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Abstract— Skeleton is at the main interest of 3D character 

animation. The most common techniques for skeleton computing are 

based on the Reeb graph and the shortest path finding. Using only the 

shortest path algorithms for extracting the critical points and 

constructing the Reeb graph over the surface of the model may 

generate unwanted skeleton joints. In this paper, we present a new 

approach to compute the skeleton of the 3D meshed model in a 

Riemannian space, based on Blum’s Medial Axis Transform and 

geodesic distance algorithm. We gain the benefit of geodesic distance 

functions and parameterization that allow for efficient handling of 

topological changes of dynamics curves and surfaces. Thus, our 

approach can provide the robustness against any changes of a rotation 

and/or a translation of the 3D mesh model. We are able to generate 

one-voxel thick, graph-like skeleton. Han and Poston’s Chord-to-

point Distance Accumulation then be applied for adjusting the 

locations of consecutive points along the skeleton. The smoothed 

skeleton is split in order to create segments and joints corresponding 

to its shape. The new skeleton can be regenerated later on. Therefore, 

the new skeleton produced from our method can capture the essential 

shape characteristics in a compact form, while preserving the 

meaningful anatomical information of the 3D character models. The 

demonstration of the approach with several examples is also 

provided. 

 

Keywords— Skeleton; Skeleton smoothing; Geodesic distance; 

Medial axis transform; Riemannian space; Chord-to-point distance 

accumulation.  

I. INTRODUCTION 

HE skeleton is a basic structure of representing the 3D 

objects, frequently used in computer graphics, especially 

in the areas of character animation and 3D modeling. Using a 

skeleton as an abstraction of an object has two major benefits. 

First, it can contain both shape features and topological 

structures of an original object. Another benefit depends on its 

characteristic to capture the essential shape of a 3D object in a 

low-dimension form. Numerous algorithms have been 

developed to generate the skeleton in graph-like or a curve-

like form [7], [8], [10], [11], [12]. Unfortunately, these 

approaches do not suit for producing a skeleton for use in 

animation since they need the additional processes to 

eliminate the redundant skeleton branches that may generate 

during the skeleton extraction process. The most common 

technique to represent the 3D objects, that has been the 

standard for many years, is the Reeb graph [11], originally 

defined by Reeb. The Reeb graph is obtained by applying the 

continuous function, usually a height function, to encode the 

topological structure. Using a height function to build a Reeb 

 
 
 

graph does not guarantee that the graph is invariant to the 

affine transformations, which is an essential feature of the 

skeletal structure of the model [12]. The extended version of 

the Reeb graph, called the Multi-Resolution Reeb graph 

(MRG) [7] has been proposed. To construct the MRG, the 

topological characteristics of the shape must be defined in 

terms of the critical points of a function on the manifold; this 

function is called a mapping function. The mapping function 

maps the points from the manifold of the shape to the domain 

of the function, and the configuration of the critical points of 

the mapping function can represent the topology of the shape 

[14]. This configuration can be embedded by the Reeb graph, 

and becomes an essential property of the shapes later on. 

When the mapping function is defined, the model is then 

partitioned into regions that correspond to equal intervals of 

the mapping function [15]. Each partition of the model is 

represented as a node in the Reeb graph, and adjacent nodes 

are linked by an edge that connects the corresponding nodes. 

To apply skeleton for use in character animation and 3D 

modeling, skeleton animation is a common technique for 

animating a 3D model. Controlling the movement of a 

skeleton in a way that is designed to appear naturally is 

accomplished using a control skeleton (sometimes called an 

Inverse Kinematics or IK skeleton). IK skeleton is an 

articulated structure of segments and joints combined with 

information detailing how the surface geometry of the figure is 

anchored to that structure. Recent work on semi-automatic 

skeleton extraction is introduced by Aujay et al. [2]. This 

system allows users select the starting point on the character 

model, and then it generates a skeleton to match the ones that 

are created by hand by professionals in most biped and 

quadruped cases. A method for fully automatic generation of a 

control skeleton is proposed by Wade and Parent [18]. The 

main task of the system involves discretizing the figure, 

computing its discrete medial surface (DMS), and then using 

the discrete medial surface both to create the skeleton and to 

attach the vertices of the model to that structure. However, a 

major drawback of Wade and Parent’s method is only features 

with a size greater than the voxel size can be taken into 

account. This often leads to computationally expensive 

algorithms.  

