
  

 

  

Abstract—This paper presents parameters estimation of EVA 
(EVA – German abbreviation for Erzeugung, Verteilung and 
Aufteilung meaning Production, Distribution, and Mode Choice) 
mode choice model of city of Ljubljana, Slovenia by using genetic 
algorithms software. First we present design of stated preference 
survey, then we briefly review EVA mode choice model, present 
different types of utility functions, Maximum likelihood method as 
the estimation method and application of genetic algorithms software. 
Probabilities of choosing each of four considered modes (private car, 
public transport, bike, walking) can be calculated by using estimated 
mode choice model parameters. A practical example of mode choice 
probabilities for an actual trip is shown at the end. Final log-
likelihood enables comparison among different types of utility 
functions. Results show that absolute differences in final log-
likelihood among most types of utility functions are not high in spite 
of differences in function shapes, which implies that different 
functions may best describe different variables. Log-likelihood 
function for most utility function types by using standard 
optimization tool only convergated to local maximum, what clearly 
states the need to use genetic algorithms software to find the best 
solution. 
 
Keywords— Genetic algorithms, Maximum likelihood method, 

Mode choice model, Stated preference survey, Utility function. 

I. INTRODUCTION 

RADITIONAL four-step transportation forecasting model 
consists of trip generation, trip distribution, mode choice 

and network assignment. An up-to-date disaggregated four-
step traffic model for passenger transport of Ljubljana region 
had already been developed. However, the existent traffic 
model contains only utility functions of travel time and not of 
all mode choice affecting trip factors, what indicates the need 
to upgrade the model. Four modes are included in the traffic 
model, namely private car, public transport, bike and walking.  
First step was to perform a stated preference survey in order 

to obtain the necessary data. Many directions for designing a 
stated preference survey are described in [1] and [2].  
Stated preference survey was performed with portable 
computers on several locations all over Ljubljana. Several 
locations were needed to ensure a representative sample and 
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the required sample size for all investigated trip purposes 
(work, education, shopping, leisure and other).  
In stated preference survey 75 to 100 questionnaires per 

segment are needed, so the sample size has to be about 1000 
survey respondents as utility functions are to be estimated for 
ten origin-destination purposes. However, as mode choice 
does not usually change for trips back from the destination, 
five trip purposes were used. Thus, the sample size of 500 
survey respondents would be sufficient. In order to ensure 
stable Maximum likelihood estimation solution, 1276 surveys 
were made, to achieve sample size 150 per segment [3]. 
Number of surveys made for each purpose is shown on Fig. 1. 
References [4] and [5] were taken into consideration when 
defining relevant trip purposes.  

 
Fig. 1 Number of surveys made for each purpose 

 
The survey includes questions about the usage of different 

modes in different situations. The questionary consists of ten 
hypothetical situations in which values of trip factors change. 
In each situation each traveler was asked to choose the most 
suitable mode for him if the situation actually occurred. 
The second step was to estimate nine types of utility 

functions for each generalized cost parameter. These were 
estimated with Maximum likelihood method, by using genetic 
algorithms software.  
The last step was to calculate probabilities of choosing each 

mode for an example trip by using estimated EVA 2 utility 
functions. 

II. STATED PREFERENCE SURVEY  

Stated preference data are convenient for estimating mode 
choice model parameters, since an alternative as a whole is 
described as a constituent of different factors as the analysis of 
stated preference survey data derives the relative importance 
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of different factors. Since SP derives relative importance of 
factors, their nature can be also described with the term 
generalized cost parameters.  
In stated preference survey travelers were first asked about 

some factors of current trip, e.g. duration, costs, and about 
available alternatives. If there were other alternatives 
available, travelers were asked about similar information for 
them as well. Each interviewee was then asked to choose the 
most suitable mode in ten hypothetical situations with different 
values of trip factors. The questionary design, and the 
generation of the situations will be briefly explained bellow. 

