
 
Abstract—We propose a novel mixture model for use in the mixed 

pixel classification (MPC) of a multispectral image such as remotely 
sensed multispectral image data and Magnetic Resonance Image 
(MRI). Although the MPC method utilizes a generic statistical model 
of mixture such as a linear mixture model or a finite mixture model, the 
proposed mixture model of a single pixel in this paper is established on 
the basis of the process of mixed pixel generation in a real 
multispectral image. The variance-covariance structure for a pixel 
vector is considerably different from the variance-covariance structure 
derived from existing mixture models. Furthermore, we present an 
MPC method using the generalized method of moments (GMM), 
which satisfies the proposed mixture model and estimates the mixing 
ratio for each component in a single pixel, and the expected value and 
variance-covariance matrix of the pixel vector for each component.  

 

First, the MPC method is applied to a simulated image data. 
Estimated parameters close to actual values are obtained, and the 
simulated image data is found to be in agreement with the constructed 
mixture model since the evaluation function is close to the actual value. 
The proposed mixture model and MPC method are applied to real 
multispectral image data acquired by Enhanced Thematic Mapper Plus 
(ETM+) onboard Landsat-7satellite as one example of a multispectral 
image. As a result, it was found that pixels in an ETM+ image, for 
which the mixing ratio of one component is high, are consistent with 
pixels in an image which are assumed to have the same component by 
visual inspection. 
 

Keywords—Generalized method of moment, Image processing, 
Mixed pixel classification, Mixture model, Multispectral image. 

I. INTRODUCTION 
e propose a new mixture model for use in the mixed pixel 
classification (MPC) of a remotely sensed multispectral 

image. A multispectral image is composed of images taken by 
different wavelength for same target area. In this paper, an 
image is indicated to a digitized image. A Multispectral image is 
used for many fields. For example, in a field of environmental 
study, a remotely sensed multispectral image acquired sensor 
onboard satellite is used for an analysis of environmental 
variation. And, in a field of medical science, a Magnetic 
Resonance Image (MRI) is used for recognition of disease. The 

 

smallest piece of information in a digitized multispectral image 
is a pixel. The values of a single pixel in a multispectral image 
are represented by a pixel vector. In a target area of a single 
pixel that is called the spatial resolution of sensor, signals 
derived from some components on the target area are frequently 
detected by a single pixel. For example, a pixel vector of visible 
and near infrared band image data, which are observed by the 
Enhanced Thematic Mapper Plus (ETM+) sensor onboard 
Landsat-7, are acquired as the averaged signal of a 30 m × 30 m 
area on the earth’s surface. In a multispectral image, a single 
pixel that detects signals derived from several components such 
as a forest, the sea, and a farm field in the target area of pixel is 
called a mixed pixel. And, for MRI, sensor detects signals 
derived from a blood vessel, a fat, bone, and so on. On the other 
hand, a pixel signal derived from only one component is called a 
pure pixel. Even with sensors of relatively high resolution, there 
are cases that mixed pixel is existed in a multispectral image. As 
one example of actual utilization, a single pixel in a 
multispectral image data is classified to a certain component. 
However, in the case that a single pixel, which is actually a 
mixed pixel, is assumed to a pure pixel, this single pixel can’t be 
classified correctly. So, one expects to have to deal with mixed 
pixels. Therefore, it is necessary to conduct sub-pixel analysis 
to obtain precise information of target area in a multispectral 
image data.  

There have been some existing studies on MPC methods. 
MPC is conducted as follows. First, mixture model to describe a 
mixed pixel is set, and then mixing ratios of components 
included in a target area of a single pixel are estimated. 
Examples of previous mixture models include a linear mixture 
model for Independent Component Analysis (ICA) [1] and a 
finite mixture probability distribution model [2]. These mixture 
models are general statistical mixture models. Whether these 
mixture models are appropriate for representing a mixed pixel 
of a multispectral image has not been sufficiently discussed. The 
mixture model proposed in this study has been established on 
the basis of the process of mixed pixel generation in an actual 
multispectral image. In this paper, first, the difference between 
existing mixture models used in MPC methods and our 
proposed mixture model is presented. Then, an MPC method 
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based on the proposed mixture model is presented. 
In the next section, existing mixture models used in the MPC 

method are introduced. We describe in detail the proposed 
mixture model and MPC method in Section Ⅲ. In Section Ⅳ, 
the proposed MPC method is applied to simulated multispectral 
image data and to an actual Landsat-7 ETM+ image as one 
example of a multispectral image. Finally, we present our 
conclusions in Section Ⅴ. 

