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Abstract– In this paper the discrete-time triopoly
game with heterogeneous players has been studied. We
take into consideration the deterministic and stochastic
cases. A study for the local stability of the fixed points is
carried out. The bifurcation flip and its normal form are
analyzed. Also, the case when the system contains delay
is discussed. Numerical simulations are performed for
the above models. Finally, some conclusions and future
prospects are provided.

Keywords– Triopoly game, Heterogeneous players,
Flip bifurcation, Discrete-time dynamical system, Stochas-
tic dynamical system, Strange attractor.

I. INTRODUCTION

Economic models and economic-mathematical mo-
deling practice constituted an excellent instrument for
studying the economic games, stimulating research in
this area. Currently a number of modeling methods of
economic and mathematical theory were used to study the
evolution of the social-economic status parameters. From
this perspective the study, in a dynamic environment, of
the oligopoly market mechanism is an extremely important
issue. Based on these considerations it is possible to
approach the microeconomic problems working with a
modern instrument, namely game theory.

The game theory has not changed the principle of
rationality, but developed it by using strategically and
informational complex, thus raising questions on the hy-
pothesis of rational behavior for oligopoly type market
structures [14].

The oligopoly market is an imperfect market structure
that is found mostly in the actual economy, characterized
by a limited number of company proceedings. The strate-
gies of oligopoly companies are different and adapted to
each actual situation on the market.

Augustin Cournot studied the oligopoly markets oper-
ation where each company acts knowing that the volume
of production affects the market price [3]. He defined
balance as a situation where each company chooses the
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output which can maximize its profit but taking into ac-
count the output forecast by the other companies, showing
that such a balance leads to a price above the marginal
productivity [4].

The oligopoly market structure showing the action
of only three companies is called triopoly. This paper
presents an oligopoly market analysis on the specific case
of triopoly using game theory as a working instrument.
The players choose simple expectations such as naive or
complex as rational expectations. The players can use the
same or different strategies.

Based on [1,2,5,9,11], in the present paper we con-
sider a triopoly game with heterogenous players, where
each player thinks with different strategy to maximize
his output. We consider the first player to be boundedly
rational, the second one is an adaptive player and the
third one is a naive player. They all produce the same
or homogeneous goods which are perfect substitutes and
over them at discrete-time periods n=0,1,2,.. on a common
market.

The paper is organized as follows. The discrete-time
dynamical triopoly game with heterogenous players is
described in Section 2. Section 3 provides the existence
and the local stability of the fixed points, and the existence
of the flip bifurcation and its normal form, as well.
Section 4 presents the stochastic model. Section 5 present
the deterministic and stochastic model with delay. Using
Maple 12, some numerical simulations are carried out in
Section 6. The strange attractor and Lyapunov exponent
are measured numerically. Finally, some conclusions are
offered.

II. THE MODEL

We consider a Cournot triopoly game, where qi, i =
1, 2, 3 denotes the quantity supplied by ithfirm.

Also, let P : IR+ → IR+ be a twice differentiable and
non-increasing inverse demand function and Ci : IR+ →
IR+, i = 1, 2, 3 the twice differentiable increasing cost
functions. The profit functions Πi : IR

3
+ → IR are defined

by:

Πi(q1(n), q2(n), q3(n))=P (q1(n)+q2(n)+q3(n))qi−
− Ci(qi), i = 1, 2, 3.

(1)

If qi(n), i = 1, 2, 3 are the outputs at the moment n ∈ IN ,
then in the moment n+1 the first player’s output q1(n+1)
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is given by:

q1(n+ 1) = q1(n) + αq1(n)
∂Π1

∂q1
(q1(n), q2(n), q3(n)),

n = 0, 1, ...
(2)

the second player’s output, q2(n+ 1), is:

q2(n+ 1) = (1− β)q2(n) + βr2(q1(n) + q3(n)),

n = 0, 1, ...
(3)

and the third player’s output, q3(n+ 1), is:

q3(n+ 1) = r3(q1(n) + q2(n)), n = 1, 2, ... (4)

In (2), α is a positive parameter which represents an
adjustment coefficient of the first player’s rationality.

