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Abstract—The completion of Human Genome Project in 2001 

yields the entirety of human genetic information, or genome. A 

genome is organized in chromosomes and composed of thousands of 

genes, which are the heredity units of traits such as hair color and 

blood type. Genes in complex organisms such as primates and 

humans are composed of regions that code for protein, called exons, 

and non-coding regions, called introns. During the transcription from 

the DNA template for later translating into amino acid chain of 

protein structure, introns are to be removed and exons are then joined 

to form a continuous messenger-RNA strand. Splice sites are the 

junctions or borders between introns and exons. Accurate detection 

of splice sites from the fragments of DNA sequence is important to 

the success of gene prediction. Due to huge amount of genetic 

information in most genomes, computational techniques are essential 

for the interpretation and recognition of specific genetic sequences. 

In this paper, we propose a splice site prediction technique based on 

frequent pattern analysis. We apply association mining to each splice 

junction types, that is, exon/intron, intron/exon, and none of the two 

types. The frequent DNA patterns are then combined and prioritized 

with respect to their annotated confidence and support values. The 

final result of our method is a set of cascaded rules to be used for 

gene prediction. From the experimental results, our method can make 

a high recall prediction comparative to other classification-based 

methods. We also demonstrate computational improvement via a 

concurrency technique. Running time reduction is considerably 

observable. 

 

Keywords—Gene expression, splice site prediction, DNA 

sequence, frequent pattern analysis.  

I. INTRODUCTION 

ROTEINS perform essential functions in most living 

organisms. The diverse functions of proteins include 

providing rigidity and mass in bones and tissues, forming 

enzymes for biological catalysts, and acting as special 

substances such as hemoglobin and insulin. Proteins are 

macromolecules comprised of the polymers of 20 different 

types of amino acids [18]. The amino acid composition of 

proteins is in turn determined by the DNA sequence, or a 

gene. Deoxyribonucleic acid (DNA) is the carrier of 

information to build proteins, and the ribonucleic acid (RNA) 

is involved in the biosynthesis of proteins. Relationship 

between DNA, RNA, and protein is called the central dogma 

of molecular biology [3] and can be illustrated in Fig. 1.  
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Fig. 1 The central dogma of molecular biology 

 

The basic constituents of DNA and RNA are nucleotides 

that are made of three chemical components:  phosphate 

group, ribose sugar, and nitrogenous bases. RNA normally 

forms a single strand of nucleotides with a nitrogenous base as 

either adenine (A), guanine (G), cytosine (C), or uracil (U). 

DNA, on the contrary, is composed of the deoxy form of 

ribose and the four nitrogenous bases adenine, guanine, 

cytosine, and thymine (T). A single DNA strand is not stable; 

therefore, it normally appears in antiparallel double helix 

structure with the complementary pair A-T and C-G. 

The base sequence, or gene, encodes genetic information to 

generate proteins. This information in DNA is transferred to 

the messenger RNA (or mRNA) during the process called 

transcription. The genetic flow followed by the translation 

process to build proteins from mRNA.  

In prokaryotes (one-cell organisms with no nucleus, hence 

genetic materials disperse in the cell), genetic information is 

encoded continuously on a DNA strand. But in eukaryotes 

(organisms with one or more cells that have nucleus to 

encompass genetic materials), regions that code for proteins 

are interrupted by the non-coding regions. The non-coding 

regions in DNA are called introns (intervening sequences), 

whereas the coding regions are called exons (expresses 

sequences) [11]. During the transcription process of most 

eukaryotic genes, the primary RNA transcript needs additional 

modification step called splicing. 

The splicing process involves the removal of introns by 

spliceosome and joining exons together to make one long 

continuous mRNA strand (Fig. 2). The spliced mRNA is then 

exported out of the cell nucleus and passed to the ribosome for 

translation to different kinds of amino acids. Ribosome 

translates code for protein synthesis by reading three 

consecutive bases, called codon. A specific codon encoded for 

the starting point of protein coding region is AUG (or ATG in 

DNA strand). During the translation process, tRNA associates 
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each codon with a unique amino acid to form a chain of 

polypeptide. The translation process stops when ribosome 

encounters one of the three stop codons: UAA, UAG, or 

UGA.   