In this paper, we present a novel approach to compute the 

skeleton of 3D mesh model based on Blum’s Medial Axis 

Transform and geodesic distance algorithm. Blum et al. [4] 

propose to use the medial axis to define the skeleton. The 

algorithm for computing the skeleton in terms of the medial 

axis is often refers to as the “grassfire” algorithm. The main 

idea of the “grassfire” algorithm is lighting a fire, started from 

the border of the object, and let it burn into the object at a 
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constant speed; it will then meet in the medial axis. One starts 

on the border of the object and strips away one layer of pixels 

after another until one reaches points that fire reaches from 

two directions [1]. The medial axis transform of the region is 

the set of points reached by more than one fire at the same 

time. Unfortunately, the medial axis transform does not 

provide robustness against a rotation and a translation of the 

objects. Therefore, a more sophisticated algorithm is needed in 

order to solve this problem, and that algorithm is the geodesic 

distance functions. By using the geodesic approximation 

algorithm proposed by [9] to compute the “single source, all 

destination” shortest path on a surface of the model, any 

changes of a rotation and/or a translation do not affect the 

value of the function. Thus, this becomes the major property 

of the function of geodesic distance that gives the advantage 

of being invariant to a rotation and a translation. The basic 

idea of our approach is to iteratively snip off the spurious 

skeleton joints that have been produced from the step of the 

branch region determination. Applying the function of 

geodesic distance can guarantee that the new approach is 

invariant to a rotation and a translation, and it is also robust 

against the changes in the connectivity on the 3D shapes. 

Unfortunately, this raises the problem of producing 

meaningless joints since the location of skeleton joints does 

not match the real bone structure of the model. Thus, the 

additional operation is needed, by using the filtering process 

we can obtain the smoothed skeleton. Chord-to-point distance 

accumulation [6] then be applied in order to split the smoothed 

skeleton into the segments, and then the new joints are located 

correspond to chord-to-point distance accumulation values. A 

brief review of the medial axis transform and the geodesic 

distance function are illustrated in sections 2. The skeleton 

smoothing method based on Chord-to-point is outlined in 

section 3; we also demonstrate the usability of the smoothed 

3D skeleton with several figures, and the experimental results 

are shown in section 4. Finally, the conclusion and the 

evaluation of our approach are also provided. 

II. GEODESIC-BASED SKELETON SMOOTHING 

A. The Medial Axis Transform 

The idea of using a skeleton as an abstraction of the 

shape goes back to [4]. Blum et al. define a skeleton in 

terms of the medial axis (MA), which is a set of curves that 

roughly run along the middle of an object, as shown in 

figure 1. According to [4], the medial axis of a curve S is 

the locus of the centers of the maximal disks contained in S. 

Let R
n
 be a symmetry set (where n is a number of 

dimensional space) which is defined similarly to the medial 

axis, except that it also includes the circles not contained in 

S and thus the medial axis is a subset of the symmetry set. 

The medial axis can then be defined as follows:  

Definition 1. Let S be an arbitrary curved surface; Let 

D
n
(p, r) be a closed disk with a radius r centered at a point 

p, where  S(p, r) ⊆ R
n
. A maximal disk in S is a closed disk 

D
n
(p, r) contained in S. 

Property 1. If X is a maximal disk in S, then S is not 

properly contained in any other closed disk in S. 

Definition 2. Let S(p, r) ⊆ R
n
. The medial axis (MA) of S 

is the locus of the centers of the maximal disks contained in 

S. The medial axis of a 3D object denoted R
3
 is sometimes 

called the medial surface. The continuous function of a 

real-value that assigns to each center of a maximal disk in S 

is called the radius function of that medial axis.  

The medial axis together with the associated radius 

function of the maximal disks is called the medial axis 

transform (MAT). Then, the medial axis can be defined:  

Definition 3. The medial axis transform (MAT) of an object 

consists of its medial axis together with the associated radius 

function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The medial axis of an object. 

 

B. The Geodesic Distance Function 

A Riemannian space is a mathematical geometry concept 

that studies curves and surfaces in higher dimensions, giving a 

precise meaning to concepts like angle, length, area, volume 

and curvature. On a Riemannian system, the geodesic distance 

is the distance between two points on the surface of the model, 

computed by using the Dijkstra’s algorithm to find the shortest 

path between the two points on the surface made up by n 

points [14]. The following definitions characterize the 

geodesics based on [9].   

