation by 𝑆𝑇 𝑋   [3].  

    We obtain a new form for the equation:  

             M X  X  + H  X,  X    = Γ 𝑚𝑜𝑡 − Γ 𝑟é𝑠                         (46) 

With M X  = 𝑆𝑇 𝑋  . 𝑇 𝑋                                                (47) 

H  X,  X    = ST X  .  
dT  X  

dt
X  −

1

2

∂ X    
T

T X  X   

∂X  
 =

ST X  . h  X,  X                                                                        (48) 

       Γ 𝑚𝑜𝑡 = 𝑆𝑇 𝑋  . 𝐵. τ 𝑚𝑜𝑡                             (49) 

Γ 𝑟é𝑠 = 𝑆𝑇 𝑋  . τ 𝑟é𝑠                              (50) 

 

    The kinematic and dynamic models of robot 3-center 

directional wheels allow us to simulate the kinematic model 

and dynamic model.  

The inverse dynamic model of the platform incorporating the 

terms of Coriolis, centrifugal terms and the terms of friction 

allows for a realistic design of the platform and its 

components. For a motion  𝜉   desired platform, the simulator 

provides couples to apply to the wheels.  

 

Fig. 3. Open loop simulator 

Parameters and values of friction: 

Dry friction and viscous friction on the axes : 

The coefficients of dry and viscous friction were drawn 

from the results obtained for the robot MELODY of l’IRCYN 

(Institute of Research on Cybermetric of Nante) The 

coefficients of dry and viscous friction were drawn from the 

results obtained for the robot during the identification phase 

dynamic parameters [14]. 

The couple of dry friction on the axe of MELODY is about 

8 Nm, and the viscous friction coefficient de 1.5 Nm/rad/s. the 

mass of MELODY is 410 Kg while the mass   of our platform 

is about 250 Kg. the dry friction has been estimated in the 

masses report, that to say a couple of dry friction of 5 Nm 
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reported to the wheel. The viscous friction coefficient is taken 

to the identical. 

Couple of pivot, H.Pacejka model  

To entirely determine the model of H.Pacejka, we should 

evaluate the pure pivot couple Mpa and the parameter Krés of 

pivot couple in motion of Mpm . 

Couple of pure pivot  

Returning to the equations (39) et (40), the couple of pure 

pivot is expressed as follows : 

𝑀𝑝𝑎 =   𝑥 −
𝑙

2
 

𝑙

0
𝑥  𝑙 −

𝑥

𝑙
  4𝜇

𝑃𝑚𝑎𝑥

𝑙
𝑤 𝑑𝑥                    (51) 

with 𝑃𝑚𝑎𝑥 = 1.5
𝐹𝑧

𝑤𝑙
 

To evaluate the characteristics of the wheel print on the 

ground we estimate its vertical crushing. For a hard rubber 

bandage, the vertical rigidity is equal to 340.000 N/m. The 

vertical deformation δ for a charge of 250 Kg distributed on 3 

wheels is on the order of 2.4 mm. 

 

 

 

For a radius of 100 mm, the length of the print l is of 28.2 

mm. the wheel width is of 40 mm. the value of the static 

friction coefficient μ is equal to 0.35 a rubber wheel on a 

plastic covered ground .after the integration of equation (39) 

we find the de pivot couple when stopping, Mpa= 6 Nm 

Pivot Couple of the wheel in movement  

Recall that the couple required to pivot is expressed as 

follows: 

        𝑀𝑝𝑚 = 𝐾𝑟é𝑠
𝛽 

𝑟 .𝜑 
                                                         (52) 

 

with 𝐾𝑟é𝑠 = 𝐾0  
𝑚

𝑚0
  

5

2                                                      (53) 

For a wheel supporting a vertical charge of 75 Kg, K0= 

0.80Ncm² [13]. Applying formula (36), we find  

𝐾𝑟é𝑠 = 0.80 ×  
250/3

75
  

5

2 = 1.09 𝑁𝑐𝑚²  

Hence the following overall model of pivot: 

If  𝑀𝑝𝑚  >  𝑀𝑝𝑎  ⇒ 𝑀𝑝𝑖 = 𝑠𝑖𝑔𝑛(𝛽).  𝑀𝑝𝑎  
 
 

Otherwise 𝑀𝑝𝑖 = 1.09 𝑠𝑖𝑔𝑛(𝛽 ).  
𝛽 

𝑟 .𝜑 
 

 
 

 

VI. CONCLUSION: 

 

    We took the kinematic modeling of a robot with three-

center directional wheels. The analysis of this type of robot 

provides the following information:  

This model of robot must be powered on to avoid singular 

configurations.  

    The robot can configure its wheels without moving so it is 

necessary to consider an absolute position sensor on each axis 

direction. 

We have presented the different conventions allowing the 

study the mobile robots of conventional wheels as well as 

characterizing them by their degree of mobility and 

directionality we have done a ranking, in term of mobility, of 

the different structures of the robot using the conventional 

wheels. The only way to obtain an omni-directional robot of 

conventional wheels is through the only use of decentred 

orientable wheels. 

We have afterwards described the dynamic model of the 

robot taking into consideration a model of wheel friction on 

the ground. 
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