In (3), β ∈ [0, 1], is a parameter which represents an
adjustment coefficient of the reaction function r2 : IR2

+ →
IR+ which characterizes the adaptably of the second payer.

In (4), r3 : IR+ → IR+ is the reaction function that
characterizes the naive behavior of the third player.

In what follows we consider the linear case for the
functions that define the system (2), (3), (4). Consider:

P (x) = a− bx, Ci(qi) = ciqi, i = 1, 2, 3,

r2(x) = r3(x) = x.
(5)

From (1), (2), (3), (4) with (5) we obtain the discrete-
time dynamical system [5]:

q1(n+ 1) = q1(n) + αq1(n)(a− c1 − 2bq1(n)−
−bq2(n)− bq3(n))

q2(n+ 1) = (1− β)q2(n) +
β

2b
(a− c2 − bq1(n)−

−bq3(n))

q3(n+ 1) =
1

2b
(a− c3 − bq1(n)− bq2(n)),

n = 0, 1, 2, ...
(6)

Application F : IR3
+ → IR3

+ associated to system (6)
is:  x

y
z

→


x+αx(a−c1−2bx−by−bz))

(1−β)y+
β

2b
(a−c2−bx−bz)

1

2b
(a− c3 − bx− bz)

 . (7)

III. THE QUALITATIVE ANALYSIS OF (7)
The fixed points of (7) are given by the solutions of

the system:

x(a− 2bx− b(y + z)− c1) = 0
a− 2by − b(x+ z)− c2 = 0
a− 2bz − b(x+ y)− c3 = 0.

(8)

If the parameters a, b, c1, c2, c3 from (8) satisfy the
relations:

3c1 − c2 − c3 < a
3c2 − c1 − c3 < a
3c3 − c1 − c2 < a

(9)

then the fixed points with the positive coordinates of (8)
are:

E1(0, q20, q30), E2 = (q11, q21, q31), (10)

where

q20 =
a− 2c2 + c3

3b
, q30 =

a− 2c3 + c2
3b

,

q11 =
a− 3c1 + c2 + c3

4b
, q21 =

a− 3c2 + c1 + c3
4b

,

q31 =
a− 3c3 + c1 + c3

4b
.

The Jacobian matrix of application F is:

J(x, y, z) =

=


1+α(a−4bx−b(y+z)−c1) −αbx −αbx

−β

2
1− β −β

2

−1

2
−1

2
0

 .

(11)

From (11) and (10) we obtain:
Proposition 1. (i) The characteristic equation of (11)

in the point E1 has the roots:

λ1 = 1 +
α(a+ c2 + c3 − 3c1)

3
,

λ2,3 =
1

2
− β

2
± 1

2

√
1− β + β2.

(ii) If the model’s parameters satisfy conditions (9)
then |λ1| > 1 and |λ2,3| < 1. The point E1 is a saddle
point for the discrete-time dynamical system (6).

Proposition 2. (i) The matrix (11) evaluated at the
point E2 is:

J(E2) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (12)

where

a11 = 1− α

2
k, a12 = −α

4
k, a13 = −α

4
k,

a21 = −β

2
, a22 = 1− β, a23 = −β

2
, a31 = −1

2
,

a32 = −1

2
, a33 = 0, k = a− 3c1 + c2 + c3.

(13)

(ii) The characteristic equation of J(E2) is:

λ3 +A1λ
2 +A2λ+A3 = 0, (14)

where

A1 = −2 + β+
k

2
α,A2=

4−5β

4
− k(5−3β)

8
α,

A3 =
β

4
+

k(1− β)

8
α.

(15)

(iii) The fixed point E2 is locally asymptotically stable
if and only if the following relations:

D1 = k(2β − 5)α+ 2(8− 5β) > 0
D2 = 12β(β + 4) + (24 + 4β − 4β2)kα+
+(3 + 2β − β2)k2α2 > 0

(16)
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hold.

The inequalities (16) are obtained applying Schur
Theorem [8] for equation (14).