A. Questionary Design 

In stated preference survey, four modes were taken into 
account, namely private car, public transport, bike and 
walking.  
The following factors were included for trips made by 

private car: travel time in minutes, walking time from parking 
to destination in minutes, parking price in euro. Factors for 
public transport were: travel time in minutes, comfort, price of 
public transport in euro, frequency in minutes between two 
succession arrivals and walking time from origin to start 
station and from final station to destination in minutes. For 
trips made by bike and on foot, travelers were only asked 
about travel time.  

TABLE I 
FACTORS WITH THEIR LEVELS 

Mode Factor Levels 

Car Parking price actual 
+50% 

–50% 
 Travel time 

 
actual 
+20% 

–20% 
 Walking actual 

+20% 

–20% 
Public transport Public transport price actual 

–25% 
–50% 

 Walking 
 

actual 

–20% 
–40% 

 Frequency actual 

–20% 
–40% 

 Travel time 
 

actual 

–25% 
–50% 

 Comfort 
better
actual  

 
Fractional factorial design was used to design hypothetical 

situations needed. Fractional factorial designs are experimental 
designs consisting of a carefully chosen fraction of the 
experimental runs of a full factorial design. Fractional designs 
are expressed with the notation lk-p, where l is the number of 
levels of each factor investigated, k is the number of factors 

investigated, and p is the number of generators, i.e. 
assignments as to which effects or interactions are confounded 
(cannot be estimated independently of each other). 
The study contains seven factors on three levels and one 

factor on two levels, as shown in Table I.  
From Table I we can see that factors for car change up and 

down, whereas factors for public transport only changes for the 
better. The reason is a transport policy goal to enlarge the 
share of public transport users in comparison to private car 
users. That means that only changes for the better in public 
transport are needed. Some helpful tips for choosing relevant 
trip factors and their levels were adopted from [6] and [7]. 
Table I shows that parking price variability was in 

percentage. Since some free parking lots in Ljubljana are 
available, the price would not change in situations, which 
would mean less realistic results of the parking price affecting 
the mode choice. In case of free parking, a new parking price 
was set to generate situations. For purposes work and 
education that price was 5€ and for other purposes it was 2€. 
The prices were chosen on basis of parking duration for 
different purposes and an average price of parking in 
Ljubljana. Prices, set like described, than change in 
hypothetical situations.  
According to number of factors and their levels a Mixed – 

Level L18 – 2×3
7-5 Fractional Factorial Design as in [8], should 

be built and is presented in Table II. Generation of eighteen 
hypothetical situations would therefore be needed. In each of 
those eighteen situations factors would be on a different level 
and the traveler would have to choose the most appropriate 
mode.  

TABLE II 
L18 — 2 X 37-5 FRACTIONAL FACTORIAL (MIXED-LEVEL) DESIGN 

Run X1 X2 X3 X4 X5 X6 X7 X8 

1 1 1 1 1 1 1 1 1 

2 1 1 2 2 2 2 2 2 

3 1 1 3 3 3 3 3 3 

4 1 2 1 1 2 2 3 3 

5 1 2 2 2 3 3 1 1 

6 1 2 3 3 1 1 2 2 

7 1 3 1 2 1 3 2 3 

8 1 3 2 3 2 1 3 1 

9 1 3 3 1 3 2 1 2 

10 2 1 1 3 3 2 2 1 

11 2 1 2 1 1 3 3 2 

12 2 1 3 2 2 1 1 3 

13 2 2 1 2 3 1 3 2 

14 2 2 2 3 1 2 1 3 

15 2 2 3 1 2 3 2 1 

16 2 3 1 3 2 3 1 2 

17 2 3 2 1 3 1 2 3 

18 2 3 3 2 1 2 3 1 

 
Generating eighteen hypothetical situations would mean a 

huge practical barrier, since it would mean a long questionary 
which causes problems in travelers’ concentration and possible 
choices different to choices made, if the situation actually 
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occurred. We decided to split eighteen designed situations 
between two interviewed persons, each answering nine 
situations. Our choice included one control situation, in which 
factors are the same as given for the actual trip. This situation 
was a control, if the traveler choice process was in compliance 
with his actual mode choice. 
We conducted the Stated Preference survey with portable 