 Exon 1 Intron 1 Exon 2 Intron 2 Exon 3   

  5‟.. ..ATG… GT…AG ….. GT…AG ..TAA …3‟ DNA 

        

 ..AUG… GU…AG ….. GU…AG ..UAA(A..A) pre-mRNA 

        

        

  AUG… ….. …UAA   mRNA 

  Exon 1 Exon 2    Exon 3    

Fig. 2 Removal of introns and joining of exons in the splicing 

process 

 

Predicting genes in eukaryotes is a hard problem because of 

the splicing mechanism to exile the introns and joining the 

exons. Each exon can be as short as a few nucleotides, 

whereas the introns are often very long. The length and the 

number of introns in eukaryotic genes vary widely among 

species and among genes within the same species. Introns are 

known to have a minimal length of about 60 base pairs to 

accommodate the splicing signals [11]. There are different 

kinds of introns, but the one involved in the protein-coding 

process is spliceosomal introns. 

Nearly all spliceosomal introns conform to the GT-AG rule 

in which the first two nucleotides at the 5‟ end begin with GT 

and end with AG at the 3‟ end. Since splicing occurs after a 

DNA template is transcribed to the RNA strand, the beginning 

of the spliceosomal introns is GU, not GT. 

The borders of introns are called splice sites. The GT (or 

GU) end is called the donor splice site and the AG end is 

called the acceptor splice site. In some rare cases, the GU-AG 

rule does not hold and introns are spliced out with different 

splice site sequences. Moreover, from a primary transcript 

(pre-mRNA) many different mRNA sequences can be 

generated due to alternative splicing (such as exons can be 

extended or skipped, or introns can be retained). Different 

splicing pathways can thus lead to different protein products, 

given the same mRNA. Therefore, splice site prediction is an 

important computational problem to the recognition of protein 

structure from the known genomic DNA sequence. 

This paper focuses on the algorithmic approach to the 

recognition of splice sites in DNA sequences. This 

classification problem aims at recognizing the extron/intron 

junction (a donor), the intron/exon junction (an acceptor), or 

none of the junction sites. Many previous work tackle this 

problem with classification techniques such as neural network 

[4], [17], [19], a tree-based C4.5 [20], Bayes method [8], 

support vector machine [5], [12], [22], or even the ensemble 

methods [12], [13], [16]. We, on the contrary, employ a 

different approach to the splice site prediction problem. Our 

prediction technique is based on frequent pattern analysis and 

the experimental results show a predictor model with a high 

recall performance. 

The rest of this paper is organized as follows. Section 2 

states the splice site recognition problem and reviews related 

work regarding this problem. Section 3 explains our 

prediction method that employs association mining technique. 

Section 4 shows experimental design and results. Section 5 

concludes the paper.  

II. DNA SPLICE SITE RECOGNITION PROBLEM AND RELATED 

WORK 

The splice site recognition problem can be formulated as 

the following. Given some part of unclassified genomic DNA 

sequences, decide whether this is an intron/exon border, an 

exon/intron border, or none of the two splice sites. To develop 

an accurate prediction model, a machine learning technique is 

usually applied. The learning task is that given sequences of 

genomic DNA with known splice junction labeled as either an 

intron/exon, an exon/intron, or none, the learning objective is 

to find a classification rule that can successfully predict the 

region of uncharacterized genomic DNA sequence.  

Splice site prediction can be considered as a subproblem of 

gene prediction that aims at correctly recognizing gene from 

the given fragment of DNA sequence. The task of splice site 

prediction is to recognize the actual boundaries of the protein-

coding regions in the DNA sequence. There are many 

computational techniques applied to tackle this problem. The 

direct method [6], [7], [10], [21] is to analyze the sequence to 

capture gene profile and identify specific features that that can 

accurately predict the splice junctions. Researchers from the 

machine learning community prefer to attack this problem via 

a single or multiple classification learning algorithms [12] , 

[13], [16]. 