The necessary and sufficient conditions as the roots
of the equation have their absolute values less than one
are:

3 +A1 −A2 − 3A3 > 0
1−A1 +A3(A1 −A3) > 0
1−A1 +A2 −A3 > 0.

(17)

From (16) with (37) we get (17).
We analyze system (6), if α is a parameter and

a, c1, c2, c3, b, β are fixed parameters.
Consider α(s) = α0 + s, where

α0 =
2(8− 5β)

5− 2β
, (18)

s ∈ IR, and A = J(E2)|α=α(s).

Proposition 3. (i) The value s = 0 defines a flip
bifurcation for system (6) in E2.

(ii) If s = 0, the eigenvectors that satisfy the system
Ap = −p, AT p∗ = −p∗, < p, p∗ >= 1 have the
components:

p1 = −3

8
α0k, p2 =

5

8
α0k, p3 =

1

8
α0k(2β − 5),

p∗1 = G1p
∗
3, p

∗
2 = G2p

∗
3, p

∗
3 =

1

p1G1 + p2G2 + p3
,

G1 = −α0k

12β
,G2 =

48β − α2
0k

2

48β
.

(19)

(iii) The projection of (6) on the center manifold in
the point E2 has the normal form:

ξ(n+ 1) = −ξ(n) +
1

6
dξ(n)3 (20)

where

d = 3p∗3(−4α0bp1r1 − α0b(p1r2 + p2r1)−
−α0b(p1r3 + p3r1))

r1 =
3

α0k
B(p, p), r2 = − 1

α0k
B(p, p),

r3 = − 1

α0k
B(p, p)

B(p, p) = −4bα0p
2
1 − 2α0bp1p2 − α0bp1p3.

(21)

Proof. (i) From (8) and (16) we obtain D1 = k(2β−
5)s, D2 = (3 + 2β − β2)k2(s2 + 2α0s). If s > 0, then
D1 > 0, D2 > 0. Thus, the fixed point E2 is locally
asymptotically stable. If s ∈ (−2α0, s) then D1 < 0,
D2 > 0. The fixed point E2 is unstable. If s = 0, D1 =
0, D2 > 0, the characteristic equation (14) has the root
λ1 = −1 and the others have their absolute values less
than one. Therefore, s = 0 is a flip bifurcation.

(ii) The relations (19) are obtained by straight calcu-
lation.

(iii) Using [12], coefficient d is obtained.
We analyze the discrete-time dynamical system (6), if

β is parameter and a, c1, c2, c3, b, α are fixed parameters.

Consider β(s) = β0 + s, where

β0 =
16− 5kα

10− kα
, (22)

s ∈ IR and s = J(E2)|β=β(s).

Proposition 4. (i) The value s = 0 defines a flip
bifurcation for system (6) in E2.

(ii) If s = 0, the vectors that satisfy the relations
Bp = −p, BT p∗ = −p∗, < p, p∗ >= 1 have the
components:

p1 = −3

8
αk, p2 =

5

8
αk, p3 =

1

8
αk(2β0 − 5),

p∗1 = H1p
∗
3, p∗2 = H2p

∗
3, p∗3 =

1

p1H1 + p2H2 + p3
,

H1 = − αk

12β0
, H2 =

48β0 − α2k2

48β0
.

(23)

(iii) The projection of system (6) on the center man-
ifold in E2 has the normal form:

ξ(n+ 1) = −ξ(n) +
1

6
d1ξ(n)

3

where

d1 = 3p∗3(−4αbp1r1 − αb(p1r2 + p2r1)−
−αb(p1r3 + p3r1))

r1 =
3

αk
B1(p, p), r2 = − 1

αk
B1(p, p),

r3 = − 1

αk
B1(p, p)

B1(p, p) = −4bαp21 − 2αbp1p2 − αbp1p3.

The proof can be done in the similar way as the proof
of Proposition 3.

IV. THE STOCHASTIC MODEL

Using the methods from [7,13] we analyze the
stochastic perturbed of (6).