 

Definition 4. Given R
3
 be a surface in a Riemannian space G, 

and source vertex vs ϵ G, an explicit representation of the 

geodesic distance function D: G  R
3
. For any point p ϵ G, 

this function D(p) returns the length of the geodesic path from 

p back to the source vs. The approximation of D(p) can be 

given by  

||xi − xj || ≈ D(xi, xj) when xj ≈ xj 

 

Consider the length of a curve S, represented in R
3
 by 

p 

r 
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equations 

 

                     
 

Definition 5. The distance s between two points t1 and t2 on a 

curve          in R
3 
is given by 

 

         
    

  

  

                           

 

The minimum of (1) will be yielded a geodesic of the space, 

by using Euler’s or Lagrange’s equations:    
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Euler’s equations can be written in the form 

 

 

  
 
     

 

  
   

 

   
 
    

   
           

 

and, carrying out the indicated differentiation, we obtain 

 

     
   

    

   
         

 

 
 
    

   
         

     
   

  
 

 

by writing  

 

    

   
         

 

 
  
    

   
  

    

   
         

 

we obtain 

 

     
                  

     
   

  
 

 

if we use curve length as parameter,             then the 

equation becomes  

 

     
                    

 

multiplying by      we obtain 

 

                                                                  
 

These are the desired equations of geodesics. In equation 

(2), dots denote the differentiation with respect to the length 

parameter of the curve S. According to [3], the geodesic 

distance function given by Eq. (2) is rotation and translation 

invariant.  

III. IMPLEMENTATION DETAILS 

A. Pruning the skeleton 

According to [16], the following definitions are used to 

formally define the skeleton in our approach:  

Definition 6. The degree of a point is defined as a finite 

number of points in its 26-neighborhood (figure 2 shows the 

26-neighborhood structure). 

 

Figure 2. The 26-neighborhood structure. 

Definition 7. By the assumption that the skeleton is one-voxel 

thick, the skeleton end point is a point that has a degree one. 

The middle point is a point that has a degree two. The 

connection point is a point that has a degree three or higher 

and all the other neighbors are either the end points or the 

middle points. The branched connection point is a point that 

has a degree three or higher and at least one of its neighbors is 

neither an end point nor a middle point. The 26-connected 

branched connection points form the branched region. 

Algorithm 1 shows the steps of pruning the skeleton, the 

original 3D object, and the result of pruning are shown in 

figure 3. The method involves of nine different steps:   

(1) Compute the degree of each point. 

(2) Determine which point are the end points, the middle 

points, the connection points, and the branched connection 

points. If there are no branched connection points, exit the 

program. 

(3) Organize the branched connection points into the branched 

regions. Each branched region consists of 26-adjacent 

branched connection points.  

(4) In each branched region, find all the end points and the 

middle points that are 26-adjacent to this branched region, and  
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Input:  A set of points on the surface of model, P = {p1, p2, …, pn}. 

Output: The pruned skeleton of the given model. 

// Read P and determine which p is an endpoint, a middle point, a connection point, and a branched connection point.  

for all p  surface 

compute degree of p 

  if degree of p = 1 

   p  endpoint 

    if degree of p = 2 

     p  middle point 

      if degree of p ≥ 3 and all the other neighbors are either the end points or the middle points 

       p  connection point 

          if degree of p ≥ 3 and at least one of its neighbors is neither an end point nor a middle point 

          p  branched connection point 

          store p in ListOfBranchedConnectionPoint 

          end if 

      end if 

    end if 

  end if 

end for 

// Construct a branched region from p in ListOfBranchedConnectionPoint. 

for all p  ListOfBranchedConnectionPoint  

 if NumberOfNeighbours(p) = 26 

  construct BranchedRegion(p) 

 end if 

end for 

// Find the end points and the middle points that are 26-adjacent to this branched region, and mark each as “terminator”. 

for all p  BranchedRegion 

 if degree of p = 1 

   p  endpoint 

   p  terminator 

     if degree of p = 2 

      p  middle point      

p  terminator    

end if    

 end if 

end for 

// Determine the centroids in each branched region. 

// Compute the geodesic distance and find the shortest path correspond to each centroid. 

for all p  BranchedRegion       N       N       N 

CentroidOfBranchedRegion = (∑xi/N, ∑yi/N, ∑zi/N) 

                         i=1      i=1      i=1 

  if p ≈ CentroidOfBranchedRegion 

   p  centroid 

    geod_dist (p, pi)  // compute the geodesic distance from centroid to all pi, where pi = terminator 

Dijkstra’s_shortest_path (p, pi)   // apply the Dijkstra’s algorithm  

// to find the shortest path from centroid to all pi 

    construct ShortestPath(P) where P = (p, pi)    

end if 

end for 

// Remove the branched connection points that are not on any of the shortest paths. 