In the early years of computational molecular biology, 

common learning methods used to predict gene position and 

structure are neural network and hidden Markov model [2], 

[17], [19]. These techniques are still in use by current 

researchers, for instance, Mubark and colleagues [15] applied 

the two techniques to predict the structure of hemoglobin 

(which is a protein component of red blood cells) from the 

given DNA sequence. Cristea and his team [4] also applied 

neural network on the reduced feature dataset to detect 

mutations in the genomic sequences. 

Different classification schemes from the machine learning 

area are soon realized to be capable of producing a high 

accurate predictor. These classification techniques include the 

support vector machines [5], [12], [22], C4.5 [20], and 

Bayesian method [8]. 

Our approach to solve the splice site recognition problem is 

different from those appeared in the literature in that our 

predictor is built from the association analysis technique [1], 

not the classification ones. The advantage of the proposed 

technique is that the prediction model can contain nucleotides 

at arbitrary position, not necessarily be the contiguous base 

sequences. 
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III. PROPOSED METHOD TO SPLICE SITE RECOGNITION AND 

PREDICTION 

At the initial stage of our proposed method (named 

assoDNA), the training dataset with a mixture of exon/intron, 

intron/exon, and none of the two DNA sequence splice sites is 

separated into three subsets according to splice junction types. 

Each data subset is then processed through the same steps of 

frequent patterns and association analysis. The conceptual 

model and flow diagram of our method are depicted in Figs. 3 

and 4, respectively. 

Once the three data subsets are processed through the 

frequent pattern analysis method, the three sets of learning 

results (displayed as prediction rules) are finally combined 

and prioritized according to the confidence and support 

values. The proposed assoDNA method can be explained as 

follows. 

Step 1: Initialization phase 

Split the training dataset into three subsets 

according to the class value. Thus, we will get data 

of class exon/intron, data of class intron/exon, and 

data of class none. 

Step 2: Generation of frequent patterns 

Each data subset is processed through the 

following steps: 

2.1 Set the given minimum support as minSup 

2.2 Initialize R ( a set of frequent patterns) to be 

empty, R =  

2.3 Build a candidate pattern P of length K 

             P =  K (Li = Bj) 

             where K starts from 1, i  {-30, .., +30}, and  

                       Bj  {A,C,T,G,D,N,S,R} 

2.4 Select a pattern P with support ≥ minSup to 

contain in a set S 

2.5 Set R = R  S 

2.6 If  S = , then continue to step 3  

                      else increment K and go back to step 2.3 

Step 3: Confidence computation 

 3.1 Compute confidence value of every pattern P in R, 

and annotate confidence value to every pattern 

 3.2 Sort P in descending order according to confidence 

value, for a tie then descending sort with respect to 

a support value 

Step 4: Rule generation 

 4.1 Set the given minimum confidence as minConf 

 4.2 Generate association rules from every pattern P in 

R that has confidence ≥ minConf 

Step 5: Building predictor model 

Combine rules from the process of every data subset 

and sort according their confidence and support values 

 

 

  

 
Fig. 3 A conceptual model of splice site recognition 

 
Fig. 4 A flow diagram illustrating the assoDNA method 
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Confidence and support are basic metrics [1] used in 

association analysis to delimit the number of association rules 

and size of the search space, respectively. The two metrics can 

be defined through the following example. Given the 

association pattern that nucleotide base B1 appears at location 

L1 and base B2 appears at location L2, then the prediction 

result is that this DNA sequence splice site is in category C1. 

This prediction based on association pattern can be written as 

the following classification rule: 

  IF (L1=B1  L2=B2) THEN (splice-site=C1)           (1) 

Note that for this specific problem spilce site category, C, 

can either be the exon/intron junction, intron/exon junction, or 

none. Nucleotide symbol, N, can be one of the eight symbols: 

A, C, T, G, D, N, S, R, where the last four symbols represent 

ambiguity. D means nucleotide base can be either A, or G, or 

T. N is ambiguity among A or C or G or T. S is ambiguity 

among C or G, and R is ambiguity among A or G. The base 

location, L, is in the range -30 to +30. 

