
 

 

  

Abstract—The model of a medium, with a glance to its 

microstructure, is reviewed in this work. Accounting of the 

characteristic dimension of the medium in the main equations is 

fulfilled through specifying the strain velocity tensor. A model 

demonstrating liquid flow in a cylindrical pipe has been built. 

Dependencies describing distribution of the velocity in the pipe cross 

section have been presented. The rate of fluid flow, with a glance to 

the microstructure’s influence, has been calculated. 
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I. INTRODUCTION 

ISCREPANCY between classical models of a continuous 

medium and models of real media with homogeneous 

microstructure arises when multiple practical tasks relating to 

movement of continuous media are to be solved. Absence of 

the microstructure’s dimensionless characteristic parameter in 

the classical mathematical models of the continuous medium is 

the basic problem. 

Studying of the microstructure properties through 

introducing micro-turns at a point of space together with the 

connection between this classic kinematics and the element’s 

power characteristics is one of the main approaches to 

describing materials, while taking their homogeneous 

microstructure into account. In such approach the 

characteristic dimension of the microstructure is connected 

with the moment of inertia of the microstructure’s 

characteristic volume, which is included into the dynamic 

momental equation. This approach has been developed in the 

works by A. Eringen [1], A. Aero and A. Bulygin [2], and 

others [3] - [6]. 

Another approach is connected with taking into account the 

influence on deformation at the point of space of not only 

close elements, but also - more distant elements, which is 

mathematically presented through introduction of not only 

movement gradients of the first order, but also - movement 

gradients of the second order into the strain-energy function 

W. This approach for accounting the microstructure's medium 

in kinematics is related to I. Kunin's works [7]. 
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Representative volume ∆V=h
3
 and microstructure 

characteristic parameter (h/L) are introduced in the suggested 

work to take the microstructure into consideration. Here h is 

characteristic linear dimension of the representative element, L 

is characteristic linear dimension of the studied phenomenon. 

Accounting of the medium characteristic dimension in the 

main equations of the continuous medium mechanics is 

fulfilled by specifying the strain velocity tensor.  

We shall perceive representative element ∆V as such a 

volume of the material, which contains a large quantity of 

microstructure's elements, sufficient for providing coincidence 

between mechanical properties of this volume ∆V and 

mechanical properties of the material as a whole. 

Characteristic linear dimension h of the microstructure may 

have dimensions comparable with linear dimensions of the 

crystals and smaller, down to linear dimensions of the rock 

slabs, depending on the task scale. Choosing a suitable scale is 

a separate task [8], [9]. 

  

II. KINEMATICS OF CONTINUOUS MEDIUM, WITH 

MICROSTRUCTURE TAKEN INTO ACCOUNT 

Let us choose rectangular coordinate system x1,x2,x3 as the 

observer’s reference frame and let us examine flow areas in 

point M(x1,x2,x3), representative volume V of the medium with 

characteristic dimension 2h at certain moment of time t. 

 
Fig. 1. Characteristic representative volume.  
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Let us examine the Koshi strain velocity tensor at point M at 

the moment of time t 
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 where vj is components of the movement velocity vector. 

Let us take into account the studied values’ character, which is 

spatially distributed through their series expansion by small 

parameter h in points of the representative volume: 

The following developments with accuracy to the third 

summand shall be true for the whole strain velocity tensor at 

the k-ths opposite edges:  
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Consequently, the mean value for the two opposite edges of 

the elementary representative volume is defined by the 

following formula:  
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Let us average the whole strain velocity tensor over all the 

edges of the elementary representative cube: 
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In the rectangular coordinate system 
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takes place. 

Taking (2) and (6) into account, we obtain 
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Let us mention that including microstructure parameter h 

into expressions describing deformation velocities makes it 

possible to make equations of motion, allowing for the 

material’s microstructure for various rheological models [10]. 

For example, in the model of a linear viscous incompressible 

fluid, the rheological equations defining connection between 

the components of the strain tensor σij and the components of 

the strain velocity tensor have the following appearance [11]: 

 

2 ,ij ij kk ij ijpσ δ λε δ µε= − + +  (8) 

 

where p is pressure; λ, µ are constant fluid viscosity factors.  

Equations of motion in stresses 
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where fi denotes components of the density vector of the 

body forces. 