II. EXISTING MIXTURE MODEL 

In this paper, the number of spectral bands is denoted by P, 
y is a pixel vector of a P-dimensional multispectral image, Q is 
the number of components within a single pixel, aq is a mixing 
ratio of a component q in a single pixel, yq is a vector of a pure 
pixel for component q, and μq and Σq are a mean vector and a 
variance-covariance matrix of yq. The boldface is used for the 
vector and matrix. Superscript T denotes the transpose of a 
matrix. 

In an analysis using multispectral image, linear spectral 
mixing is a widely used approach for determining and 
quantifying multiple components in an area detected by a single 
pixel. The linear mixture model [1][3][4][5][6][7], for example, 
can be expressed as 

y

Q

q
qqa εyy +⋅= ∑

=1
 ,     yε ~ N(0, Ωy)                                    (1) 

where εy, whose expected vector is equal to 0(=(0…0)T) and 
whose variance-covariance matrix is Ωy, is a noise vector that 
can be interpreted as a measurement error. A classical approach 
[3] to solve mixed pixel classification is to estimate aq in (1) by 
the constrained least-squares method and weighted 
least-squares method. Constraints are given as 
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1

=∑
=

Q

q
qa ,                                                                              (2) 

and for all q 
0 ≤ aq.                                                                                (3) 

Choi et al. [4] assumed that the conditional distribution of the 
observation y is a P-dimensional Gaussian with the mean vector 
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1
μμ ,                                                                       (4)  

and with the variance-covariance matrix 
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where μ be a P-dimensional mean vector of pixel, μq be mean 
pixel vector of component q, and Σq is variance-covariance 
matrix of component q. H. S. Choi et al., who assumed that Σq is 
negligible, estimated aq and μq for all q by iterative calculation. 
P. Bosdogianni et al. [8], who calculated the first moment (4) 
and the second moment (5) of (1), estimated aq using the Least 
Square Error method. Mixture model used in [8] is not included 
εy in (1). Furthermore, Chang [1] estimated aq and μq by 
applying Independent Component Analysis (ICA) that uses the 
higher order moment as the third- and fourth-order moments.  

Another mixture model of a mixed pixel is the finite mixture 

model. The finite mixture model can be expressed as 

 ∑
=

⋅=
Q

q
qqq faf

1
)()( yy ,                                                      (6) 

where f(y) is the probability distribution function of a pixel 
vector y, and fq(yq) is the probability distribution function of the 
pixel vector yq for a pure pixel of component q. Santago et al. 
[2] estimated aq from the difference between the histogram of y 
and f(y) under the condition that (2) and (3) are satisfied. 
Another approach [9] using the finite mixture model to estimate 
mixing ratios of components is EM algorithm. The EM 
algorithm is applied only when the probability distribution 
function of each component is a normal distribution. Therefore, 
in the case where the EM algorithm is applied to multispectral 
images, there is a constraint in that the probability distribution 
function of pixel vector for each component is assumed to be a 
normal distribution. 

The expected value and variance-covariance matrix for each 
component are usually obtained by calculating from the 
‘almost’ pure pixel following a visual inspection. Since it is 
difficult to extract perfectly pure pixels, the expected value and 
variance-covariance matrix include some errors. Essentially, the 
expected value and variance-covariance matrix have to be 
estimated. In reference [10], the ‘almost’ pure pixels for a 
certain component q are considered complete data, namely aq is 
determined to 1. Mixed pixel is regarded as incomplete data, 
and μq for all q is estimated. It is considered that the set of 
complete data also includes other components to some extent, 
and Σq are not estimated. Therefore it is necessary for a given 
method to estimate μq and Σq from a whole multispectral image. 

III. PROPOSITION 

First, a mixture model is proposed in Section ⅢA, and then 
an MPC method using the mixture model proposed in Section 
ⅢA is presented in Section ⅢB. Finally, evaluation method of 
MPC is described in ⅢC.  

A. Mixture model 
We assume that a pixel vector of a mixed pixel in a 

multispectral image is obtained as the averaged signal in an area 
of signal sources on the target area detected by a single pixel. 
Signals detected by a single pixel derived from each component 
on the target area are assumed to be independent. A signal 
detected by a mixed pixel is defined as the sum of signals for 
elements of each component in an observation area of a single 
pixel. Although not actually conducted, suppose P-variate pixel 
vector y is decomposed into K same-size sub-pixels (Fig.1). A 
decomposed sub-pixel is called a micro-pixel in this study to 
distinguish it from a single pixel of a multispectral image. Each 
micro-pixel is assumed to be a single component. The number 
of micro-pixels belonging to a component q in a single pixel is 
denoted by Kq. The relationship between K and Kq is given by 

 ∑
=

=
Q

q
q KK

1
.                                                                     (7) 