Let (Ω,F) be a measurable space, where Ω is a set
whose elements will be noted by ω and F is a σ−algebra
of subsets of Ω. We denote by B(IR) σ−algebra of
Borelian subsets of IR. A random variable is a measurable
function X : Ω → IR with respect to the measurable
spaces (Ω,F) and (IR,B(IR)).

A probability measure P on the measurable space
(Ω,F) is a σ−additive function defined on F with values
in [0, 1] such that P (Ω) = 1. The triplet (Ω,F , P ) is
called probability space.

An arbitrary family ξ(n, ω) = ξn of random variables,
defined on Ω with values in IR, is called stochastic process.
We denote by ξ(n, ω) = ξ(n)(ω) for any n ∈ IN and
ω ∈ Ω. The functions X(·, ω) are called the trajectories of
X(n). We use E(ξ(n)) for the mean value and E(ξ(n)2)
the square mean value of ξ(n) = ξn.
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The discrete-time stochastic model is the stochastic
perturbed of (6) and it is given by:

q1(n+ 1) = q1(n) + αq1(n)(a− c1 − 2bq1(n)−
−bq2(n)− bq3(n)) + b11(q1(n)− q10)ξn

q2(n+ 1) = (1− β)q2(n) +
β

2b
(a− c2 − bq1(n)−

−bq3(n)) + b22(q2(n)− q20)ξn

q3(n+ 1) =
1

2b
(a− c3 − bq1(n)− bq2(n))+

+b33(q3(n)− q30)ξn,
n = 0, 1, 2, ...

(24)

where ξn is a random variable with E(ξn) = 0, E(ξ2n) =
σ < ∞ and (q10, q20, q30) are the coordinates of a fixed
point given by E1 or E2.

The linear stochastic dynamical system with discrete
time associated to (24) in the fixed point (10) is:

u(n+ 1) = Au(n) + ξnBu(n) (25)

where

A =

 a11 0 0
a21 a22 a23
a31 a32 0

 , B =

 b11 0 0
0 b22 0
0 0 b33


where a11 = 1+α

a+ c2 − 2c1
3

, a21 = −β

2
, a22 = 1−β,

a23 = −β

2
, a31 = −1

2
, a32 = −1

2
and u(n) =

(u1(n), u2(n), u3(n))
T .

For (25) consider E(u(n)) = En the mean values of
the variables and E(u(n)u(n)T ) = Vn the matrix of the
square mean values.

Using E(ξn) = 0 and E(ξ2n) = σ < ∞ by straight
calculation we obtain:

Proposition 5. (i) The mean values satisfy the
discrete-time system of equations:

En+1 = AEn, n ∈ IN ; (26)

(ii) The square mean values satisfy the discrete-time
system of equations:

Vn+1 = AVnA
T + σ2BVnB

T , n ∈ IN ; (27)

(iii) The characteristic polynomial of (26) is:

P1(λ) = det(λI −A) = (λ− a11)(λ
2 − a22λ− a23a32);

(28)
(iv) The characteristic polynomial of (27) is:

P2(λ) = (λ−a211−σb211)(λ−a23a32−σb22b33)·
· (λ2−(a222+σ(b222+b233))λ+(a222+σb222)σb

2
33−

− a232a
2
23)(λ

2 − (a11a22 + b11b33 + σb11(b11+

+ b33))λ+ (a11a22 + σ2b11b22)b11b33σ−
− a211a23a32).

(29)

The analysis of the mean values and square mean
values of the variables can be done analyzing the roots of
the equation P1(λ) = 0 and P2(λ) = 0 respectively.

Thus, we get:
Proposition 6. If the model’s parameters satisfy con-

ditions (9) then the roots of equation P1(λ) = 0 are
|λ1| > 1, |λ2, λ3| < 1. The equilibrium point is a saiddle
point. The mean values are unstable.

The analysis of P2(λ) is done using Maple 12, for
a = 10, b = 0.5, c1 = 1, c2 = 2, c3 = 3, β = 0.33.