The confidence of rule (1) is computed as: 

support(L1=B1  L2=B2  splice-site=C1)          (2) 

support(L1=B1  L2=B2)      

The value of support(L1=B1  L2=B2  splice-site=C1) is 

the number of times that the three events (B1 appears at 

location L1, B2 appears at location L2, and splice-site 

junction is of type C1) occur together within the same DNA 

sequence in the training dataset. The support value of (L1=B1 

 L2=B2) is thus the frequency that both events co-occur in 

the training dataset. 

We implement the assoDNA method with the Erlang 

functional language. Some major functions are displayed in 

Fig. 5. 

 
main1() ->   

          {AllInput,FNo,ThisClass} = input(), 

       DB = myToSet(AllInput), 

       Total = length(AllInput), 

       {_,Per} = io:read(" input percent> "), 

       {FNo, ThisClass, DB, Per} .  

 

apriori(DB, Items, Min) ->  

       C1=[ {from_list([X]), findSup(from_list([X]), DB) } 
                                  || X <- Items ], 
       L1=[{FS,Sup} || {FS,Sup} <- C1,Sup>=Min] , 

       LkPrint=[ {to_list(FS), Sup,Sup/length(DB)*100} 
                                  || {FS,Sup} <- L1] ,  
       K = 2,  
       LS = [FS || {FS,_} <- L1], 
       aprioriLoopPar(L1, DB, LS, K, Min) . 

Fig. 5 Some main functions of the assoDNA program  

 

 

Fig. 6 Screenshot of the assoDNA program  

 

The screenshot in Fig. 6 shows the total of eleven frequent 

patterns found by the assoDNA program on an intron/exon 

group when setting minimum support to be 50%. Each pattern 

is annotated with its occurrence frequency and percentage of 

support value. The pattern format is implemented as 

“base(location)”, for example, A(-2) means the base 

nucleotide A appears at location -2. 

IV. EXPERIMENTAL DESIGN AND RESULTS 

A.  Dataset Preparation 

The dataset used in this work primate splice-junction gene 

sequences available at the UCI repository of machine learning 

databases [14]. This dataset are taken from GenBank 64.1 

containing 3,190 DNA sequences. Each sequence is a window 

of 60 DNA base pairs starting at position -30 and ending at 

position +30 corresponding to the splice site location. The 

splice junction can be either a junction between intron and 

exon (labeled in the dataset as intron/exon), a junction 

between exon and intron (labeled as exon/intron), or no 

junction at all (labeled as none).  

From the total of 3,190 DNA sequences, we split the data 

into two sets: training set (with 2,000 DNA sequences) and 

test set (with 1,190 DNA sequences). We try to conserve class 

distribution of both data subsets close to the original data as 

much as possible. Class distribution of training and test sets 

are summarized in Table 1. From the original 767 DNA 

sequences of class exon/intron, we split them by taking the 

first 500 DNA sequences to be in the training set and the 

remaining 267 sequences to be in the test set. The intron/exon 

and none classes of training and tests sets are prepared in the 

same manner. 
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Table 1. Class distribution in the training and test sets 

Classes Training data Test data 

exon/intron    500 (25%)   267 (22.4%) 

intron/exon    500 (25%)   268 (22.5%) 

none 1,000 (50%)   655 (55.1%) 

Total 2,000  1,190  

 

B. Experimentation 

We prepare a separate test set in order to make a fair 

comparison between a prediction model obtained from our 

method (assoDNA) and models from other learning 

techniques. Other machine learning methods [9] used in this 

experimentation include the C4.5 algorithm, naïve Bayes 

technique, instance based method with 10 nearest neighbors (1 

and 5 neighbors yields worse performance), and support 

vector machine (algorithm SMO). We also tested the neural 

network algorithm on the training dataset, but it ran out of 

memory space. Class prediction identified by the model is 

compared against the real class of each DNA sequence in the 

test set. 