computers in different locations around Ljubljana. Different 
locations were needed to ensure a representative sample and 
the required sample size for investigation purposes. The survey 
forms were made in Microsoft Access program.  
Survey was performed in two steps. First step was entering 

requested data of current trip e.g. travel time, costs etc. and 

listing available alternatives. If there were other alternatives 
available, entering similar information for alternatives was 
needed too. On this basis, generation of ten hypothetical 
situations was made and choosing of most appropriate mode 
among available in each situation was requested as second 
step. An example of choice process in one situation is shown 
on Fig. 2. Modes offered to choose in hypothetical situations 
are the same as those available for the traveler. If the person 
surveyed does not mark one alternative as available, choosing 
the same will not be possible and parameters of this alternative 
do not appear to prevent choosing alternatives without given 
factor values. 

 

 
Fig. 2 Example of a hypothetical situation 

 

III. EVA TRIP DISTRIBUTION AND MODE CHOICE MODEL 

In this chapter we briefly review EVA trip distribution and 
mode choice model, described in [9], present types of utility 
functions tested, model for calculating mode choice 
probability and parameter estimation method described in 
[10]. 
EVA model generalizes simultaneous trip distribution and 

mode choice to trilinear model described by (1). 
 

).,...,1;,...,1;,...1( pknjnimdoWT kjiijkijk ===⋅⋅⋅=  (1) 

 
In (1) notation Tijk presents trips from zone i to zone j by 

mode k, oi, dj, and mk are the balancing factors used to keep 
marginal sums of productions, attractions, and mode trips, and 
Wijk are weighted utilities of making trip from zone i to zone j 
by mode k. Weighted utilities are calculated as a product of 
accessibility of mode k in zone i and product of all utilities of 
making trip from zone i to zone j by mode k considering each 
generalized cost parameter for mode k (e.g. time, parking cost, 

fare,…). 
To keep marginal sums of productions and attractions 

balancing factors oi, dj, and mk must be determined so, that the 
following constraints are satisfied: 
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A. Utility functions  

The main task of the study was to evaluate different utility 
function types on data from the stated preference survey, in 
order to decide which type of utility function should be used in 
EVA mode choice model. Parameters of nine different types of 
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utility functions must therefore be estimated. 
In (5) – (13) x is a generalized cost parameter, f(x) is utility 

function, describing one generalized cost parameter, and a, b, 
and c are parameters of the utility function. The following nine 
types of utility functions have been studied: 

 

EVA 1 
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Logit 
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Combined 
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B. Maximum likelihood method 

Probability that trips between zone i and zone j will be made 
by mode k can be calculated from 
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where A(ij) is set of available alternatives between zone i 

and zone j. 
Model parameters a, b, and c have been estimated by using 

Maximum likelihood method, described in [1]. 
Likelihood function, which shows the model probability that 

each individual chooses the option they actually selected is 
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Expression gjq appears in likelihood function, which is 

defined by (16). In both expressions Q stands for a set of all 
situations conducted in experiment, A(q) alternatives available 
in situation q and Aj the alternative chosen in situation q. 
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As it is more convenient to use natural logarithm of L, 

model parameters can be estimated by finding such parameters 
a, b, and c where l in (17) has maximum. 
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IV. APPLICATION OF GENETIC ALGORITHMS 

