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    Abstract - This study presents a novel and robust three-step sixth-

order iterative scheme for solving nonlinear equations. The 

contributed without memory method includes two evaluations of the 

function and two evaluations of the first derivative per iteration which 

implies 1.565 as its efficiency index. Its theoretical proof is furnished 

to show the error equation. The most important merits of the novel 

method are as follows. First in numerical problems, the developed 

scheme mostly performs better or equal in contrast with the optimal 

eighth-order methods, such as [7] when the initial guesses are not so 

close to the sought zeros. Second, its convergence radius is more than 

the convergence radii of the optimal eighth-order methods. Third, its 

(extended) computational (operational) index is better in comparison 

with optimal eighth-order methods. That is, besides the high accuracy 

and bigger convergence radius in numerical examples for not so close 

starting points; our method has less computational complexity as 

well. 

 

     Keywords - Error equation, nonlinear equations, iterative methods, 

extended computational index, efficiency index, convergence radius, 
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I. INTRODUCTION 
 

n recent years, many iterative methods have been 

developed for solving one-variable nonlinear equations of 

the general form       . In other words, nonlinear 

equations solving has a vast application in science and 

engineering, e.g., the analysis of geometrically non-linear 

structural problems has been a subject of interest for over three 

decades. The solution of a non-linear problem reduces to that 

of tracing a non-linear load–displacement path by solving a 

system of non-linear algebraic or differential equations. An 

abundance of procedures exists for attacking the non-linear 

equilibrium equations. These include the Newton–Raphson 

method, the modified Newton–Raphson procedure, multi-

point methods, the perturbation method, the initial value 

approach and many more.  

     Let the scalar function      be sufficiently smooth in the 

real open domain   and   be its simple root. To develop the 

local convergence order of the known methods, such as the 

second-order Newton's method, the published papers have 

considered two, three or four steps in which we have a 

combination of some known methods.  

     This way increases the convergence order while more 

evaluations of the function or its derivatives are used per 

iteration. As a matter of fact, multi-point iterative methods for 

solving nonlinear equations are of great practical importance, 

since they overcome on the theoretical limits of one-point 

methods regarding the convergence order and computational 

efficiency. 

     Frequently in the literature, the efficiency index [14] is 

used to compare the obtained different methods. We here 

recall that this index is defined as     , where   is the order of 

convergence and   is the total number of evaluations per 

iteration. In fact, two important features determine the choice 

of iterative method: the total number of iterations and the 

computational cost. The former is measured by the order of 

convergence and the latter by the necessary number of 

evaluations of the scalar function   and its derivatives at each 

step. In the scalar case, these two features are linked by the 

efficiency index. (For scalar equations, it is usually considered 

that the evaluation of   and its derivatives have a similar 

computational cost.) 

     Two-step methods were introduced to boost up the order of 

convergence. For example, Maheshwari in [6] presented the 

following closed-form optimal fourth-order method 

 

        

 
     

      

 
 
 
 
       

     
      

  
 

     
 

 
     

     
     
      

       
 
 
 
 
 

  

     
 

in which we have two evaluations of the function and one of 

its first derivative.  

     Cordero et al. in [2] investigated another optimal fourth-

order method by using the Potra-Pták's scheme as follows 

 

 
 
 

 
       

     

      
 

        
           

      
 

            

      
 
     

     
 

 

 

  

     
 

     Higher order methods are developed by considering three-

step methods in which we use three different points per 

iteration.  

     Kou and Li in [5] presented a sixth-order method by taking 

into consideration the Chebyshev's iterate as follows 
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     [4] suggested the following sixth-order method by 

approximating the first derivative of the function in the third 

step using divided differences 

 

 
  
 

  
       

     

      
 

      
     

      

     

           
 

        
     

                           
 

         

 

     Soleymani in [10] proposed a sixth-order convergence 

method as follows  

 

 
 
 
 
 

 
 
 
       

 

 

     

      
 

      

 
          

             
        

 
          

             
         

     

      
 

        
             

 
     

                             
 

  

 

where the parameters          and    are provided in the 

following way 

 

 
 
 
 
 
 

 
 
 
 
     

          

           
 

     

     
 

   
     

           
 

 

     
 

   
                              

           
               

     
      

 

   
  

        
 

               

               
 

  

     This scheme was given by considering a modification of 

Jarratt method in three steps in which there are three 

evaluations of the function and one evaluations of the first 

derivative per full cycle. 