The outcome of the prediction can be either correct, or 

incorrect. For the incorrect cases, a more specific analysis of 

incorrectness is described in a form of confusion matrix as 

shown in Table 2. 

 

Table 2. Confusion matrix of the three-class prediction model 

Real class Class prediction made by the model 

exon/intron intron/exon none 

exon/intron a b c 

intron/exon d e f 

none g h i 

 

The variable „a‟ means the number of DNA sequences with 

exon/intron splice sites that are actually predicted by the 

model as exon/intron. Variable „b‟ is the number real 

exon/intron splice sites that are incorrectly predicted as 

intron/exon, whereas „c‟ is the number of real exon/intron 

junctions that are incorrectly predicted as none. Other 

variables („d‟ through „i‟) can be interpreted in the same 

manner. 

To evaluate the performance of the prediction model, we 

use the four measurement metrics: accuracy, precision, recall, 

and F-measure. The four measures are defined as: 

Accuracy =                      (a + e + i)                                (3) 

                     (a + b + c + d + e + f + g + h + i)               

 

Precision (or specificity) 

        for class exon/intron =             a                             (4) 

                                                 (a + d + g)                        

        for class intron/exon =             e                             (5) 

                                                 (b + e + h)                      

        for class none  =          i                                          (6) 

                                      (c + f + i) 

Recall (or sensitivity) 

        for class exon/intron =              a                            (7) 

                                                  (a + b + c)    

        for class intron/exon =              e                            (8) 

                                                   (d + e + f)                       

        for class none  =            i                                        (9) 

                                       (g + h + i) 

 

F-measure (by class) =  (2× Precision × Recall)           (10) 

                                      (Precision + Recall)          

 

Experimental results regarding the performance comparison 

of our method against other classification-based learning 

methods are given by class in Tables 3-5. It can be seen from 

the results that our method is superior in its recall capability, 

especially for the class exon/intron. The proposed method is 

as good as others in its precision power. 

 

Table 3. Prediction performance on recognizing exon/intron 

splice site 

Method Performance measures 

Accuracy Precision Recall F-measure 

assoDNA 0.961 0.911 0.993 0.950 

C4.5 0.936 0.895 0.963 0.928 

Naïve  

Bayes 

0.966 0.944 0.951 0.948 

Instance 

based (IB10) 

0.801 0.665 0.959 0.785 

Support  

vector  

machine 

0.920 0.878 0.914 0.895 

 

Table 4. Prediction performance on recognizing intron/exon 

splice site 

Method Performance measures 

Accuracy Precision Recall F-measure 

assoDNA 0.961 0.932 0.978 0.954 

C4.5 0.936 0.884 0.914 0.899 

Naïve  

Bayes 

0.966 0.942 0.970 0.956 

Instance 

based (IB10) 

0.801 0.707 0.955 0.813 

Support  

vector  

machine 

0.920 0.869 0.914 0.891 
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Table 5. Prediction performance on recognizing none of the 

splice site 

Method Performance measures 

Accuracy Precision Recall F-measure 

assoDNA 0.961 0.998 0.942 0.969 

C4.5 0.936 0.978 0.934 0.956 

Naïve  

Bayes 

0.966 0.984 0.969 0.977 

Instance 

based (IB10) 

0.801 0.995 0.673 0.803 

Support  

vector  

machine 

0.920 0.962 0.925 0.943 

 

Comparative results of different gene finding schemes in 

terms of precision and recall rates on recognizing DNA splice 

sites can graphically displayed in Figs. 6 and 7, respectively. 

It can be noticed that our method (assoDNA) produce high 

recall results on recognizing exon/intron and intron/exon 

borders. For the class of none of the two borders, our method 

has lower recall rate than naïve Bayes. 