A P-variate vector of a micro-pixel for the k-th element of 
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component q in a single pixel is denoted by xqk, which is the 
realized value of random vector Xq with the P-variate 
probability distribution function gq(xq). A P-variate pixel vector 
y of a multispectral image is assumed to be obtained as the sum 
of xqk, that is, y is given by  

 ∑∑
= =

=
Q

q

Kq

k
qk

1 1
xy .                                                                   (8) 

A pure-pixel vector yq of component q is represented as all of 
the micro-pixels belonging to component q, where yq is given by 

 ∑
=

=
K

k
qkq

1
xy .                                                                       (9) 

Let the expected value of a certain vector v be denoted by E[v], 
and t is an arbitrary real number vector. The moment generating 
function of xqk, is written as 

 )][exp( qk
T

q E xt=φ .                                                        (10) 
yq is the realized value of random vector Yq with the P-variate 
probability distribution function fq(yq). The moment generating 
function of yq derived from (9), which is written as )(tqϕ , is 

given by 
 K

qq )()( tt φϕ = .                                                                 (11) 
The moment generating function of xqk is given by  

 ( ) ( ) K
qq

/1tt ϕφ = .                                                              (12) 
Let aq be given by 

 
K
K

a q
q = .                                                                                 (13) 

The moment generating function of  ∑ =
qK

k qk1 x  in (8) is 

( ) KK
q

q /tϕ . The moment generating function of P-variate vector 
y is 
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As indicated above, a mixed pixel described by (8) is modeled 
by (14), and (14) is the mixture model proposed in this paper. 
The expected value μ of y is derived from the first cumulant of 
(14). The variance-covariance matrix Ω of y is derived from the 
second cumulant of (14). The cumulant is given by the 
logarithm of the moment generating function. The values of μ 
and Ω of y are given by 

 ∑
=

⋅=
Q

q
qqa

1
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and  

 ∑
=

⋅=
Q

q
qqa

1
ΣΩ .                                                                  (16) 

The mixture model, which is established based on the pixel of 
a real multispectral image, is obtained from (14). The expected 
value of y is consistent with (15), and the variance-covariance 
matrix of y is consistent with (16). For example, when yq 
follows a P-variate normal distribution, the distribution of y also 
follows a P-variate normal distribution, whose expected value is 
equal to (15) and whose variance-covariance matrix is equal to 

(16). A pixel vector yi is given by  
 iii εμy += ,                                                                      (17) 
where εi denotes an error vector with the mean vector 0 and 

the variance-covariance matrix Ωi given by (16). In the existing 
mixture model such as finite mixture model and the linear 
mixture model, it is necessary to assume the probability 
distribution function fq of yq. However, a mixed-pixel vector y is 
consistent with (14) without depending on the probability 
distribution of fq(yq). Therefore, it is not necessary to assume the 
probability distribution of yq.  

 
 
 
 

 
    

Fig.1 Overview of micro-pixel. A single pixel is depicted as an 
area surrounded by bold lines and micro-pixels are depicted as 
areas surrounded by light lines. Taking the figure above as an 
example, Q=3 and K=100. 

 
The expected value of y derived from the mixture models 

expressed by (1), (6), and (14) is given by (15). However, the 
variance-covariance matrix of y, which is derived from the finite 
mixture model (6), is given by  
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When fq(yq) in (6) follows the P-variate normal distribution, the 
distribution of y does not follow the P-variate normal 
distribution. The variance-covariance matrix given by (18) is 
larger than that given by (16). Note that whether one matrix A is 
larger than another matrix B is judged as follows. A quadratic 
form is built from A-B. If quadratic form is positive definite 
then the matrix A is larger than B. In contrast, the 
variance-covariance matrix (5) is also different from (16), and 
the variance-covariance matrix of (5) is smaller than the 
variance-covariance (16) derived from (14) when Ωy in (5) is 
smaller considerably than Σaq

2Σq. Therefore, the uncertainty of 
the variance-covariance matrix increases with the number of 
components in a single pixel. As for a mixed pixel in a 
multispectral image, the variance-covariance structure 
described by existing mixture models cannot satisfactorily 
represent the mixed pixel. The proposed mixture model (14) is 

1 pixel 
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• 
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better able to express a mixed pixel than existing mixture 
models.  

B. Mixed Pixel Classification 
An MPC method satisfying the proposed mixture model of 

(14) is presented. Let N be the number of pixels in a 
multispectral image, a*, Σ*, μ*, and y* denote 

T
N )( 21

* aaaa ⋅⋅⋅= ,  T
Q )( 21

* ΣΣΣΣ ⋅⋅⋅= ,  

)( 21
*

Qμμμμ = , and TT
N

TT )( 21
* yyyy ⋅⋅=  , respectively. 