// Construct the pruned skeleton.  

for all p  BranchedRegion  

 for all p  ListOfBranchedConnectionPoint  

  if p  ShortestPath 

   remove p  

   update ListOfBranchedConnectionPoint 

   construct PrunedSkeleton(p)  // construct the pruned skeleton from the remaining points in the list 

end if 

end for   

end for 

 

Algorithm 1 Skeleton pruning method. 
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mark each as “terminator”. 

(5) Determine the centroids, based on Blum’s definition of a 

skeleton; the skeleton points must be the centers of the 

maximal disks contained in the curve C. 

(6) Compute the geodesic distance from the particular 

centroids to all points in step 4. 

(7) Apply the Dijkstra’s algorithm, in order to find the shortest 

paths between the centroids and their “terminator”. 

(8) Remove the branched connection points that are not on any 

of the shortest paths. 

(9) Generate the pruned skeleton from the remaining points. 

 
 

Figure 3. (a) The original 3D mesh model (b) Constructing the 

pruned skeleton. 

B. Smoothing the skeleton 

Once we can eliminate a large number of spurious skeleton 

joints, the next problem is raised which is the meaningless 

points that align unreasonably along a skeleton. These points 

can affect on the later creation of segments and joints, 

therefore the pruned skeleton is subjected to a smoothing 

operation. The smoothing process involves calculating the 

average position of consecutive points along the pruned 

skeleton, reassigning the new joints by splitting a skeleton into 

the segments [17]. 

i) Adjusting the skeleton 

The pruned skeleton has been originated with a one-voxel 

thick, in a graph-like form as shown in figure 3 (b). Before we 

apply chord-to-point distance accumulation to the pruned 

skeleton, the skeleton needs to be smoothened as nearly as a 

curve. This can be accomplished by using the average filtering 

over a sliding window consisting of five consecutive points to 

adjust the positions of consecutive points along the skeleton.  

Let C = {pi = (xi, yi, zi), i = 1,…, N} be the set of coordinate 

of points on the skeleton. The ith point in the set is denoted by 

pi and pi+1 is its neighboring point. To calculate the average at 

the point pi, we make an approximation of the change in the 

positions of two consecutive points before pi and two 

consecutive points after pi and divide it by 5 (the number of 

points between   pi-2, …, pi, …, pi+2). Thus, the average 

position (vi) over the point pi can be defined as equation (3). 

The filtering process is illustrated in figure 4. 
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ii) Locate the smoothed joints 

 

After the smoothed skeleton is formed, the next step is to 

determine which points should be split. Splitting of the 

skeleton is accomplished by considering chord-to-point 

distance accumulation value. We applied chord-to-point 

distance accumulation proposed by Han and Poston [6] to our 

method. Unlike Han and Poston’s method, we use the 

geodesic distance instead of the Euclidean distance. 

The distance feature computed by Han and Poston’s method 

is invariant with respect to rotation and translation which is a 

major benefit for animating a skeleton. Chord-to-point 

distance accumulation is the distance measurement from the 

line to a point in the curve segment. The interpretation of 

chord-to-point distance accumulation can be defined as 

follows. 

Let L be a fixed integer value defines a line Li from each 

point pi to pi+L, where i+L is taken modulo N. The 

perpendicular distance Dik is computed from Li to the point pk. 

The distance is positive if pk is on the left-hand side of the 

vector (pi+L- pi), negative otherwise. Chord-to-point distance 

accumulation for a point pk and a chord length L is the sum hL 

of the Dik as i moves from k-L to k. That is, 
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Figure 5 illustrates chord-to-point distance accumulation, 

and shows an example in the case of Dij is positive and Dik is 

negative.   

The basic idea of locating the new joints depends on chord-

to-point distance accumulation value. After the smoothed 

skeleton is formed, the points that align along the smoothed 

skeleton can be classified into three classes. The end point is a 

point that has only one adjacent neighbor. The junction point 

is a point that has three or more adjacent neighbors. The 

intermediate point is a point that has exactly two adjacent 

neighbors. The end points and the junction points split the 

smoothed skeleton into a set of connected segment or bones. 