Continuity equation: 
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III. FLOW BETWEEN PARALLEL PLATES 

Let us review solution of equations (8)-(10), describing 

movement of a linear viscous fluid, taking into account 

microstructure parameter h, with regard to the model task 

concerning the flow between parallel plates, when 

displacement of one of the plates leads to shearing of the 

fluid’s layers parallel to the plates.   
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Fig. 2. Flow between parallel plates 

 

Let us pass a plane of rectangular coordinate system Oxy 

orthogonally to the plates, so that axis Ox is directed at the 

replacement side, and coordinate y indicates the distance 

measured from the bottom plate A to the side of upper plate B 

(Fig. 2). Let V=const is the movement velocity of plate B 

relative to immovable plate A; H is the distance between the 

plates. Let us assume that the edges of the plates are 

sufficiently remote from the studied flow region, and the 

edges’ influence may be neglected.  

For the case of two-dimensional motion, the whole system 

of equations (8)-(10) is: 
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0 .constρ ρ= =  (15) 

 

Continuity equation (14), taking (15) into account, is: 
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Adhering to the classical approach to the solution of the task 

in question, let us assume that the fluid’s movement is a 

shearing displacement of the layers parallel to the plates. In 

this case component vy of the velocity is absent, and 

component vx defines the velocity of any layer of the fluid: 

 

( ) , 0.x x yv v y v= ≡  (17) 

 

In assumption (17) continuity equation (16) is fulfilled 

automatically. Also assuming that the motion is stationary, and 

external body forces are absent, let us rewrite the remaining 

equations (11)-(15) as: 
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Substitution of deformation rates (19) into formulae (18) 

describing stresses gives us: 
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Taking into account the fact that stress pxy, according to (17) 

and (21), does not depend on x, let us find out of the second 

equation (20): 
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from which it follows that pressure p may be the function of 

coordinate x only. The pressure gradient in the direction of 

movement is absent; we shall get from the first equation (20):  
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Integrating equation (23) we shall obtain: 
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where c - is constant of integration. Let us rewrite equation 

(24) as: 
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Thus, to find velocity vx, it is necessary to solve an ordinary 

differential equation of the third order with a non-nil right part.  

General solution of equation (25) looks like: 

 

( ) ( ) ( )1 2 3 4cos 6 sin 6 .xv y c y c c y h c y h= + + +  (26) 

 

Let us compare expression (26) with an analogous 

expression, which was deduced without taking microstructure 

parameter h into account. Assuming that h equals to zero, we 

shall derive a classical equation for velocity, integration of 

which gives us: 
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Formula (27) contains two constants of integration c1 and c2, 

which may be calculated from the conditions defining 

adherence between the fluid and the bottom and upper plates: 
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Satisfying conditions (28), expression for velocity (27) shall 

be: 

 

( ) ( )0 .xv y V H y=  (29) 

 

General solution (26), in contrast to solution (27), contains 

four unknown constants c1, c2, c3, c4, which we shall define out 

of adherence conditions:  
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and rolling motion conditions at the bottom and upper 

boundaries: 
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where d is characteristic diameter of microparticles weighed 

in the fluid. Since constants c1 and c2 are included into 

expression for velocity (26) as coefficients of a first-degree 

polynomial, and the rolling motion conditions (31) include 

derivatives from velocity of not less than the second order, 

then substituting (26) into (31) gives us two equations, which 

may be used for determining constants c3 and c4: 
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Solving linear algebraic combined equations (32), we shall 

find: 

 

3 4 0.c c= =  (33) 

 

Equality of constants c3 and c4 to zero means that the 

velocity component, arising when the microstructure is taken 

into account, equals to zero; and distribution vx(y) coincides 

with the classical distribution: 

 

( ) ( ) ( )0 .x xv y v y V H y= =  (34) 

 

Thus, within the built model, the microstructure does not 

influence the flow velocity in case of simple shearing strain. 

Next, we shall study the way the microstructure influences 

fluid movement in a cylindrical pipe. This flow also refers to 

the class of shear flows, though this flow occurs not by reason 

of shearing of one of the channel’s walls, but is caused by the 

pressure gradient along its axis.  

 

IV. FLOW IN A CYLINDRICAL PIPE 

With reference to the above, let us consider model 

movement of the fluid inside a pipe with a circular cross-

section of radius R=const. Let us introduce cylindrical 

coordinate system  Orφz to describe this movement with the 

fluid’s microstructure taken into account. 

 
Fig. 3. Flow in the cylindrical pipe. 