 

 
Fig. 6 Precision comparisons of different recognition 

methods 

 
Fig. 7 Recall comparisons of different recognition 

methods 

 

C. Performance Improvement via Concurrency 

To improve the computational performance of the proposed 

assoDNA method, we employ the concept of concurrent 

programming. Erlang is a functional language that provides 

facilities for designing and implementing concurrent program. 

Those facilities include the spawn, send, and receive 

primitives to handle concurrent programming. Concurrent 

processes in Erlang communicate through asynchronous 

message passing with dedicated memory space for each 

process, rather than a thread concept and shared memory. The 

example of transforming sequential assDNA program to be a 

concurrent assoDNA is showed in Fig. 8. Reduction in 

running time can be compared through the screenshots in Fig. 

9 in which the last line on a upper screen is sequential running 

time (in a unit of microseconds), whereas the last line on a 

lower screen is concurrent running time. Time reduction in 

this example is around 46.29%. 

-module(assoDNA_par). 
concurrent(P1, P2, P3) -> 

           spawn(assoDNA_par, run, [self(),P1]), 

        spawn(assoDNA_par, run, [self(),P2]), 

        spawn(assoDNA_par,run,[self(),P3]), 

        receive 

                 my_end -> ok 

        end. 

 

run(MasterID, InputL) ->  

        R = main2(any, 3, InputL), 

        file:delete("out.txt") , 

        AD = lists:last(R), 

        [ADD|_] = AD, 

        Rules = lists:sublist(R, length(R)-1), 

        PrintRules = map(fun( {D, S, Per, Class} ) -> 

                                         {to_Col3(notLast(D)), S, Per,  

                                           transformBack(Class) }   

                                    end, 

                                    Rules),  

        ADP = lists:map(fun(Data) -> 

                                  {Data, checkRules(Data, Rules) } 

                                  end, 

                                  AD), 

        ADPprint = map(fun({Data, V}) -> 

                                     Predict = transformBack(V), 

                                     {Data, [last(Data), Predict,  

                                       mark(last(Data), Predict) ] }  

                                   end, 

                                  ADP), 

        Predict = map(fun( {F, S} ) -> 

                                     {to_Col3(notLast(F)), S} 

                               end, 

                              ADPprint), 

        writeToFile(Predict), 

        [_,Stop|_] = InputL, 

        if Stop ==2 -> MasterID ! my_end ; 

                  true -> MasterID ! not_end 

        end. 

Fig. 8 Program coding for running concurrent assoDNA 
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Fig. 9 Screenshots of sequential assoDNA (upper screen) 

versus concurrent assoDNA (lower screen) 

 

V. CONCLUSION 

Splice site prediction from the fragment of DNA sequence 

is an extensively studied problem in computational molecular 

biology and bioinformatics. Splicing is the modification 

process that occurs during the transcription of gene 

expression, which is the process of transcribing a DNA 

template into mRNA sequence and then translating the mRNA 

to protein structure. 

In organisms with cell nucleus, called eukaryotes, the 

transcription is not straightforward from DNA template to 

mRNA. It instead involves the intermediate step from DNA to 

pre-mRNA, then to mRNA. Splicing occurs at the stage of 

changing from pre-mRNA to the mRNA transcript. This 

change involves removing introns and then joining the exon 

parts together to form a continuous genetic sequence ready for 

the translation to a functional polypeptide chain of protein 

structure. To accurately predict the splice site of the DNA 

sequence fragment is an important task of gene prediction. 

In this paper, we present a new method to splice site 

prediction from genomic sequence by means of association 

analysis. Association mining is unsupervised learning task that 

has been successfully applied to the marketing and business 

applications. It is rarely used in the area of bioinformatics. We 

thus devise a method to apply association mining technique to 

induce prediction model from the DNA sequence dataset. 

From the experimental results comparative to other 

classification learning techniques, we found that the prediction 

model based on association analysis can produce a 

significantly high recall prediction, whereas the precision rate 

is as good as other learning techniques. 

The proposed method is however unable to generate 

frequent patterns when the support metric is set lower than 

10%. This is because high memory consumption during the 

candidate pattern generation steps. We are planning to solve 

this problem in our future work. 
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