     In 2010, Thukral and Petkovic proposed a family of three-

step iterations [13] by using the King's optimal fourth-order 

family in the first and second steps and constructing a weight 

function to obtain the eighth-order convergence as follows 

 

 
  
 

  
       

     

      
 

      
            

                

     

      
 

              
     

            
 

      

     
 
     

      
 

  

    

 

wherein       and 
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     Recently Neta and Petkovic in [7] investigated an accurate 

optimal eighth-order family in three steps with three 

evaluations of the function and one evaluation of the first 

derivative per iteration where the new-appeared first 

derivative of the function in the third step was approximated 

by an inverse interpolation polynomial of degree three in the 

following form 

 

 
 
 

 
       

     

      
 

      
            

                

     

      
 

                
          

  

                  

 

where    , and     are defined by 

 

 
  
 

  
   

 

                                  
 

 

                                  

 
 

                                
 

 

                                
 

  
 

                     
 

 

                   
                 

                                

 

     Among many indices for comparison of different methods 

such as index of efficiency, index of operational [3], radius of 

convergence, etc.; here we try to provide a novel method 

which fits better to the indices like (extended) operational 
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index, as well as convergence radius, accuracy. For this reason 

in this paper, we build a sixth-order method in which we have 

two evaluations of the function and two evaluations of the first 

derivative.  

     It is shown that the proposed three-step scheme mostly 

performs better or equal than optimal eighth-order iterative 

methods when the starting points are not so close to the exact 

roots. This shows that our contribution is so competent 

wherein less computational complexity is used per iteration in 

comparison with high order methods such as (5) and (6) for 

such initial guesses.  

    In the next section, we build our scheme and prove its 

convergence order. Then in Section III, we provide a 

comparison among the methods available in literature to put 

on show the efficacy of the new contributed method. Last 

section comprises a short conclusion of this study. 

 

II. MAIN RESULT 
 

     We know that the convergence behavior of the multi-point 

methods strongly depends on the structure of tested functions 

and the accuracy of starting points. It is also known that multi-

point iterative methods without memory of the same order and 

the same computational cost show a similar convergence 

behavior and produce results of roughly same accuracy 

especially when the compared schemes use Newton-like or 

Steffensen-like methods in their first steps.  

     In this paper, we consider Jarratt-type methods, i.e. 

methods in which the first two steps is optimal fourth-order 

iteration with two evaluations of the first derivative and one 

evaluation of the function. Such schemes are better predictors 

for predictor-corrector methods when the initial guesses are in 

the vicinity of the roots but not so close [9, 11]. Hence, let us 

consider the proposed method by Basu in [1] as the predictor 

 

 
  
 

  
       

 

 

     

      
 

     

  
         

 

         
               

 

          
 
         

     
 
     

      
 

  

    

 

wherein we have one evaluation of the function and two 

evaluations of the first derivative per iteration to obtain the 

fourth-order convergence. Now we add a third step by 

Newton's iteration (the corrector).  

    Clearly, the considered iterative scheme is of order eight 

with 1.515 as its efficiency index. In order to boost up the 

efficiency index, the new-appeared first derivative of the 

function in the third step is approximated by the known 

values. To build a powerful estimation of       , we use all 

the four known values, i.e.,        
       

      and      . 

Hence, the degree two Taylor polynomial of       around    

is written in the following form 

 

                          

 
 

 
              

           

 

and also for the second derivative of the function        , we 

have 

 

         
               

       
 

                                             
 

     Note that       , is available from the second step of our 

iterative scheme. Accordingly, by considering (9) and (10), a 

new approximation of the first derivative of the function in the 

third step (wherein all of the four known values are used) is 

obtained as follows 

 

                                             
 

and consequently our contributed iterative method in which 

we have two evaluations of the function and two evaluations 

of the first derivative is presented in the following three-step 

view 

 

 
 
 
 
 

 
 
 
       

 

 

     

      
 

     

  
         

 

         
               

 

          
 
         

     
 
     

      
 

        
     

                          
 

   

     

 

Theorem 1. Assume         be a sufficiently smooth 

function and has a simple root   in  . Then the three-step 

without memory iterative scheme denoted by (12) is of local 

order of convergence six and it consists of two evaluations of 

the function and two evaluations of the first derivative per 

iteration. 