 

Let us specify the pressure gradient in the line of pipe’s axis 

Oz: 
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Assuming that in this case the fluid motion is an out-of-

plane shear of the cylindrical layers r=const, we shall have:  

 

( )0,r z zv v v v rϕ≡ ≡ = . (36) 

 

Let us write condition ρ=ρ0=const for a uniform 

incompressible fluid. This equation holds true, taking (36) into 

account, and the expressions for deformation rates are as 

follows: 
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Inserting deformation rates (37) into rheological 

relationships, we shall have: 
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where µ – is fluid viscosity. Let us neglect the summands 

allowing for the external body forces (fφ=fr=fz=0) in the 

momentum equations, and also use the motion stationary 

condition (∂vr/∂t=∂vφ/∂t=∂vz/∂t=0) and condition (37), we 

shall have: 
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Substitution of tensions (38) into (39) shall lead to the 

following flow equations in the tensions: 
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The first two equalities (40) demonstrate that pressure p 

changes only along coordinate z, that is along the pipe. 

Integrating the first equation of equations (40) we shall have: 
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where c=0 owing to limitation of tangential stress prz along 

the pipe axis (r=0). Substituting the left part of (41) with 

equation (38), we shall have a differential equation for 

velocity: 
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The general solution for a homogeneous equation: 
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has the form: 
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where c1,c2,c3 - are constants of integration. Let us present 

partial solution for nonhomogeneous equation (42) as: 
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Let us find particular solution for velocity adding equations 

(44) and (45): 
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Let us define integration constants c1,c2 and c3 out of 

boundary conditions: 
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Here (47), (48) – are correspondingly conditions for 

adhesion and rolling of the particles along the pipe wall, and 

equation (49) takes place in the assumption allowing for axial 

symmetry of the movement. Value d – is particle diameter. We 

define from (49) that c3=0. We define from (47), (48): 
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Therefore, the equation describing flow velocity in a 

cylindrical pipe, with a glance to fluid microstructure, has the 

form: 
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In practice the assumption that h→0 corresponds to the fact 

that the representative volume is arbitrary small if compared 

with the scale of the movement region, and then for the studied 

flow there may be introduced small parameter k1=h/H, equal 

to ratio of characteristic dimension of the representative 

volume to diameter 2R. Let us also review relation 2h/d, 

demonstrating by how many times the linear dimension of the 

representative volume exceeds the inclusion diameter. Taking 

into account the fact that the representative volume must 

contain a rather large of microparticles, we shall assume that 

d/2h=k2<<1. Let us represent equations (51) in a 

dimensionless form, with a glance to numerical parameters k1 

and k2: 
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Fig. 4. Influence of microstructure on the fluid velocity inside a 

cylindrical pipe. 

 

Fig. 4 shows velocity profile ( )zv r  with annular zones of 

velocity’s increase and decrease, distinguished in the pipe 

cross-section, due to the fluid microstructure. In practice this 

result may be compared with, for example, blood behavior in 

small vessels, which is stipulated by presence of erythrocytes 

and other microparticles in the blood plasm. 

Integrating equation (51) describing the velocity along the 

pipe cross-section, let us calculate rate of fluid flow Q, taking 

microstructure’s influence into account. We shall have: 
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Here Q0 - is rate of fluid flow in the pipe cross-section, 

without regard for the microstructure. If k2→0, then the formal 

relative augmentation in the fluid flow due to the 

microstructure is 2
12 3k : 

 

2
0 11 2 3 .Q Q k = +

 
 (54) 

 

Therefore, the built model allows for the following 

inferences. Influence of the microstructure on the present type 

of movement consists in alternate increase and decrease in the 

velocity, as compared with the classic Puazeil distribution. 

Taking the microstructure into account leads to an increase in 

the fluid flow-rate. 

 

V. FLOW BETWEEN COAXIAL CYLIDERS 

As the region for fluid motion, let us consider the cavity 

between the two coaxial cylinders, which correspondingly 

have radii R_and R+, where R_< R+  (Fig. 5).  

 
Fig. 5. Flow between coaxial cylinders. 