A major limitation appears when estimating parameters with 
standard optimization tools, since the mathematical properties 
of these utility functions do not guarantee convergence to a 
global maximum likelihood estimate. The solution obtained by 
a nonlinear programming optimizer may critically depend on 
the location of the starting parameters values and convergating 
to a local maximum likelihood if starting values are not close 
enough to lead to a global maximum.  
Genetic algorithms are very suitable for searching discrete, 

noisy, multimodal and complex spaces, since their application 
leads to a solution, that is not necessary the exact global 
maximum, but is in a neighborhood of the optimal solution. 
Genetic algorithms are a special technique of artificial 

intelligence. They use random search procedures inspired by 
biological evolution, and cross-breeding trial, and allow only 
the fittest solutions to survive and propagate to successive 
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generations. When using genetic algorithms to solve an 
optimization problem, the decision variables (utility functions 
parameters) are commonly encoded as short substrings of 
genetic representations. Each substring is composed of a series 
of genes. These substrings are concatenated to form longer 
strings representing a solution. The entire population of such 
strings represents a generation. A new set of strings (children 
or offspring) is created every generation using parts or pieces 
of the fittest strings (parents) of the previous generation. [11]-
[16]. 
An example of limitation in searching maximum likelihood 

by using standard optimization tools is shown with tables III 
and IV and Fig. 3.  
Parameters a, b, and c of  EVA 2 utility function for 

purpose work, using Microsoft Excel optimization tool Solver 
(Newton method) are shown in Table III, when starting values 
of all parameters are set to 1. Log-likelihood function 
convergated to a final log-likelihood –601.412.   
 

TABLE III 
EVA 2 UTILITY FUNCTION PARAMETERS FOR PURPOSE WORK – SOLVER 

Factor unit 
Parameter 
a  

parameter 
b  

parameter 
c  

Travel time – 

private car 
min 0.925 0.542 0.159 

parking price € 1.896 0.953 0.272 
Travel time – public 

transport 
min 1.999 0.801 1.189 

Walking time - 

public transport 
min 0.221 1.498 2.081 

Public transport 

ticket price 
€ 0.331 1.575 1.629 

Travel time - bike min 1.864 1.317 1.524 
Travel time - 

walking 
min 1.579 2.048 3.028 

 
Table IV shows estimated values of parameters a, b, and c 

of  EVA 2 utility function for purpose work by using genetic 
algorithms optimization software Evolver included in Palisade 
DecisionTools Suite 5.5, which integrates into program 
Microsoft Office Excel.  
  

TABLE IV 
EVA 2 UTILITY FUNCTION PARAMETERS FOR PURPOSE WORK – EVOLVER 5.5 

Factor unit 
Parameter 
a  

parameter 
b  

parameter 
c  

Travel time – 

private car 
min 3.409 1.771 52.666 

parking price € 40.253 0.493 203.578 
Travel time – public 

transport 
min 51.010 0.563 2637.739 

Walking time - 

public transport 
min 3597.371 2.185 1238.828 

Public transport 

ticket price 
€ 2420.575 1.982 216.720 

Travel time - bike min 1616.083 0.960 12020.827 
Travel time - 

walking 
min 3.068 1.712 14.025 

 
A higher maximum log-likelihood value (–595.849) 

provided by Evolver 5.5 obviously implies better optimization 

when genetic algorithms are used. Obviously, when using 
optimization tool Solver, log-likelihood function only 
convergated to a local maximum likelihood value, despite 
strict convergation limits. However, the global maximum of 
log-likelihood was find by using Solver, when starting value of 
parameter a was set to zero, what states that optimization 
algorithm is obviously critically depended on location of 
starting values.  
Although the relatively small difference in final log-

likelihood does not seem important at first sight, a quick look 
on Fig. 3 shows that the shape of EVA 2 utility function with 
estimated parameters by using each optimizer is quite 
different.  
Shape of EVA 2 utility function is more believable, when 

parameters are estimated by using Evolver 5.5. Although the 
height of utility function may not be such important since the 
probability of using each mode is calculated by dividing 
utilities, function values changing slower for lower transport 
ticket prices when using Evolver 5.5 in contrast to almost-
convex shape when using Solver, clearly states that using 
genetic algorithms leads to better results.  
 