The proposed MPC method estimates a*, Σ*, and μ* by iterative 
calculation using the generalized method of moments (GMM) 
[11][12] so as to satisfy (15) and (16) for all pixel vectors in a 
multispectral image. The number of iterations k is given as a 
superscript in parentheses for each parameter.  

GMM was proposed by Hansen (1982) [11]. Let, i denote the 
i-th pixel, μi is mean pixel vector of i-th pixel calculated by (15), 

TT
N

TT )( 21
* μμμm = , and  ],,[ *** μΣaθ = . The idea behind 

GMM is to choose so as to make sample moment g(θ| y*)( = y* - 
m* ) as to close as possible to population moment of zero; that is, 
the GMM estimator θ̂   is the values of θ that minimizes the 
scalar 

    )]|([)]|([)|( *** yθgWyθgyθ T
eQ = ,                           (19) 

where W is a sequence of (N×P×N×P) positive definite 
weighting matrices. The optimal value for the weighting matrix 
W in (19) is given by S-1, the inverse of the asymptotic variance 
matrix. The minimum asymptotic variance for the GMM 
estimator θ̂  is obtained when θ  is chosen to minimize  

  )]|([)]|([)|( *1** yθgSyθgyθ −= T
eQ .                             (20) 

m* is calculated using (15) and the parameter *â ,  and then S in 

(20) is estimated using θ̂  as next equation for θ̂  any consistent 
estimate of the true value θ. 

  SyθgyθgS →= pT)]|ˆ()][|ˆ([ˆ ** ,                                  (21) 

where the sign  →p  denotes the convergence in probability. 
The best estimates of m* is obtained by Generalized Least 

Squares (GLS). The GLS estimate of μ* is the value that 
minimizes  

     )()()( **1*** myΩmy −− −T ,                                       (22) 
where  

     ]))([( ***** TE mymyΩ −−= .                                      (23)  
The sign Ω* denotes the variance-covariance matrix of (y* - m* ). 
In this study, it is assumed that pixel vectors in image are 
statistically independent of each other. That is, it is also 
assumed that vector (yi – μi ) for i-th pixel is uncorrelated with 
vectors for all other pixels. Therefore, Ω* is represented as a 
block diagonal matrix (Ω*=diag(Ωi), i=1 to N) with dimensions 
of (N×P×N×P). The sign Ωi denotes variance-covariance matrix 
of i-th pixel vector. Ωi is obtained by T

iiii ))(( μyμy −− . Ωi is 
also obtained calculating by (16). The symbol of diag implies 
that Ωi for i-th pixel is arranged as block diagonal components. 
Since Ŝ  is also calculated by diag(Ωi),  Ŝ in (21) and Ω* in (23) 

are calculated as the same matrix.  
GMM estimates θ so as to be minimum for the expected value 

of the sample moment Qe(θ | y*), which is given by E[Qe(θ | y*)]. 
GMM is used to estimate the minimum θ by following 
asymptotic variance Qe. 

   ∑
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   )()()|( 1
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T
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a*(k+1), Σ*(k+1), and μ*(k+1) are estimated from a*(k), Σ*(k), and 
μ*(k) as follows. First, a* is estimated from a*(k), Σ*(k), and μ*(k) by 
using the method described in Section ⅢB.1, and estimated a* is 
given by a*(k+1). Then, Σ* is estimated from a*(k+1) and μ*(k) by 
using the method described in Section ⅢB.2, and estimated Σ* 
is given by Σ*(k+1). Next, μ* is estimated using a*(k+1), Σ*(k+1), and 
μ*(k) by using the method described in Section ⅢB.3, and 
estimated μ* is given by μ*(k+1). In this way, a*, Σ*, and μ* are 
estimated in turn until the following equation is satisfied.  

6
)1(

)()1(

10−
+

+

<
−

k

kk

θ
θθ  ,                                                         (26) 

where θ is element of θ. The estimation methods for each of a*, 
Σ*, and μ* are described respectively in Section ⅢB.1, Section 
ⅢB.2, and Section ⅢB.3. 

B.1  Method of estimating a* 
Let i represent the i-th pixel, a* is obtained by estimating ai 

for all i. We estimate ai by the following equation (27), which is 
obtained by introducing the Lagrange multiplier to impose 
constraints (3). 
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where 1T=(1 1 …1) is the Q-variate vector, and IQ is represented 
by a Q×Q unit matrix. When a*(k+1) is obtained by (27), Ωi in 
(27) is calculated by using (16), a*(k), and Σ*(k). If estimated a* is 
different from a*(k), then a* is estimated again using Ωi 
calculated from estimated a*. When the difference in a* between 
before estimation ai and after estimation iâ  is almost equal to 0, 
estimated a* is given by a*(k+1). Actually, this process is 
continued until following equation is satisfied. 

