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Abstract – Differential geometric techniques in es-
timation theory are applied to an image processing prob-
lem arising in optical spacecraft navigation. Data from
local images of high resolution and from global images of
low resolution are optimally merged and integrated into a
homogeneous information context. Two variations of an
algorithm used to match the various data are presented
which both satisfactorily solve the problem at hand.
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I. INTRODUCTION

We consider the following situation: One is given a
global map of a planetary surface resulting from a survey-
ing campaign mapping a large region of the planet with
rather low resolution. On the other hand, one is given a
sequence of images from a low-flying spacecraft mapping
small regions of the planet with much higher resolution.
The images obtained from the spacecraft are of much bet-
ter quality than the global map, but many of the images
will contain no single landmark which is also contained
in the global map. As long as this is the case, the only
way to proceed is to optimally match image coordinates
of landmarks which can be seen on subsequent pictures
(like the ones shown in Fig. 1 and Fig. 2).

Fig. 1: Local image of a planetary surface.
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Fig. 2: Same scene under different lighting conditions.

This, however, typically leads to a sequence of estimated
image frames drifting away from their true locations. (Ex-
amples of this phenomenon will be shown in a subsequent
section.) Thus when at some point a landmark can be
identified which is also contained in the global map rather
large deviations are observed. To see an example of the
kind of problems which can occur, we show simulated im-
ages of the surface shown in Fig. 3.

Fig. 3: Three-dimensional model landscape used for sim-
ulations.

Fig. 4 shows landmarks which can be seen from a
spacecraft flying along a loop. Always trying to match
subsequent image frames by optimally filtering out the
noise, one encounters the problem that the overlapping
regions of the first image and the last image taken cannot
be properly matched any more; see Fig. 5 which shows a
reconstruction based on subsequent local matchings.
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Fig. 4: Matching of unperturbed images around a closed
loop.

Fig. 5: Attempt to match noisy images taken along a
closed loop.

The problem which needs to be addressed is how the
(relative) local information relating locally identifiable
landmarks on the various satellite images can be opti-
mally combined with the (absolute) global information
expressed by the coordinates of globally identifiable (but
scarce) landmarks in the absolute reference frame of the
global map. An algorithm is proposed to approach this
problem, and simulation results demonstrating the feasi-
bility of this algorithm are presented.

II. PURELY LOCAL PATTERN-MATCHING

We assume that the picture sequence can be started
with an image (called image 0) on which two land-
marks can be seen which are available on the global map.
We then take as reference frame the frame of image 0
(which amounts to defining a coordinate system for the
global map). Next, we introduce the following notation:
P1, . . . , PK are all the landmarks which can be identified
on any of the images; w1, . . . , wK ∈ R

2 are the coordinate
vectors of these landmarks with respect to the reference

system; and v
(i)
1 , . . . , v

(i)
K ∈ R

2 are the image coordinates
of these landmarks in the picture frame of image number
i. (Generally, we index landmarks by the letter k and im-
ages by the letter i.) Denoting by Ri the rotation and by
τi the translation which carry the reference frame to the
frame of the i-th image, we have

wk = τi + Riv
(i)
k (1)

for all k and all i. Thus if the landmark Pk can be seen
in two subsequent images i and i + 1 we have

τi+1 + Ri+1v
(i+1)
k = τi + Riv

(i)
k . (2)

We now write Di+1 := Ri+1R
−1
i and di+1 := τi+1 − τi,

denote by Ki+1
i the set of those indices k for which Pk

is visible on images i and i + 1 and also denote by Gi+1

the set of those indices k for which landmark k is visible
both on the global map and on image i + 1. Then the
information to be gleaned from image i + 1 is contained
in the equations

DRiv
(i+1)
k + d − Riv

(i)
k = 0 (k ∈ Ki+1

i ) (3)

and

DRiv
(i+1)
k + d − (wk − τi) = 0 (k ∈ Gi+1) (4)

in which D := Di+1 and d := di+1. (There is no need
to take care of the index, because the algorithm uses one
picture at a time so that in each step we have to deal
with one image index i+1 only.) Now these equations are
treated as measurement equations in which D and d are

treated as estimation parameters, v
(i)
k and wk are treated

as measurement vectors whose components are indepen-
dently distributed with standard deviations σ (accuracy
of local imaging) and Σ (accuracy of global map), respec-
tively, and where the true values of Ri and τi are replaced
by their estimates as obtained by using the previous (i.e.,
the i-th) picture. The sought estimates for D and d are
found by minimizing the cost function

f(D, d) :=
1

σ2

∑

k∈Ki+1

i

∥∥∥DRiv
(i+1)
k + d − Riv

(i)
k

∥∥∥
2

+
1

Σ2

∑

k∈Gi+1

∥∥∥DRiv
(i+1)
k + d − (wk − τi)