 
Fig. 3: Probability of choosing each mode 
 

 TABLE V 
UTILITY FUNCTIONS PARAMETERS AND THEIR FINAL LOG-LIKELIHOOD 

Utility 
function 
type 

parameter a  parameter b  parameter c  
Final log-
likelihood 

EVA 1 1.425 4.733 0.834 -598.126 

EVA 2 2420.575 1.982 216.720 -595.849 

Schiller 5.987 4.441 / -679.460 

Logit / / -0.306 -601.329 

Kirchhoff / / -0.543 -618.590 

Boxcox / 1.728 -0.043 -590.741 

Combined 0.720 -0.069 -0.454 -586.905 

Code 3.356 0.106 0.010 -626.364 

Box - tukey / 0.512 -0.056 -581.579 

 
When using some other types of utility functions, the 

estimated parameters were the same when using Solver and 
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Evolver. A good example are less complex utility functions 
Logit and Kirchoff, which do not require genetic logarithm 
optimizer, however, their simplicity results in convex and 
therefore less flexible function shape. 
Table V shows estimated values of parameters a, b, and c 

for nine different types of utility functions for purpose work 
for only one generalized cost parameter – public transport 
ticket price by using Maximum likelihood method. All 
parameters were estimated by using optimization tool Evolver 
to avoid local maximums, since most types of utility functions 

were too complex to ensure finding best solution with a 
standard optimization tool. Final log-likelihood in Table V 
was estimated for trip purpose work, with estimated 
parameters for all generalized cost parameters.   
With estimated utility functions parameters values, graphs 

of nine types of utility functions for each generalized cost 
parameter can be drawn for each purpose. Graphs of utility 
functions for generalized cost parameter public transport ticket 
price for purpose work are shown on Fig. 4. 
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Fig. 4: Utility Functions graphs 

 
One can observe that model which gives us the highest final 

log-likelihood is model with Box-tukey utility function, 
followed by Combined and others. Although final log-
likelihood does not differ much among most utility functions, 
graph shows different shapes among them. Whereas some of 
utility functions are monotonously falling and are convex 
(Schiller, Logit, Combined, Kirchhoff), others show more 
believable results.  
Shape of Kirchoff utility function is unbelievable at first 

sight, since its values are high (not close to zero) even when 
higher public transport ticket prices are high. But since the 

probability of using each mode is quotient between weighted 
utility of that mode and the sum of weighted utilities of all 
available modes, the height of function graphs is not 
important.  
Lower values of final log-likelihood for three out of four 

convex functions (Schiller, Logit, Kirchhoff) are not 
surprising, but Combined utility function with high final log-
likelihood is surprisingly convex, which may propose that 
Combined utility function is not the best fit for this particular 
generalized cost parameter.  
Final log-likelihood is the lowest, when Schiller utility 
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function is used. Graph shows that Schiller utility function is 
the lowest of them and using of this utility function for our 
mode choice model is less appropriate. Log-likelihood among 
other functions does not differ much, except Code and 
Kirchhoff utility functions give lower values. Whereas 
Kirchhoff utility function has the highest values when ticket 
price is very low or very high, the shape of Code utility 
function when ticket price is low is not as expected and is 
therefore questionable.  
We decided to use EVA 2 utility functions in final mode 

choice model, even though final log-likelihood for some utility 
functions is higher for the particular trip purpose. The reason 
for choosing this type of utility function is that no outstanding 
results for different generalized cost parameters and different 
purposes (which give us different values of final log-
likelihood) were found, preventing poorly described 
generalized cost parameters. 
In general, different types of utility functions for different 

generalized cost parameters would fit best, differently from 
purpose to purpose. Due to the Fundamental Counting 
Principle, number of possibilities when choosing one of nine 
different utility functions independently for each ten 
generalized cost parameters for each purpose is 
 

.3486784401910 ==iespossibilitN  (19) 