V. DISCRETE-TIME DETERMINISTIC AND STOCHASTIC
TRIOPOLY GAME WITH HETEROGENEOUS PLAYERS

AND DELAY

In this case, the profit function of the first player, Π1,
is related to the rationality of the first player. It takes into
account the quantities q2(n− 1) and q3(n− 1). A similar
consideration can be found in [6].

The profit function of the first firm is Π1 : IR3
+ → IR

defined by:

Π1(q1(n), q2(n), q3(n), q2(n− 1), q3(n− 1)) =

= q1(n)P (q1(n) + ω2q2(n) + (1− ω2)q2(n− 1)+

+ ω3q3(n) + (1− ω3)q3(n− 1))q1(n)− C1(q1(n)),
(30)

ω2, ω3 ∈ [0, 1].
The profit functions for the other players are given

by:

Πi(q1(n), q2(n), q3(n)) = qi(n)P (q1(n) + q2(n)+

+ q3(n))− Ci(qi(n)), i = 2, 3.

The discrete-time dynamical system with delay is
given by:

q1(n+ 1) = q1(n) + αq1(n)
∂Π1(n, n− 1)

∂q1
,

q2(n+ 1) = (1− β)q2(n) + βr2(q1(n), q3(n)),

q3(n+ 1) = r3(q1(n) + q2(n)), n = 0, 1, 2, ...

(31)

In what follows we consider the linear case for
the functions that define the system (31). Consider the
particular case (5).

We obtain the discrete-time dynamical system with
delay:

q1(n+ 1) = q1(n) + αq1(n)(a− c1 − 2bq1(n)−
−bω2q2(n)− b(1− ω2)q4(n))− bω3q3(n)−
−b(1− ω3)q5(n))

q2(n+ 1) = (1− β)q2(n) +
β

2b
(a− c2 − bq1(n)−

−bq3(n))

q3(n+ 1) =
1

2b
(a− c3 − bq1(n)− bq2(n)),

q4(n+ 1) = q2(n),
q5(n+ 1) = q3(n),
n = 0, 1, 2, ...

(32)

Application F : IR5
+ → IR3

+ associated to system (32)
is:
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
x
y
z
u1

u2

→



x+αx(a−c1−2bx−bω2y−bω3z−
−b(1− ω2)u1 − b(1− ω3)u2)

(1−β)y+
β

2b
(a−c2−bx−bz)

1

2b
(a− c3 − bx− bz)

y
z


.

(33)

The fixed points with positive coordinates of (33) are
given by

E10(0, q20, q30, q20, q30), E21 = (q11, q21, q31, q21, q31),
(34)

where q20, q30 and qi1, i = 1, 2, 3 are given by (10).
The Jacobian matrix of application F2 is:

J(x, y, z, u1, u2) =

=



d1 d2 d3 d4 d5

−β

2
1− β −β

2
0 0

−1

2
−1

2
0 0 0

0 1 0 0 0
0 0 1 0 0

 ,
(35)

where d1 = 1+α(a− c1 −4bq1 − bω2q2 −b(1−ω2)u1 −
bω3q3 −b(1−ω3)u2, d2 =−αbω2q1, d3 =−αbω3q1, d4 =
−b(1−ω2)u1, d5 =−b(1−ω3)u2.

From (34) and (35) we obtain:

Proposition 7. (i) The characteristic function of (35)
in the point E10 is given by:

P10(λ) = λ2(λ4 + a1λ
3 + a2λ

2 + a3λ+ a4)

where

a1 = β − 2− α(a− c1 − bq20 − bq30)

a2 = −3β

4
− αβ

2
(a− c1 − bq20 − bq30)−

b(1− ω3)

2
q30

a3 =
β

2
+ α(a− c1 − bq20 − bq30)−

− βb

2
(1− ω3)q20 +

b(1− ω3)

4
(2− β)q30

a4 =
bβ

4
(1− ω3)q20.