We use the end points and the junction points to form the 

initial joints of the skeleton. In each segment of the skeleton 

(see figure 4 (b)), we iteratively select the point from vi+1 to 

vN-1 and compute chord-to-point distance accumulation 

correspond to each selected point. The selected point becomes 

the splitting point if ||Dij|| = ||Dik|| e.g. v5 is the splitting point 

since chord-to-point distance accumulation value at v3 equals 

to chord-to-point distance accumulation value at v7 . Then we 

can form two bones from the corresponding segment, the first 

bone whose joints are located on v1 and v5, another bone 

whose joints are located on v5 and v10 respectively. In the case 

of more than one splitting point is created, the sub segment 

will be formed (this sub segment becomes a bone later on), 

and more joints may be created from the corresponding sub 

segment. Figure 4 (c) shows the final result of the smoothed 

skeleton generated from our method. The algorithm for 

smoothing the skeleton is also shown. 

 

IV. EXPERIMENTAL RESULTS  

The pruning algorithm is tested on the Princeton Shape 

Benchmark database [13], and a standard handmade model 

(from Autodesk’s Maya software). A brief comparison 

between the results of the proposed method and their original 

skeleton, extracted by using the Reeb graph is provided. The 

 
 

Figure 5. Chord-to-point distance accumulation. 

 

 

 

   

  

Figure 2. The method for smoothing the pruned skeleton. (a) The average position v5 over p5 = (p3+p4+p5+p6+p7)/5, in order to obtain the 
smoothed skeleton, the average position vi is computed for each pi on the pruned skeleton. (b) The result of applying the smoothing 

operation to the pruned skeleton from figure 2 (a), Once the smoothed skeleton is formed, chord-to-point distance accumulation is applied 

for splitting the smoothed skeleton into segments in order to form bones and joints. Notice that the best split is formed at v5 since the value 

of chord-to-point distance accumulation at v3 and v7 are equal. (c) The new joints are formed as a result of the best splitting based on 

chord-to-point distance accumulation. 

(a) (b) (c) 

v5 

p5 

v5 
v3 

v7 

 

Figure 4. The method for smoothing the pruned skeleton. (a) The average position v5 over p5 = (p3+p4+p5+p6+p7)/5, in order to 

obtain the smoothed skeleton, the position vi is computed for each pi on the pruned skeleton. (b) The result of applying the 

smoothing operation to the pruned skeleton from figure 4 (a), Once the smoothed skeleton is formed, chord-to-point distance 

accumulation is applied for splitting the smoothed skeleton into segments in order to form bones and joints. Notice that the best 

split is formed at v5 since the value of chord-to-point distance accumulation at v3 and v7 are equal. (c) The new joints are formed as 

a result of the best splitting based on chord-to-point distance accumulation value. 

//Given skeleton V consists of N points places in a 

queue Q. 

Smoothen(V, N) 

 If N ≤ 0 

  Return V 

 Repeat  

  Q  V 

  N  1 

  Repeat while Q ≠   

   v  POP(Q) 

Compute hL(k) 

   If ||Dij|| = ||Dik|| 

   V  V-v 

N  N + 1 

Return v Algorithm 2 The iterative smoothing. 
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proposed method can reduce the number of the branched 

connection points, which is similar to the number of critical 

points in the original Dijkstra’s algorithm therefore the 

spurious skeleton joints can be removed. These joints will not 

influence the structure of the skeleton because they are not on 

any of the shortest paths computed by Dijkstra’s algorithm. 

The pruned skeleton can then be generated in the sense that it 

can capture the essential shape of a 3D object while preserving 

a compact form of its data structure. Figure 6 shows the 

experimental results.  

 
Mesh Number of vertices 

The Reeb 

graph 

The pruned 

skeleton 

Cow         2904            2655 

Rabbit         1238            1026 

The Dragon         1166            1011 

The Alien          429            303 

The Femme          635            503 

Boy        17342          16017 

Table 1. Comparison of the number of points between the proposed 

method and the original model. 

 
Object Number 

of 

vertexes 

Number 

of  

faces 

Number of control 

segments 

The 

pruned 

skeleton 

The 

smoothed 

skeleton 

M149-

boy 

16017 32007 860 19 

M232-

alien 

732 1436 40 30 

Femme 503 1002 50 26 

Horse 535 1058 56 27 

Dinopet 2039 3999 120 31 

 

Table 2. Comparison of the number of control segments between the 

smoothed skeleton and the pruned skeleton. 