 

Describing longitudinal flow between the cylinders, let us 

assume the shearing displacement of fluid’s surfaces r=const 

along axis Oz. In this case velocity components are: 

 

( )0, .r z zv v v v rϕ≡ ≡ =  (55) 

 

Let us reduce the combined equations describing movement 

by analogy with the case of movement in a cylindrical pipe: 
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where 0p z∂ ∂ =  in case when motion is caused by 

displacement of one of the cylinders, and 

p z p L const∂ ∂ = − ∆ = , if motion of the fluid occurs due to 

the pressure gradient. Integration of equation (56) gives us: 
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2
rz

p c
p r

z r

∂
= +

∂
 (57) 

 

In case of the cylinder pipe where 0 r R≤ ≤ , integration 

constant c was assumed to be equal to zero, so that shearing 

stress prz would be limited with r=0. However, in the studied 

motion 0 R r R− +< ≤ ≤ , and c may be nonzero. Thus, the 

differential equation for velocity is: 

 
2 1

.
6 2

z z
h p c

v v r
z rµ µ

∂
′′′ ′+ = ⋅ +

∂
 (58) 

 

Having integrated equation (58) by r once, we shall have: 

 

2
2 1

2ln ,
6 2

z z
ch q

v v r r c
µ

∗
∗′′ + = − + +  (59) 

 

where ( ) ( )2q p z µ= −∂ ∂ ; 2c∗  is integration constant. We 

shall notice that having omitted summand ( )2 6 zh v′′  allowing 

for influence of the fluid’s microstructure in the left part of 

(59), we shall have a general classical solution for velocity in 

the following form: 

 

( )0 2 1
2

0

ln .
2

z
cq

v r r r c
µ

∗
∗= − + +  (60) 

 

The general solution for inhomogeneous equation (59) is 

made up from the general solution for homogeneous equation: 

 

( ) ( ) ( ). . 3 4cos 6 sin 6 ,g hv r c r h c r h= +  (61) 

 

and particular solution vp.n.(r), which cannot be expressed 

through elementary functions since the right part of (59) 

contains a logarithmic function of integration variable r. Let us 

substitute function lnr for an approximate expression, using 

the following expansion: 

 

2 3
1 1

ln 1 1 1
2 3

r r r r

R R R R+ + + +

   
= − − − + − −   

   
…   (62) 

 

where 0 1r R+< ≤ . Expansion (62) shall be limited by a 

linear term. We shall have: 

 

ln ln ln ln ln 1.
r r r

r R R R
R R R

+ + +
+ + +

 
= = + ≈ + − 

 
 (63) 

 

Let us rewrite (59) taking (63) into account: 

 

2
2

1 2

1
1 2 2 1

,
6 2

ln 1
, .

z z
h q

v v r c r c

c R
c c c c

Rµ µ

∗∗ ∗∗

∗
∗∗ ∗∗ ∗ ∗ +

+

′′ + = − + +

−
= = +

 (64) 

 

Using the right part of equation (65), we may deduce a 

partial solution: 

 

( ) ( ) 2 2
. . 1 22 6p nv r q r c r c h q∗∗ ∗∗= − + + + . (65) 

 

Let us find the general solution for velocity summing (61) 

and (65): 

 

( ) 2
1 2 3 4

6 6
cos sin ,

2
z

q r r
v r r c r c c c

h h
= − + + + +  (66) 

where 1 1 ,c c∗∗= 2
2 2 6.c c h q∗∗= +  

 

Formulating boundary conditions for adherence, it is 

necessary to separate the cases when the fluid moves as a 

result from displacement of one of the cylinders (simple 

shearing strain): 

 

, 0z zr R r R
v V v

+ −= =
= = ,  (67) 

 

and, when the movement is caused by pressure gradient 

p z∂ ∂ :  

 

0, 0.z zr R r R
v v

+ −= =
= =  (68) 

 

where V is velocity of the upper cylinder’s movement. For 

both specified cases, the conditions defining rolling motion on 

the upper and lower boundaries are: 

 

0,
3

0.
3

z zr R
r R

z zr R r R

d
v v

d
v v

+

+

− −

=
=

= =

′′ ′′′− =

′′ ′′′+ =

 (69) 

 

Substitution of general solution (66) into relations (69) 

gives us a linear algebraic system relative to unknown 

quantities c3 , c4, after solving which we shall find: 
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2

3

2

4

3
cos

2
,

6 3 2 3
cos sin

2 3 2

3
sin

2
.