(36)

(ii) The characteristic function of (35) in the point
E21 is given by:

P20(λ) = λ(λ4 + b1λ
3 + b2λ

2 + b3λ+ b4),

where

b1 = β − 2− α(a− c1 − 4bq11 − bq21 − bq31)

b2 = −3β

4
− αβ

2
(a− c1 − 4bq11 − bq21 − bq31)−

− b(1− ω3)

2
q31

b3 =
β

2
+ α(a− c1 − 4bq11 − bq21 − bq31)−

− βb(1− ω3)

2
q21 +

b(1− ω3)

4
(2− β)q31

b4 =
bβ

4
(1− ω3)q21.

(37)

From Proposition 7, using Schur criteria we obtain:

Proposition 8. (i). If the coefficients a1, a2, a3, a4
satisfy the inequalities:

a4 < 1, 1 + a4 >
a2
3
, 1 + a1 + a2 + a3 + a4 > 0,

1− a1 + a2 − a3 + a4 > 0,

(1−a4)(1−a24)−a2(1−a4)
2+(a1−a3)(a3−a1a4)>0

(38)

then the absolute values of the roots of equation P10(λ) =
0 are less than 1;

(ii) If the coefficients b1, b2, b3, b4 satisfy the inequal-
ities:

b4 < 1, 1 + b4 >
b2
3
, 1 + b1 + b2 + b3 + b4 > 0,

1− b1 + b2 − b3 + b4 > 0,

(1−b4)(1−b24)−b2(1−b4)
2+(b1−b3)(b3−b1b4)>0

(39)

then the roots of equation P20(λ) = 0 has the roots in
module less than one.

In according with Jury criteria, if the roots of equa-
tions P10(λ) = 0, P20(λ) have the absolute values of the
real parts less than 1, then the equilibrium points E10, E20

are locally asymptotically stable.
The analysis of the characteristic equations can be

done by considering different values for the parameters of
the model.

The stochastic system with time delay is given by:

q1(n+ 1) = q1(n) + αq1(n)(a− c1 − 2bq1(n)−
−bω2q2(n)− b(1− ω)q4(n)− bω3q3(n)−
−b(1− ω3)q5(n)) + σ1(q1(n)− q10)ξn

q2(n+ 1) = (1− β)q2(n) +
β

2b
(a− c2 − bq1(n)−

−bq3(n)) + σ2(q2(n)− q20)ξn

q3(n+ 1) =
1

2b
(a− c3 − bq1(n)− bq2(n))+

+σ3(q3(n)− q30)ξn,
q4(n+ 1) = q2(n) + σ4(q4(n)− q20)ξn,
q5(n+ 1) = q3(n) + σ5(q5(n)− q30)ξn,
n = 0, 1, 2, ...

(40)
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where ξn is a random variable with E(ξn) = 0, E(ξ2n) =
σ < ∞ and q10, q20, q30, q20, q30 are the coordinates of
the fixed point given by E10 or E21.

The linear stochastic dynamical system with time
delay associated to (40) in the fixed point (34) is:

U(n+ 1) = A1U(n) + ξnB1U(n), (41)

where U(n) = (q1(n), q2(n), q3(n), q4(n), q5(n))
T where

A =


a11 a12 a13 a14 a15
a21 a22 a23 0 0
a31 a32 0 0 0
0 1 0 0 0
0 0 1 0 0

 ,

B =


σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0
0 0 0 0 σ5

 .

For E10 the elements of the matrices A and B are
given by: a11 = 1 + α(a − c1 − bq20 − b30), a12 = 0,
a13 = 0, a14 = −b(1 − ω3)q20, a15 = −b(1 − ω3)q30,

a21 = −β

2
, a22 = 1−β, a23 = −β

2
, a31 = −1

2
, a32 =

1

2
.

For E21 the elements of the matrices A and B are
given by: a11 = 1 + α(a − c1 − 4bq11 − bq21 − bq31),
a12 = −αbω2q11, a13 = −αbω3q11, a14 = −b(1−ω3)q21,

a15 = −b(1−ω3)q31, a21 = −β

2
, a22 = 1−β, a23 = −β

2
,

a31 = −1

2
, a32 =

1

2
.