∥∥∥
2

(5)
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with respect to D and d. (Note that if k ∈ Ki+1
i ∩ Gi+1,

i.e., if Pk can be identified on both the overlapping domain
of the two images and on the global map, then the index
k contributes to both sums representing f .) Omitting the
(fixed) index i from our notation and writing

Uk := Riv
(i+1)
k , Vk := Riv

(i)
k , Wk := wk − τi (6)

the cost function can be rewritten as

1

σ2

∑

k∈Ki+1

i

(
‖Uk‖2

+ 2〈DUk, d−Vk〉 + ‖d−Vk‖2
)

+
1

Σ2

∑

k∈Gi+1

(
‖Uk‖2

+ 2〈DUk, d−Wk〉 + ‖d−Wk‖2
)

.

(7)

Now let us write U1, . . . , Ur, U1, . . . , Us and U1, . . . , U t

for those Uk for which k is in the set Ki+1
i \ Gi+1, in the

set Gi+1 \ Ki+1
i and in the set Ki+1

i ∩ Gi+1, respectively;
then the cost function is the sum of the four terms

1

σ2

r∑

i=1

(
‖Ui‖2

+ 2〈DUi, d − Vi〉 + ‖d − Vi‖2
)

,

1

σ2

t∑

i=1

(∥∥∥U i

∥∥∥
2

+ 2〈DU i, d − V i〉 +
∥∥∥d − V i

∥∥∥
2
)

,

1

Σ2

s∑

i=1

(∥∥U i

∥∥2
+ 2〈DU i, d − W i, 〉 +

∥∥d − W i

∥∥2
)

,

1

Σ2

t∑

i=1

(∥∥∥U i

∥∥∥
2

+ 2〈DU i, d − W i〉 +
∥∥∥d − W i

∥∥∥
2
)

.

(8)

Using the abbreviations

U :=
1

σ2

r∑

i=1

Ui, V :=
1

σ2

r∑

i=1

Vi,

U :=
1

Σ2

s∑

i=1

U i, W :=
1

Σ2

s∑

i=1

W i,

(9)

and

U :=

(
1

σ2
+

1

Σ2

) t∑

i=1

U i,

Z :=
1

σ2

t∑

i=1

V i +
1

Σ2

t∑

i=1

Wi =

t∑

i=1

(
V i

σ2
+

W i

Σ2

)
,

(10)

the gradient of the cost function with respect to d is given
by

1

2
(∇df)(D, d) = D

(
U + U + U

)

+

(
r+t

σ2
+

s+t

Σ2

)
· d

−
(
V + W + Z

)
.

(11)

A necessary condition for (D, d) to minimize the cost func-
tion is (∇df)(D, d) = 0, which results in

d =
1

c

(
V + W + Z − D

(
U + U + U

))

where c :=
r+t

σ2
+

s+t

Σ2
.

(12)

To derive the optimality condition with respect to D we
write

D =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
=: D(ϕ) (13)

and observe that

d

dϕ
D(ϕ) = JD(ϕ) where J :=

[
0 −1
1 0

]
. (14)

Thus writing D̂ := JD, the partial derivative of the cost
function f with respect to ϕ is given by

1

2

∂f

∂ϕ
= 〈D̂(U + U + U, d〉 − (S1 + S2 + S3) (15)

where

S1 :=
1

σ2

r∑

i=1

〈D̂Ui, Vi〉,

S2 :=
1

Σ2

s∑

i=1

〈D̂U i, W i〉,

S3 :=

t∑

i=1

〈D̂U i,
V i

σ2
+

W i

Σ2
〉.