  810ˆ −<− ii aa ,                                                                 (28) 

where the sign x  denotes the infinity norm of vector x.  
Note that it is necessary to pay attention to the 

multicollinearity of pixel values between bands. The problem 
faced by applied researchers when regressors are highly, 
although not perfectly, related included the following symptoms 
[13]. 

1) Small changes in the data produce wide swings in the 
parameter estimates.  

2) Coefficients may have very high standard errors and low 
significance levels even though they are jointly significant and 
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R2 for the regression is quite high.  
3) Coefficients may have the “wrong” sign or implausible 

magnitude.  
Since nonexperimental data will never be orthogonal, to some 
extent multicollinearity will be present. Several strategies have 
been proposed for finding and coping with multicollinearity. 
The obvious practical remedy (and surely the most frequently 
used) is to drop variables suspected of causing the problem from 
the regression.  

In this study, ai is estimated by referring 1) as follows. One of 
the methods used to avoid the effect of multicollinearity is to 
reduce the variates of y, Ωi, and μ* for certain bands since ai can 
be estimated in the case where P ≥ Q. So, in this study, the 
number of bands to estimate ai is set to four. For all 
combinations of four bands in six bands, when a band is 
excluded from four bands, I adopt iâ  whose variation is small. 
Actually, estimated ai is acquired as follows. For l-th 
combination of four bands, estimated ai using four bands is 
written by l

iâ , and iâ estimated by using three bands excluding 

j-th band in four bands is written by l
ji−â . A band which is 

excluded from four bands is changed in turn, and l
ji−â , j=1to 4, 

are acquired. When the value for l-th combination of four bands 

∑
=

− −=
4

1
ˆˆ

j

l
i

l
jilq aa                                                               (29) 

is smallest in any other combination of four bands, l
iâ  

estimated from l-th combination of four bands is adopted as the 
estimated value of ai. 

B.2  Method of estimating Σ* 
A consistent estimator can be constructed by using the 

ordinary least-squares method. Ωi is given by  
 T

iiiii ))(( μyμyΩ −−= ,                                                  (30) 

and we let T
N )( 21

** ΩΩΩΩ = . The relationship between Ω** 
and Σ* is given by 

 **** )( ΣIaΩ P⊗= ,                                                           (31) 
where the ⊗ symbol denotes the Kronecker product, and IP is a 
P×P dimensional unit matrix. The least-squares estimator of Σ* 
is given by 

 ( ){ } ***1***ˆ ΩIaaaΣ p
TT ⊗=

−
.                                               (32) 

Although it is necessary that Σq for all q∈{1,…,Q} are positive 
definite, Σq obtained from estimated *Σ̂ , which is positive 
definite, is not guaranteed. Therefore, it is necessary to confirm 
whether Σq for all q∈{1,…,Q} are positive definite. 

In this study, we estimate Σq by following method as one of 
the method to overcome this problem. It is assumed that actual 
Σq is existed to the direction from Σq

(k) to Σq
(k+1). Estimated 

Σq
(k+1) is given by 
  )()()1()1( )( k

q
k

q
k

q
k

q r ΣΣΣΣ +⋅−= +′+  ,                                            (33) 

where r in (33) is determined that  )1( ′+k
qΣ for all q are positive 

definite and maximum value of r which is ranged from 0 to 1. 

B.3  Method of estimating μ* 

We describe the problem with a multivariate linear model as 
( ) εmIay +⊗= ***

p  ,                                                        (34) 

where m* is TT
Q

TT )( 21 μμμ  , and ε is the (N×P)×1-variate error 
vector corresponding to the expected value of 0 and the 
variance-covariance matrix of Ω*. Ω* is represented as a block 
diagonal matrix (Ω*=diag(Ωi), i=1 to N) with dimensions of 
(N×P)×(N×P). Using (34), the weighted least-squares estimator  

*m̂  of m* is given by 

( ) ( )




 ⊗⊗= −

p
T

p IaΩIam *1*** )(ˆ ( ) *1** )( yΩIa −⊗
T

p .  (35) 

Estimated μ*, which is denoted by *μ̂ , is obtained by arranging 
*m̂ . 