6 3 2 3
cos sin

2 3 2

R R
q

hh
c

R R R Rd

h h h

R R
q

hh
c

R R R Rd

h h h

+ −

+ − + −

+ −

+ − + −

 +
  
 = −

   − −
+      

   

 +
  
 = −

   − −
+      

   

 (70) 

 

Let us assume that 0p z∂ ∂ =  for the simple shearing strain, 

then q=0, and expression (66) for velocity, taking (70) into 

account, shall be: 

 

( ) 1 2.zv r c r c= +  (71) 

 

Having calculated c1 and c2 out of boundary conditions (67) 

we shall have: 

 

( ) ( ).z
V

v r r R
R R

−
+ −

= −
−

 (72) 

 

Let us compare solution (72) with classical solution: 

 

( )
( )

( )0
ln ,

ln
z

V
v r R r

R R
−

− +
=  (73) 

 

which can be obtained from (60) with q=0 and values of 

constants 1c
∗ , 2c∗  meeting boundary conditions (67). Let us 

introduce dimensionless quantities R R− +∆ = , r r R+= , 

z zv v V= , 0 0
z zv v V= , and represent expressions (72) and 

(73) correspondingly as: 

 

( )

( )0

,
1

ln ln
,

ln

z

z

r
v r

r
v r

− ∆
=

− ∆
∆ −

=
∆

 (74) 

 

where ( )0..1∆ ∈ , [ ]0..1r ∈ . Changing of values ∆ and r  

within the specified limits makes it possible to present 

expressions ln ∆  and ln r as Taylor convergent series:  

 

( ) ( )

( ) ( )

2 3

2 3

ln 1 1 2 1 3

ln 1 1 2 1 3r r r r

∆ = ∆ − − ∆ − + ∆ − −

= − − − + − −

…

…

  (75) 

 

Substituting expansions (75), taken in linear approximation, 

into expression (74), we shall have: 

 

( ) ( )0
.

1
z z

r
v r v r

− ∆
≈ =

− ∆
 (76) 

 

Thus, in case of simple shearing strain between coaxial 

cylinders, the solution for velocity ( )zv r is an approximate 

example of classical solution ( )0
zv r , and the harmonic 

component of velocity in general solution (66) turns to zero 

under boundary rolling conditions, as well as in the case of 

simple shearing strain between parallel plates.  

Next, let us examine fluid motion between stationary coaxial 

cylinders under pressure gradient ( )0q ≠ . Transforming 

equations into dimensionless form, we shall have, 

correspondingly: 

 

( ) ( )

( )
( )

2

2
1 11

2
1 1

2

0 2

1

3 1 3
sin sin

2 22
,

3 3 1 2 3 1
cos 2 sin

2 3 2

1 ln ln
,

ln

z

z

v r r r

r r

k kk

k
k k

r
v r r

= + ∆ − − ∆ +

   − ∆ −
      
   + ⋅

   − ∆ − ∆
+      

   

∆ − + ∆
= −

∆

 (77) 

where  

( ) ( )
( )

2 0 0 2

1 2

2 , 2 ,

, 2 .

z z z zv v qR v v qR

k h R k d h

+ +

+

= =

= =
     

 

In (77) let us use expansions (75) retaining only linear terms 

in them; we shall have:  

 

( ) ( )0 21 ,zv r r r≈ + ∆ − − ∆  (78) 

 

which corresponds to the main part of expression (77). 

Thus, influence of the microstructure on fluid velocity ( )zv r  

is presented in formula (78) by a fraction with a low 

coefficient of second order by k1. The character of the 

influence may be followed up if we compare the schematics 

for expressions (77) and (78) built for values: 0.6∆ = , 

1 0.1k = , 2 0.1k =  on Fig. 6.  

 
Fig. 6. Influence of fluid’s microstructure on the velocity of 

longitudinal flow between coaxial cylinders 
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According to the schematics, the changing of the fluid's 

velocity caused by the microstructure, for the case of a 

longitudinal flow between coaxial cylinders, presents the same 

picture as in the case of enforced flows in a flat-bed channel 

and a cylindrical pipe. Notwithstanding some difference in the 

mathematical expression, the disturbance imposed on the 

square velocity distribution by microstructure preserves 

harmonic character. Disturbance period 12 2 3T kπ=  is 

proportional to small number k1 defining the relation between 

the typical structural scale h and radius R+ of the biggest 

cylinder. It may also be seen out of the presented schematics 

that the maximum value of the velocity is not achieved at the 

midpoint between the upper and the lower cylinders, but it is 

achieved nearer to the external boundary, as in the classical 

solution for the task. 
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