(16)

Now we observe that with d as in (12) we have

〈D̂(U +U+U), d〉 =
1

c
〈D̂(U +U+U), V +W +Z〉

+ 〈D̂(U +U+U), JD(U +U+U)〉
(17)

where we used the fact that D = −J(JD) = −JD̂; since
〈ξ, Jξ〉 = 0 for all vectors ξ ∈ R

2, this reduces to

〈D̂(U+U+U), d〉 =
1

c
〈D̂(U+U+U), V + W + Z〉. (18)

Plugging (18) into (15) and letting ∂f/∂ϕ = 0 results in
an equation of the form

N∑

n=1

〈D̂vn, wn〉 = 0 (19)

in which the vectors vn, wn ∈ R
2 are known and in which

D̂ ∈ SO(2) is sought. Writing

vn =

[
an

bn

]
and wn =

[
pn

qn

]
, (20)
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equation (19) becomes

0 =

N∑

n=1

〈
[
− sinϕ cosϕ
− cosϕ − sin ϕ

] [
an

bn

]
,

[
pn

qn

]
〉 =

N∑

n=1

(cos(ϕ) (bnpn−anqn) − sin(ϕ) (anpn+bnqn))

= cos(ϕ) ·
N∑

n=1

〈vn, Jwn〉 − sin(ϕ) ·
N∑

n=1

〈vn, wn〉.

(21)

Letting A :=
∑N

n=1〈vn, wn〉 and B :=
∑N

n=1〈vn, Jwn〉,
this equation reads A cosϕ− B sin ϕ = 0 and has the two
solutions [

cosϕ
sinϕ

]
=

±1√
A2 + B2

[
A
B

]
, (22)

one representing the sought minimum, the other the max-
imum of the cost function f . Thus we obtain an ex-
plicit formula for the optimal estimates for D = Di+1

und d = di+1. We remark that this remains true for the
analogous three-dimensional problem; cf. [9]. The ap-
proach described so far is pursued until the first image
occurs on which landmarks show up which are identifi-
able on the global map. Then a readjustment is necessary
which takes into account the available global information.
In the following two sections we describe two approaches
to perform this readjustment (both of which treat the in-
termediate result obtained so far as the starting point of a
procedure in which the estimates obtained are iteratively
improved).

III. ITERATIVE IMPROVEMENT OF ESTIMATES

Once initial estimates for the values τi = (xi, yi) and
ϕi are found using the algorithm described above, we ob-
tain estimates for the coordinate vectors wk simply by us-
ing equation (1) and averaging over the different values of
wk obtained for any given index k. The values τi, ϕi and
wk thus obtained are iteratively improved by a classical
estimation scheme using the measurement equations

v
(i)
k = RT

i (wk − τi) (23)

which are obtained from (1). In this scheme, the coor-
dinate vectors wk play the roles of system parameters
whereas the translations τi and the rotation angles ϕi play
the roles of measurement parameters. To formulate the
estimation scheme used, we see from (23) that the first-
order effect of changes δwk, δτi and δϕi in the estimation
parameters on the measurement values are given by

δv
(i)
k = (δRi)

T (wk − τi) + RT
i (δwk − δτi)

= (δϕi)R
T
i JT (wk − τi) + RT

i (δwk − δτi)

= RT
i

(
JT (wk − τi)δϕi + δwk − δτi

)
(24)

which, written in coordinates wk = (ak, bk)T and τi =
(xi, yi)

T , takes the form

[
δξ

(i)
k

δη
(i)
k

]
= M

(i)
k




δxi

δyi

δϕi



+ RT
i

[
δak

δbk

]
(25)

where

M
(i)
k :=

[
cosϕi sinϕi

− sinϕi cosϕi

][
−1 0 bk−yi

0 −1 −ak+xi

]
(26)

and introducing the parameter increment vector

δp := (uT , vT ) ∈ R
3N+2n where

u := (δx1, δy1, δϕ1, . . . , δxN , δyN , δϕN ) and

v := (δa1, δb1, . . . , δan, δbn)T

(27)

of length 3N +2n (where N denotes the number of images
and n the number of identified landmarks), this results in
a sequence of equations

δv
(i)
k =

(
A

(i)
k | B

(i)
k )
)

δp (28)

where

A
(i)
k := (02×3︸︷︷︸

1

| · · · | 02×3︸︷︷︸
i−1

| M
(i)
k︸︷︷︸
i

| 02×3︸︷︷︸
i+1

| · · · | 02×3︸︷︷︸
N

) (29)

and

B
(i)
k := (02×2︸︷︷︸

1

| · · · | 02×2︸︷︷︸
k−1

| RT
i︸︷︷︸

k

| 02×2︸︷︷︸
k+1

| · · · | 02×2︸︷︷︸
n

) (30)

and where, generally, 0r×s denotes the zero matrix with
r rows and s columns. In addition, if we denote by 1r×r

the (r × r)-identity matrix, we get an equation

δwk =
(
02×(3N) | Ck

)
δp (31)

where

Ck := (02×2︸︷︷︸
1

| · · · | 02×2︸︷︷︸
k−1

| 12×2︸︷︷︸
k

| 02×2︸︷︷︸
k+1

| · · · | 02×2︸︷︷︸
n

) (32)

for each k for which wk can be seen on the global map.
Combining the above equations results in an equation of
the form