C. Evaluation 
Evaluation of estimation is conducted by using χ2 statistics as 

follows. We assume that the empirical moments (yi - μi) obey a 
central limit theorem [13]. This assumes that the moments have 
a finite asymptotic variance-covariance matrix Ωi, so that (yi - 
μi) is independent vectors distributed normally with mean 0 and 
variance Ωi. That is,  

    ),()();( i
d

iiii Ng Ω0μyya →−=  .                            (36) 
Equation (36) is rewritten by  

      ),()( 2/1 10Ωμyz Nd
iiii →−= −                                     (37) 

Furthermore, zTz is given by  
 )()( 1

iiiii
T
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Since  ),( 10z Nd
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From equation (24), 
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So, the estimation result is evaluated by χ2 value. Qe might be 
expected to follow the χ2 distribution with N×P degrees of 
freedom. Whether or not estimators are optimal is judged on the 
basis of Qe.When N×P is enough large such as more than 50, χ2 
value that the probability of observing is 50% is nearly equal to 
N×P. 

IV. APPLICATION AND RESULT 
The proposed mixture model and MPC method are applied 

to a multispectral image data. In this study, a multispectral 
image taken by the Enhanced Thematic Mapper Plus (ETM+) 
onboard Landsat-7 is analyzed. The ETM+ sensor can detect 
electromagnetic radiation in eight bands. In this study, six bands 
(P=6) are used (bands 6 and 8 are excluded because their spatial 
resolution is different from the other bands). An ETM+ image 
included in a target area and images of the target area for the 6 
bands used here are shown in Fig.2. These images were taken in 
Burma (Myanmar) on 21 January, 2003. The target area of the 
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application is the area enclosed by a white line in Fig. 2(a). This 
area is assumed to be covered by three components (Q=3) 
derived from visual inspection. The number of pixels N in the 
target area is 1600 pixels (=40×40 pixels). The values of the 
band spectra for each pixel in the image are represented by 
digital numbers between 0 and 255. 
 

 
(a) Band 1 image included in target area 

 

 
 

Fig.2 Landsat-7 ETM+ image taken in Burma (Myanmar) on 
21 January, 2003. 
 
Table 1.  Calculated initial values of μq and Σq for all q∈{1, 2, 
3}. 
 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
38.44 29.88 22.08 110.96 42.92 20.24

0.73 -0.07 -0.36 0.34 0.20 -0.03
-0.07 1.31 0.37 2.12 0.15 -0.25
-0.36 0.37 1.03 -0.32 -0.27 0.06
0.34 2.12 -0.32 16.20 4.00 -0.19
0.20 0.15 -0.27 4.00 2.55 0.58

-0.03 -0.25 0.06 -0.19 0.58 0.90
50.60 44.44 53.68 92.68 122.04 77.44

2.16 1.38 2.47 2.43 5.46 3.22
1.38 2.09 2.82 2.50 5.38 3.69
2.47 2.82 5.58 3.94 8.93 6.66
2.43 2.50 3.94 8.86 6.61 4.66
5.46 5.38 8.93 6.61 25.00 16.70
3.22 3.69 6.66 4.66 16.70 13.69

48.88 39.96 32.60 21.76 11.84 10.28
0.75 0.04 -0.05 0.21 -0.10 -0.29
0.04 0.60 -0.14 0.39 0.43 0.25

-0.05 -0.14 1.04 0.46 0.34 -0.01
0.21 0.39 0.46 2.82 0.64 -0.29

-0.10 0.43 0.34 0.64 1.73 0.28
-0.29 0.25 -0.01 -0.29 0.28 1.72

1μ

2μ

1Σ

2Σ

3μ

3Σ

 
 
The initial values of mean vector μq and variance-covariance 

Σq for all q∈{1, 2, 3} are calculated from pixel vectors in Site 1, 

Site 2, and Site 3 in Fig. 2 (a). The number of pixels for each site 
is 25. The calculated initial values of μq and Σq for all q∈{1, 2, 
3} are shown in Table 1. 

It is difficult to evaluate the estimated a*, Σ*, and μ*, since 
actual values of a*, Σ*, and μ* are unknown. Therefore, first, the 
proposed MPC method in this study is applied to simulated 
image data (Section ⅣA). Then, the proposed MPC method is 
applied to actual Landsat-7 ETM+ image data (Section ⅣB). 

A. Application to simulated image data 
First, a method of generating simulated image data is 

presented in Section IVA.1, and then application results are 
shown in Section IVA.2. 