  
The total number of 3,486,784,401 possibilities for each 

purpose would be impossible to explore. Trying to evaluate 
different combinations of utility functions for generalized cost 
parameters would be unreasonable, since final log-likelihood 
is estimated for all generalized cost parameters together and 
does not show which parameter is described well with the 
chosen type of utility function, and which is described rather 
poorly.  
Table VI shows factors of an example trip (an actual trip 

from data of the survey), whereas table VII shows probabilities 
of choosing each mode calculated for trip with factors in table 
VI.  
To be able to compare probabilities of choosing each of 

four modes, the selected trip was such that all four modes were 
available. If one alternative was not available, mode choice 
model would split the total probability – 1 among other three 
available alternatives. 
 

TABLE VI 
EXAMPLE TRIP FACTORS 

Factor unit Factor value 

Travel time – private car min 15 

Parking price € 1.6 

Travel time – public transport min 30 

Walking time needed- public transport min 2 

Public transport ticket price € 0.8 

Travel time - bike min 25 

Travel time- walking min 45 

 

TABLE VII 
PROBABILITIES OF CHOOSING EACH MODE FOR EXAMPLE TRIP 

Mode Probability 

Private car 0.3788 

Public transport 0.3434 

Bike 0.2505 

Walking 0.0273 

 
We can see that for a trip with factors in table VI travelers 

would find private car most preferable mode for the trip, since 
the probability of choosing it is the highest. Public transport is 
second most preferable, followed by bike, whereas travelers 
would find walking least attractive, since probability of 
choosing it is far lower than for all other modes.  However, 
probabilities of choosing private car and public transport do 
not differ much. 
Since probabilities of choosing each mode for trips between 

zones i and j can be understood as shares of mode trips, the 
mode choice model calculates mode shares for trips between 
two zones, with given factors of trips between the two zones. 
EVA model calculates trip distribution and mode choice 
simultaneously, providing number of trips between each two 
zones with each mode. Effects of changes in factor values (e.g. 
building new roads and/or new bus lanes, faster buses, 
higher/lower ticket and/or parking price, etc.) on the traffic 
network in the studied area can be therefore be evaluated with 
the traffic model. 
On Fig. 5 graphs of probabilities of choosing each mode are 

shown for an example trip with factors in Table VI, where 
public transport ticket price changes. On Fig. 5 all the factors 
in table VI remain constant, but the public transport ticket 
price changes, to show how the price affects the probability of 
choosing each mode.  
Fig. 5 shows that the most preferable mode for the example 

trip is private car, as the probability of choosing it is the 
highest for all public transport ticket prices. Relative 
difference in probability of choosing private car in comparison 
to public transport is higher when public transport ticket price 
is higher.  
For low ticket prices usage of public transport is preferable 

to bike and walking, whereas for higher public ticket prices 
usage of bike and even walking is preferable.  
Probability of choosing public transport is the highest when 

public transport ticket price is zero, and it is falling with 
increasing public ticket price, whereas probability of choosing 
other modes increases when increasing public transport ticket 
price, which is the expected result.  
Choosing utility function type that does not necessarily 

result in convex shape reflects in the shape of changing 
probabilities; probability of choosing public transport is falling 
slowly for low public transport ticket prices, faster for higher 
ticket prices, and slowly falling to zero for high public 
transport ticket prices. 
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Fig. 5: Probability of choosing each mode 
 

V. CONCLUSION 

In order to estimate utility functions parameters Maximum 
likelihood method was used, which enables comparison among 
nine types of utility functions according to final log-likelihood. 
In order to find global maximum likelihood, genetic 
algorithms software was used. For the best fit, usage of 
different types of utility functions for each generalized cost 
parameter would be needed, which would mean a much too 
high number of combinations. For final EVA mode choice 
model EVA 2 utility functions were chosen, even though final 
log-likelihood for some utility functions for trip purpose work 
is higher. The reason is that no outstanding results for different 
generalized cost parameters and different purposes (which give 
different values of final log-likelihood) were found.  
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