δm = Aδp (33)

in which δm is the vector of increments of all measure-
ments and A is a matrix with 3N + 2n columns and
as many rows as there are measurements. We now as-
sume that there are m1 purely local measurements and m2

“measurements” consisting of reading off the coordinates
of the globally identifiable landmarks from the global map;
taking the m1 former measurements first and the m2 latter
measurements next and letting

W :=

[
σ21m1×m1

0
0 Σ21m2×m2

]
(34)
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we obtain the optimal increment

δp = (AT WA)−1AT W δm. (35)

This last equation (with δm being the vector of differences
between the theoretically expected and actually obtained
measurements) is used to update p via pnew = pold + δp.
This method is iterated until convergence is obtained.

IV. GRADIENT ALGORITHM

Our second approach to merge the purely local infor-
mation with global data is based on a gradient algorithm;
cf. [1], [3], [4]. We now describe this algorithm, assuming
an arbitrary dimension d, which is no more complicated
than the case d = 2. The notation becomes slightly more
complicated than before, as we formulate the algorithm in
such a way that multiple overlaps can be dealt with. As
before, let N denote the number of images. Assume that
there are nij = nji point correspondences between the
i-th and the j-th image, say between the d-dimensional
points pk

ij and pk
ji ∈ R

d where 1 ≤ k ≤ nij . Furthermore,

let ck
i denote the points in the i-th image which corre-

spond to global points Kk
i where 1 ≤ k ≤ mi. We weight

the correspondences with coefficients αij and βi, where
1 ≤ i, j ≤ N . (In our situation we will use αij = 1/σ2

and βi = 1/Σ2 for all i, j, but it may be helpful in prac-
tical situations to use different weighting factors in order
to incorporate the quality of observation conditions.) As
before, let Ri ∈ SO(d) and Ti ∈ R

d denote the rotation
and translation carrying the reference frame into the i-th
image frame. With the notation settled, our task is to
minimize the function f : SO(d)N × R

dN → R
+
0 given by

f(R1, . . . , RN , T1, . . . , TN) :=

N∑

i=1

N∑

j=i+1

nij∑

k=1

αij

∥∥Rip
k
ij + Ti − Rjp

k
ji − Tj

∥∥2

+

N∑

i=1

mi∑

k=1

βi

∥∥Ric
k
i + Ti − Kk

i

∥∥2
.

(36)

We let R := [R1 . . . RN ] ∈ R
d×dN and T := [T1 . . . TN ] ∈

R
d×N and denote by (e1, . . . , eN) the canonical basis of

R
N . Then Ti = Tei and Ri = R(ei ⊗ Id) so that the

function f takes the form

f(R, T) = tr(RART ) + 2 tr(RBTT ) + tr(TCTT )

− 2 tr(RD) − 2 tr(TE) + c
(37)

where

A :=

N∑

i=1

N∑

j=i+1

nij∑

k=1

αija
k
ij(a

k
ij)

T +

N∑

i=1

mi∑

k=1

βib
k
i (bk

i )T ,

B :=
N∑

i=1

N∑

j=i+1

nij∑

k=1

αija
k
ij(eij)

T +
N∑

i=1

mi∑

k=1

βib
k
i (ei)

T ,

C :=

N∑

i=1

N∑

j=i+1

nij∑

k=1

αijeij(eij)
T +

N∑

i=1

mi∑

k=1

βiei(ei)
T ,

D :=
N∑

i=1

mi∑

k=1

βib
k
i (Kk

i )T ,

E :=

N∑

i=1

mi∑

k=1

βiei(K
k
i )T

(38)
with ak

ij := (ei ⊗ Id)p
k
ij − (ej ⊗ Id)p

k
ji, bk

i := (ei ⊗ Id)c
k
i ,

eij := ei − ej and a constant c. After differentiating (37)
with respect to T, we can decouple T and R and find that
the optimal solution T ∗ satisfies