A.1 Generation of simulated image data 
The number of pixels N is set to 1600. The number of 

components in a simulated image is three (Q=3); thus, the 
number of components for each single pixel is less than three. 
Actual μq and Σq for all q∈{1, 2, 3} are set to the values given 
in Table 1. y* is set by generating N of y, and the pixel vector of 
the i-th pixel yi is generated from Σq and μq given in Table 1 by 
using (8) in the following way. The number of micro-pixels K in 
a single pixel is set to 10,000. The mixing ratio ai for the i-th 
pixel is generated by a Dirichlet random number generator [14]; 
a* with N×Q dimensional matrix is set from the generated N of a. 
The histograms of the generated mixing ratios for each 
component are shown in Fig. 3. Kq in (8) is obtained from aq×K. 
In this study, it is assumed that xqk in (8) follows the 
P-dimensional normal distribution. The component xkq in (8) is 
generated by a P-dimensional normal random number generator 
with the expected value 

    [ ]
K

E q
kq

*μ
x = ,                                                                        (41) 

and the variance-covariance matrix 

      [ ]
K

Var q
kq

*Σ
x = .                                                                      (42) 

The component xq in (8) is given by  

 )),((1 2/1
pqqq N

K
I0Σμx ⋅+= ,                                             (43) 

where N(0, Ip) is a P-variate normal random number generator. 
P-variate simulated image data y* is generated from N of y using 
different values generated from N(0, Ip). Qe calculated from (24) 
using a*, Σ*, and μ* is 9714, which is about 29% of values drawn 
from the normal distribution away from N×P (=9,600). And, 
when mixture model is used linear mixture model and finite 
mixture model, Qe calculated using a*, Σ*, and μ* are 16927.77 
and 7041.42, respectively. 
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(c) Component 3 

 
Fig.3 Frequencies of mixing ratios. 

 
A.2 Application results 

Application results are detailed. μ*(0) and Σ*(0) are obtained as 
follows. We assume a single pixel to be a pure pixel of 
component q whose aq is larger than 0.8. From these pixels, μ*(0) 
and Σ*(0) are calculated, and are shown in Table 2.  

The proposed MPC method described in Section ⅢB is 
applied to simulated image data. a*, Σ*, and μ* are estimated, 
and simulated image data is modeled. The algorithm converges 
after 114 iterations. The scatter plots between actual mixing 
ratios and estimated mixing ratios are shown in Fig. 4. Plots are 
scattered along the straight line with zero intercept and unit 
slope. The correlation coefficients R for all components are 
almost 1. Estimated expected values and variance-covariance 
for all components are shown in Table 3. Almost all of the 
components of estimated μ* and Σ* are closer to the true values 
given in Table 1 than the initial values μ*(0) and Σ*(0) given in 
Table 2. Qe calculated from estimated a*, Σ*, and μ* is 9878.45, 
which is close to the actual value of Qe. Therefore, simulated 
image data is in agreement with the model constructed by a*, Σ*, 
and μ*. 

 
Table 2 Initial values of mean vector μq and 

variance-covariance Σq for all q∈{1, 2, 3}. 
 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
39.36 30.44 23.63 105.93 44.73 22.03
1.18 0.41 0.73 -1.59 1.86 1.39
0.41 1.79 1.66 -0.37 2.39 1.77
0.73 1.66 4.08 -2.79 6.36 5.13

-1.59 -0.37 -2.79 35.00 11.72 2.68
1.86 2.39 6.36 11.72 26.00 16.04
1.39 1.77 5.13 2.68 16.04 11.56

49.98 43.34 51.26 89.67 114.04 71.93
2.71 1.88 3.45 2.10 7.51 4.53
1.88 2.55 3.81 2.53 7.54 4.94
3.45 3.81 8.25 6.46 16.98 11.67
2.10 2.53 6.46 24.97 21.78 12.68
7.51 7.54 16.98 21.78 57.06 35.93
4.53 4.94 11.67 12.68 35.93 25.46

48.52 39.55 33.02 26.95 17.03 12.96
1.12 0.36 0.26 -1.28 -0.12 -0.12
0.36 0.84 0.35 -0.71 0.91 0.74
0.26 0.35 2.34 1.92 5.32 3.31

-1.28 -0.71 1.92 25.97 20.20 10.11
-0.12 0.91 5.32 20.20 30.12 17.31
-0.12 0.74 3.31 10.11 17.31 12.22

1μ

2μ

1Σ

2Σ

3μ

3Σ
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(c) Component 3 

 
 
Fig.4 Scatter plots of mixing ratios for three components 
showing the relationship between actual values and estimated 
values. 
 