For (41) we consider E(ui(n)) = Ei(n), i =
1, 2, 3, 4, 5 where En = (E1(n), E2(n), E3(n),
E4(n))

T are the mean values of the variables and
E(U(n)U(n)T ) = Vn is the matrix of the square mean
values.

Using E(ξn) = 0 and E(ξ2n) = σ < ∞ by the straight
calculation we obtain:

Proposition 9. (i) The mean values satisfy the follow-
ing discrete time system:

En+1 = A1En, n ∈ N ; (42)

(ii) The square mean values satisfy the discrete time
system of equation

Vn+1 = A1VnA
T
1 + σ2BVnB,n ∈ N ; (43)

(iii) The characteristic function of (42) is P10(λ),
P20(λ) respectively, given by Proposition 7.

The analysis of the roots for the characteristic equa-
tion of (43) can be done using Maple 12.

VI. NUMERICAL SIMULATION

For a = 10, b = 0.5, c1 = 1, c2 = 2, c3 = 3,
β = 0.33 using a program in Maple 12, the bifurcation
diagrams with respect to α (the speed of adjustment of
boundedly rational player) are displayed in the figures 1,
2, 3:

Figure 1. q1(n) bifurcation, for α ∈ (0.2, 0.4)

Figure 2. q2(n) bifurcation, for α ∈ (0.2, 0.4)

Figure 3. q3(n) bifurcation, for α ∈ (0.2, 0.4)

Also, the bifurcation diagrams with respect to the
speed of adjustment of the adaptive player can be shown.

Using Maple 12, for a = 10, b = 0.5, c1 = 1,
c2 = 2, c3 = 3, α = 0.41, β = 0.33 the greater Lyapunov
coefficient is L1 = 0.2202540126. Due to its positive
value, the system is chaotic. A strange attractor is given
in figure 4 and it exhibits a fractal structure:
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Figure 4. The strange attractor for α = 0.41, β = 0.33

In what follows consider the stochastic system (24).
For a = 0.05, b = 0.5, c1 = 0.001, c2 = 0.002,
c3 = 0.003, α = 0.3, β = 0.33, σ = 2, b1 = 0.1,
b2 = 0.2, b3 = 0.1 we obtain two fixed points: E1 = (0,
0.00327, 0.03067) and E2 = (0.026, 0.024, 0.022). For
the first one the mean values and the square mean values
of the variables are not asymptotically stable, because the
absolute values for all roots of the characteristic equation
are not less than 1. In the stochastic case, the orbits of the
variables can be visualized:

Figure 5. (n, q1(n, ω))

Figure 6. (n, q2(n, ω))

Figure 7. (n, q3(n, ω))

For the deterministic system with delay and the
values: a = 0.10, b = 0.5, c1 = 1, c2 = 2, c3 = 3,
we obtain two fixed points: E1 = (0, 0.00327, 0.03067,
0.00327, 0.03067) and E2 = (6, 4, 2, 4, 2).

Figure 8. (n, q1(n)) for α ∈ (0.2, 0.4)

Figure 9. (n, q2(n) for α ∈ (0.2, 0.4)

Figure 10. (n, q3(n)) for α ∈ (0.2, 0.4)

For α = 0.41, β = 0.33 the greater Lyapunov
coefficient is L1 = 0.02370345236. Due to its positive
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value, the system is chaotic. A strange attractor is given
in figure 11 and it exhibits a fractal structure:

Figure 11. The strange attractor for α = 0.41 and
β = 0.33

VII. CONCLUSIONS

In the present paper, we consider the triopoly game
where players take different strategies for computing their
expected output. Such choices make the triopoly game
to provide complex dynamics. For the linear case of the
price and cost functions, the fixed points and their sta-
bility, bifurcation diagrams, strange attractor and chaotic
behavior were analyzed. Also, the stochastic approach
is considered. We use numerical simulations in order to
observe the locally asymptotic stability of the solution.
Moreover, we analyze the triopoly game with delay in
the deterministic and stochastic cases. The findings of the
present paper can be extended in the oligopoly case.
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