T ∗ = −(RB − ET )(C†)T (39)

where C† denotes the pseudoinverse of C. If we use (39) to
simplify (37), we see that we have to minimize the function
f : SO(d)N → R

+
0 given by

f(R) = tr(RMRT ) + tr(RL) + const. (40)

where M := A − 2B(C†)T BT + B(C†)C(C†)T BT and
L := 2B(C†)T E − 2B(C†)C(C†)T E + 2B(C†)E − 2D;
using the relations C†C = I, CT = C and C†CC† = C†

this simplifies to M = A−BC†BT and L = 2BC†E−2D.
The constant term in (40) can be neglected for the purpose
of optimization. To formulate a gradient algorithm for
the minimization of f , it is helpful to make a few remarks
about the manifold SO(d)N . At any given point P ∈
SO(d), the tangent space of SO(d) at P is given by

TP SO(d) = {Pξ | ξT = −ξ}. (41)

Now for matrices A1, . . . , As in R
n×n the direct sum A1⊕

. . . ⊕ As denotes the n2 × n2 block diagonal matrix with
A1, . . . , As along the diagonal; then the tangent space of
SO(d)N at P = [P1 . . . PN ] ∈ R

d×dN (where Pi ∈ SO(d))
is given by

TP SO(d)N = {P(ξ1 ⊕ . . . ⊕ ξN ) | ξT
i = −ξi}. (42)

Using the exponential map, we can parametrize the mani-
fold SO(d) via its tangent space, i.e. by skew-symmetric
matrices. Define σ : R

d×d → R
d×d by σ(X) = (X −

XT )/2, i.e., by assigning to each square matrix its skew-
symmetric part. Letting

Mjk := P(ej⊗Id)(ej⊗Id)
T M(ek⊗Id)(ek⊗Id)

T PT (43)

we find that

∇Pf = ∇(1)

P
f ⊕ · · · ⊕ ∇(N)

P
f (44)
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where

∇(j)
P f :=

N∑

k=1

(σ(Mjk) − σ(Mkj))

+ σ
(
P(ej ⊗ Id)(ej ⊗ Id)

T L
)
∈ R

d×d

(45)

Now a gradient algorithm step of step size λ ∈ R to mini-
mize f , updating an estimate P to an improved estimate
P̃, is given by

P̃ = P exp
(
−λ∇Pf

)
. (46)

In our simulations we used, in each step, the step size
λ = 1 at the beginning and then iteratively multiplied
this step size by 0.5 until the cost function takes a value
smaller than the value in the step before; cf. [5]. This
procedure was repeated until convergence was achieved.

V. RESULTS

At the end of this paper we present some figures show-
ing typical results of the performance of the proposed
method. First (in figures 7 through 10) a sequence of
ten pictures is considered such that in the tenth picture a
point identifiable on the global map occurs.
• Figure 7 shows the original data without noise; points

seen in the global map are marked with a circle (o)
and local points are marked with a plus sign (+).

• Figure 8 shows the calculated positions of the im-
age frames in the global map obtained by using only
local information from ten subsequent images based
on data corrupted with noise (σ = 0.000625 and
Σ = 0.001).

• In Figure 9 we calculated the position of the images
as in case 8, but this time we also made use of the
global point which can be seen in the last image and
leads to better results for the position of the tenth
image than in Figure 8 (at the expense of an obvious
discontinuity between the ninth and the tenth image).

• Figure 10 shows the position of the images obtained
by the readjustment with either of the two methods
described before. The results are convincing and close
to the original positions. The deviations from the true
position are smallest at the beginning and the end of
the series of images, where global points can be seen.
The deviations between the calculated positions and
the true ones get larger towards the middle of the
image sequence.

Figures 11 through 14 show the same cases as Figure 7
to 10 with the only difference that this time two global
points arise in the last image (rather than just one as in
the case before).
• Figure 11 shows the original data without noise (and

coincides with Figure 12 except for the second global
point in the last image).

• Figure 12 shows the calculated positions of the image
frames in the global map obtained by using purely

local information from ten subsequent images, again
based on data corrupted by noise (σ = 0.000625 and
Σ = 0.001 as before). Since no global information
was used, this coincides with the results depicted in
Figure 8.