Table 3  Estimated mean vector μq and variance-covariance Σq 
for all q∈{1, 2, 3}. 
 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
38.14 29.21 21.52 112.21 43.18 20.04
0.87 0.00 -0.36 -0.37 0.16 -0.09
0.00 1.34 0.28 1.45 0.18 -0.25

-0.36 0.28 0.76 -0.01 -0.07 -0.02
-0.37 1.45 -0.01 11.49 0.93 -0.72
0.16 0.18 -0.07 0.93 0.63 -0.02

-0.09 -0.25 -0.02 -0.72 -0.02 0.40
51.03 44.68 54.58 90.79 124.16 78.79
1.11 0.29 0.32 1.64 0.55 -0.37
0.29 0.82 0.45 1.24 -0.02 -0.35
0.32 0.45 1.30 1.51 -0.49 -0.42
1.64 1.24 1.51 24.48 0.48 -2.04
0.55 -0.02 -0.49 0.48 5.02 1.25

-0.37 -0.35 -0.42 -2.04 1.25 2.52
48.79 39.63 32.44 20.93 10.97 9.52
0.78 0.05 -0.03 0.21 -0.04 -0.27
0.05 0.56 -0.20 -0.21 -0.10 -0.07

-0.03 -0.20 1.02 -0.23 -0.01 -0.23
0.21 -0.21 -0.23 1.23 -0.23 -0.29

-0.04 -0.10 -0.01 -0.23 1.71 0.31
-0.27 -0.07 -0.23 -0.29 0.31 1.69

1μ

2μ

1Σ

2Σ

3μ

3Σ

 
 

B. Application to Landsat ETM+ image data 
To estimate a*, Σ*, and μ*, iterative calculation is performed. 

The values shown in Table 1 are used as the initial values of Σ* 
and μ*. The initial value of ai, which is ai

(0), is set to 1/Q for all 
elements of ai. As a result, the number of iterations is 145; 
estimated Σ* and μ* for all q∈{1, 2, 3} are shown in Table 4. 
Estimated mixing ratios for three components are shown in Fig. 
5. In Fig. 5, the larger the mixing ratio, the lighter the pixel looks. 
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Qe calculated from (24) using estimated a*, Σ*, and μ* is 
10500.40 which is slightly larger than actual value. Though Q is 
assumed three, it is considered that other components except for 
three components are included in some pixels. Pixels in Fig. 5 
whose mixing ratio of one component is high are consistent with 
pixels in Fig. 2 which are assumed to have the same component 
by visual inspection 

 
 

                               
(a) Component 1  (b)Component 2   (c)Component 3 

 
Fig.5  Estimated mixing ratios for three components. 

 
Table 4 Estimated results of mean vector μq and 

variance-covariance Σq for q∈{1, 2, 3}. 
 

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7
37.59 26.64 19.80 89.17 42.02 20.52
0.63 -0.20 -0.16 0.01 0.27 -0.13

-0.20 0.42 -0.15 1.00 0.09 -0.08
-0.16 -0.15 0.51 -0.61 -0.03 -0.02
0.01 1.00 -0.61 72.59 -1.48 -7.13
0.27 0.09 -0.03 -1.48 4.50 1.40

-0.13 -0.08 -0.02 -7.13 1.40 2.82
48.68 41.69 52.32 81.50 124.86 83.05
1.40 1.00 1.33 4.26 -0.67 -0.55
1.00 2.56 2.94 6.92 -1.31 -2.23
1.33 2.94 6.18 10.21 -3.11 -4.04
4.26 6.92 10.21 54.89 -2.40 -13.15

-0.67 -1.31 -3.11 -2.40 22.13 14.43
-0.55 -2.23 -4.04 -13.15 14.43 19.59
47.30 39.51 34.54 20.83 9.45 9.66
1.43 0.34 -0.82 -1.00 0.88 -0.03
0.34 0.80 -0.40 -1.09 0.68 0.23

-0.82 -0.40 3.61 -1.15 -0.01 0.47
-1.00 -1.09 -1.15 5.94 -0.01 0.19
0.88 0.68 -0.01 -0.01 2.91 0.48

-0.03 0.23 0.47 0.19 0.48 1.93

1μ

2μ

1Σ

2Σ

3μ

3Σ

 
 

V. CONCLUSION 
In this paper, a new mixture model for describing a mixture 

state in a single pixel of a multispectral image data has been 
proposed. The proposed mixture model is established on the 
basis of the process of mixed pixel generation in an actual 
multispectral image. The variance-covariance structure of a 
pixel vector which is derived from the proposed mixture model 
is different from the variance-covariance derived from the finite 
mixture model and the linear mixture model. The proposed 
mixture model does not specify the probability distribution of 
single-component data.  

  The proposed mixture model and MPC method were 
applied to simulated image data, first. Estimated parameters 
close to actual values were obtained. Next, we applied the 
proposed mixture model and MPC method to real Landsat-7 
ETM+ image data. As a result, it was found that pixels in the 

ETM+ image whose mixing ratio of one component was high 
were consistent with pixels in an image which were assumed to 
have the same component. 

The proposed technique is applied under the assumption that 
the number of categories within a single pixel is known a priori. 
It is therefore necessary to develop a method to determine the 
number of categories. A method to achieve this, which is based 
on the mixture model proposed in this paper, will be proposed at 
a later date.   
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