Table 1 compares the number of points after applying the 

pruning algorithm with the number of points of the original 

3D objects. The proposed method can reduce the number of 

critical points in the graph’s nodes, the branched connection 

points in a skeleton graph. Therefore, the numbers of the 

spurious skeleton joints are reduced comparable to the number 

of unnecessary joints generated by the Reeb graph method. 

We also demonstrate our smoothing alogorithm on several 

pruned skeletons generated from algorithm 1, as shown in 

figure 7. A brief comparison between the results of the 

smoothing algorithm and their original pruned skeletons is 

provided (figure 6). The smoothing algorithm can produce a 

useful control skeleton, the number of control segments can be 

significant reduced in the sense that it is still enough for use in 

animation. Most of the control skeletons produced from our 

algorithm are centralized, and run along to the ends of the 

main branches of the models. 

Table 2 shows the results of the number of control segments 

after applying the smoothing algorithm with the number of 

control segments of the original pruned skeletons. Figure 6 (c) 

shows several objects of a human-like model as smoothed by 

our algorithm. Segments and joints relate fairly well to surface 

features; however there is room for improvement. For instance 

for the boy-M149, there is no control points for fingers or toes 

are produced. 

The computational complexity of our approach can be 

derived below. 

 Let n be the number of points in the meshed model. The 

time complexity of our algorithm can be considered as 

follows. 

The pruning algorithm: the computation of degree of each 

point and the point analysis takes O(n) time. The computation 

of testing and finding the maximal disks in the neighborhood 

of each point takes O(n) time. The computation of the single 

source shortest paths (in term of the geodesic distance from 

that source vertex) to all points on the mesh takes O(n log n) 

time [5]. Thus, the overall computation takes O(n log n) time. 

 The smoothing algorithm: the computational complexity 

of averaging position of vi over the point pi in the filtering 

process takes O(n) steps. The computational complexity of 

chord-to-point distance accumulation takes O(n) steps. We 

implement our algorithm to place n points in a queue data 

structure, and most of the times are spent on the POP 

operation, thus the time complexity of this process is O(log n) 

steps. Thus, the overall computational complexity of the 

smoothing algorithm takes O(n) steps (this is not include the 

complexity analysis of the skeleton pruning algorithm which 

takes O(n log n) steps). 

V. CONCLUSION AND FUTURE WORKS  

In this paper we have presented our approach of 

geodesic-based skeleton smoothing to compute the skeleton 

for 3D meshed model. Using Blum’s Medial Axis 

Transform together with the geodesic distance function, 

and Han and Poston’s Chord-to-point Distance 

Accumulation, we can generate one-voxel thick, graph-like 

skeleton which can capture the essential shape 

characteristics in a compact form. Our approach also 

maintain the robustness against any changes of a rotation 

and/or a translation of the 3D meshed model which are the 

major properties of 3D objects. In figure 6 (a) and (d), it is 

easy to observe that the skeleton extracted by using the 

Reeb graph is very sensitive to the connectivity of the 

boundary representation and it also has a problem in 

producing the unwanted skeleton joints. The pruning 

algorithm can overcome these drawbacks; the results are 

shown in figure 6 (b) and (e). In the smoothing step, the 

collection of points produced from our smoothing 

algorithm is transformed into a collection of bones which 

can be used for 3D animation. The main process of this 

method is based on chord-to-point distance accumulation 

introduced by Han and Poston [6]. Unlike Han and Poston’s 

method, we use the geodesic distance instead of the 

Euclidean distance. We gain a benefit of the invariance 
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against a rotation and a translation from the geodesic 

distance used in chord-to-point distance accumulation to 

construct the rotation and the translation invariant control 

skeleton. The algorithm produces the useful control 

skeletons with a small number of control segments. It suits 

for producing skeletons for more complex objects (the 

object which have a large number of vertex, and faces), 

since it can reduce the number of control segments 

comparable to the number of unnecessary segments 

generated by the skeleton pruning method. Figure 6 (c) and 

(f) show the meaningful characteristics of the 3D meshed 

model, and the generated skeletons whose joints can be 

associated with the 3D meshed model.  

Given the skeleton construction process with the 

proposed approach of geodesic-based skeleton smoothing, 

significant improvements are desirable, either by increasing 

algorithm robustness or speed. Another robustness, we are 

taking into account is the robustness against the 

deformation of a model into the motion tween, which is the 

major technique for producing 3D character animation. 
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Figure 7. The smoothed skeleton of the objects: M149, M232, Femme, Horse, and Dinopet respectively. 
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