• Figure 13 was obtained by also using the global posi-
tion information available for the the global points in
the last image. As can be seen (and was, of course, ex-
pected from the beginning) the use of this information
leads to a better estimate for the location of the last
image frame (and a more pronounced discontinuity
between the ninth and the tenth image) in compari-
sion with both Figure 11 and Figure 9, because the
availability of two globally identifiable points in the
last image frame provides much stronger information
on the location of this frame.

• Finally, Figure 14 shows the position estimates of the
image frames obtained by the readjustment described
before. The availability of the second global point in-
creases the accuracy of the estimates as compared to
the ones shown in Figure 10.

VI. DIFFERENTIAL GEOMETRIC BACKGROUND

Before we present our conclusions we want to reveal
the differential geometric ideas behind the algorithms pre-
sented. The optimal matching of the available image data
closely resembles a standard estimation problem which, in
reasonable generality, can be formulated as follows; cf. [6]
and [7]. A measurement vector µ depends on two kinds
of parameters U and u which are distinguished because of
the different roles they play in the subsequent estimation
process: U is treated as a solve-for parameter whereas u
is taken as a consider parameter; i.e., the value of U will
be estimated whereas u is only considered in assessing the
accuracy of the estimate obtained for U . If U? and u? are
the true (but unknown) parameter values then the mea-
surement vector µ̂ obtained is

µ̂ = µ(U?, u?) + n (47)

where n is the measurement noise (whose covariance ma-
trix is supposed to be known). We assume that we have
initial estimates Uinit and uinit for the parameters in ques-
tion. While the estimate for u is never changed, we want
to iteratively improve the available estimate for U . Thus
we ask how to optimally update an “old” estimate Uold to
obtain a “new” estimate

Unew = Uold + δU . (48)

To assess the quality of an arbitrary estimate (U, u), we
introduce the residual vector

ρ(U, u) = µ̂ − µ(U, u) (49)

which is a list of the differences between the actually ob-
tained and the theoretically expected measurements. To
properly measure the size of the residual vector, we weight
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the different measurements according to their respective
accuracies; i.e., we introduce the scalar quantity

Q(U, u) := ρ(U, u)T Wρ(U, u) (50)

with the weighting matrix

W = Cov[n]−1 . (51)

Denoting by
√

W the unique upper triangular matrix M
such that W = MT M (practically obtained by performing
the Cholesky decomposition of W ) we can write

Q(U, u) = ‖
√

Wρ(U, u)‖2
; (52)

thus in the case of uncorrelated measurements Q is sim-
ply the sum of the squares of the weighted residuals, where
the weighting factor for any measurement is the recipro-
cal of the standard deviation of this measurement. Now
an update step δU as in (48) is considered optimal if it
minimises the size of the resulting “new” residual vector

ρnew = ρ(Unew, uinit) = ρ(Uold + δU, uinit)

≈ ρ(Uold, uinit) + (∂ρ/∂U)(Uold, uinit)δU

= ρold − A(Uold, uinit)δU

(53)

where

A(U, u) :=
∂µ

∂U
(U, u) (54)

denotes the matrix of partial derivatives of the measure-
ments with respect to the solve-for parameters. Thus,
using first-order approximations, we want to choose the
update δU such that

Qnew = ‖
√

Wρnew ‖2
= ‖

√
Wρold −

√
WAδU ‖2

(55)

(where A := A(Uold, uinit)) becomes minimal. It is well
known that if A has maximal rank this minimisation prob-
lem has the unique solution

δU = (AT WA)−1AT Wρold . (56)

However, the matrix AT WA is often ill-conditioned; thus
for numerical reasons it is not recommended to perform
the matrix inversion in (56) in a straightforward way.
Instead, we determine (typically by using a sequence of
Householder transformations) an orthogonal matrix P
such that

(57) P
√

WA =: R =

[
R1

0

]

has upper triangular form (where R1 is an upper triangu-
lar square matrix (whose size is given by the number of
solve-for parameters). We let

ξ := P
√

Wρold; (58)

since applying an orthogonal matrix does not effect the
norm of a vector, (55) becomes

Qnew = ‖ξ − R δU‖2
=

∥∥∥∥

[
ξ1

ξ2

]
−
[

R1δU
0

]∥∥∥∥
2

= ‖ξ1 − R1δU‖2
+ ‖ξ2‖2

;

(59)

it is clear that this last expression is minimised by letting

(60) δU := R−1
1 ξ1.

Note that (60) yields (56) because

R−1
1 ξ1 = (RT

1 R1)
−1RT

1 ξ1 = (RT R)−1RT ξ =

(AT
√

W
T
PT P

√
WA)−1AT

√
W

T
PT P

√
Wρold

(61)

which, using PT P = 1, becomes (AT WA)−1AT Wρold.
Thus we know how the update step (48) should be per-
formed. Since in each step we linearised about the current
estimate, iteration of the procedure is necessary. To mon-
itor convergence, we note from (53) that we can predict
which residual vector can be expected in the next iteration
(to be performed with Unew instead of Uold), namely

ρexpected = ρold − A(Uold, uinit)δU . (62)

We consider convergence to be achieved if the difference
between the residual vectors expected for and actually ob-
tained in the next iteration becomes “small”; i.e., if

(63) max
1≤i≤N

|
(√

W (ρobtained − ρexpected)
)
i
| < ε

for some predefined convergence margin ε > 0. It remains
to assess the accuracy of the estimate obtained. After
convergence, all remaining residuals are supposed to stem
exclusively from the measurement noise and the uncer-
tainty in the consider parameter estimate uinit (whereas
the final estimate obtained for U is supposed to be the
true value U?). Then, if δu := uinit − u? is the error in
the estimate for u, the residual vector becomes

ρ = µ̂ − µ(U?, u? + δu)

= µ(U?, u?) + n − µ(U?, u? + δu)

≈ µ(U?, u?) + n − µ(U?, u?) − (∂µ/∂u)(U?, u?)δu

= n − (∂µ/∂u)(U?, u?)δu

≈ n − (∂µ/∂u)(U?, uinit)δu .

(64)

Making the (natural) assumption that the measurement
noise and the error in the consider parameter estimate are
uncorrelated and writing

B :=
∂µ

∂u
(U?, uinit), (65)

we find from (64) that

Cov[ρ] = Cov[n] + Cov[B δu]

= W−1 + BCov[δu]BT
(66)
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and hence from (56) that

Cov[δU ] = (AT WA)−1AT WCov[ρ]WA(AT WA)−1

= (AT WA)−1 + DCov[δu]DT
(67)

where D := (AT WA)−1(AT WB). Note that the first
summand in (67) represents the parameter estimation in-
accuracy due to the noise in the measurements whereas
the second summand represents the parameter estimation
inaccuracy due the consider parameter uncertainty.

Up to this point, the treatment of a standard linear
estimation problem has been described. Our situation is
somewhat different because the estimation parameters in-
clude rotation matrices which cannot be taken as elements
of a linear space, but must be treated as elements of a non-
linear manifold. (This fact is somewhat disguised in the
two-dimensional case because an element of the rotation
group in dimension 2 is uniquely characterized by a real
number, namely the rotation angle, but becomes impor-
tant when a generalization to the three-dimensional case
is sought.) As is explained in [6] and [7], this problem
can be overcome by modifying the estimation procedure
in such a way by only allowing, in each step, only update
vectors in the tangent space of the manifold in question
at the currently best estimate. Once the update vector is
found, it is “wrapped around” the manifold by applying
to it the exponential mapping of the manifold at the cur-
rently best estimate; in other words, the update is applied
along the geodesic determined by the tangent vector found
by the linear estimation process described before. This is
visualized in the following figure, in which the nonlinear
parameter to be estimated is exemplified by a unit vec-
tor e and in which the update vector δe is represented by
a tangent vector to the manifold (here a sphere) at the
currently best estimate eold).

eold

enew

∆e

Fig. 6: Visualization of a nonlinear update step along a
geodesic (here a great circle on a sphere).

Similarly, in the gradient algorithm described in section
IV the gradient is formed with respect to the Rieman-
nian structure on the manifold of estimation parameters
(which coincides with the orthogonal projection of the gra-
dient formed in the ambient space onto the tangent space
at the currently best estimate).

VII. CONCLUSION

A problem in optical navigation was studied in which
landmark position coordinates are available on a global
map with low resolution and on local maps with high
resolution. Two different approaches were studied which
serve to optimally merge the two kinds of data, one based
on successive linearizations and solutions of linear re-
gression problems, the other based on a gradient algo-
rithm. Both algorithms were found to yield extremely
good solutions, the computational loads being similar in
the two approaches. The methods carry over to the three-
dimensional case; this will be elaborated in future work.
Similar methods have been successfully applied to other
problems in space navigation; cf. [2] and [8].
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Fig. 11.
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