 

Proof. Let that         be the error of the iterative 

scheme in the nth iterate. We formally expand       and the 

other required parts of the iterative scheme about the simple 

root  . We should remark that for simplicity, we let 

 

    
 

  
 
       

     
      

 

Therefore, we have 
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Furthermore, we obtain 
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     Dividing the new two Taylor expansions to each other and 

by considering the first step of (12), we attain 

 

   
 

 

     

      
   

  

 
 

     
 

 
 

 
 

 
   

       
  

 

 
    

              
  

 
 

 
    

      
       

              
      

     

       
 

     To keep on, the Taylor expansion of the second step of (12) 

is needed. Thus by writing the Taylor expansion of        and 

the second step of (12) we have 
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    Subsequently, the Taylor expansion of       has the 

following form 

 

      
 

 
     

            
      

  

 
 

  
       

       
        

              
       

  

 
 

  
      

       
         

          

         
            

      
  

     
    

 

For the approximation function, we also obtain 

 

                                    
      

  
 

  
               

       
  

 
 

  
        

     
        

                 
      

  

 
 

  
       

       
           

       
                           

      
      

    

 

     Now by dividing the last two relations to one another and 

taking into consideration the last step of (12), we have 

 

        
     

                          
   

 
 

 
        

             
      

                              

 

    This completes the proof and shows that the order of 

convergence for our contributed method is six.   

 

Remark 1. The efficiency index of our scheme is 1.565 which 

is bigger than 1.414 of Newton's method, 1.442 of methods in 

[8, 15], and is equal to the sixth-order methods such as (3), (4) 

and the method in [12]. Although the presented scheme has 

lower efficiency index in contrast with 1.682 of optimal 

eighth-order methods, its convergence radius and its accuracy 
for not so close starting points are better than the accuracy and 

convergence radii of the optimal eighth-order methods (See 

Section III). 

 

Remark 2. Let   be the total operations (including additions, 

subtractions, divisions, multiplications and so on) of an 

iterative method per iteration, then the (extended) 

computational index (also known as extended operational 

index) is defined by     , where   is the order of convergence. 

Now, we can compare the computational index of some well-

known high-order methods with our scheme. The 

computational index of our method is             which is 

bigger than             of (6) and             of (5). 

 

III. COMPUTATIONAL EXPERIMENTS 
 

     In this section, we check the effectiveness of our 

contributed method (12) by solving some nonlinear equations 

with different initial guesses for each given test functions. The 

test problems and their roots are as follows. 
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               ,                         .  

 

     To show the reliability of (12), we compare the results with 

the fourth-order method of Maheshwari (1), the fourth-order 

method of Cordero et al. (2), the sixth-order of Cordero et al. 

(4), the optimal efficient eighth-order method of Thukral and 

Petkovic (5) with       and the optimal novel eighth-

order method of Neta and Petkovic (6) with    . The results 

are summarized in Table I in terms of required number of 

iterations to obtain the root which is correct up to 15 decimal 

places.  

     Note that for (5), we should pull the attention toward this, 

which it has, a very low convergence radius and that is why in 

most of the cases; it turns out to divergence when the starting 

points are in the vicinity of the zero but not so close. The 

applications of such methods whose convergence radii, are 

low, are indeed restricted in practice.  

     All computations were performed in MATLAB 7.6. We use 

the following stopping criterion in our computations:        

where   is the exact solution of the considered one variable 

nonlinear equations. For numerical illustrations in Tables I and 

II, we used the fixed stopping criterion        . Note that 

termination is the ending criteria of a process which depends 

on the level of acceptability of the allowable error. Since a 

numerical method gives only the approximation of the result, 

so it is a critical step in deciding the accuracy of any method 

and reliability of the result. 

    One of the frequently occurring problems in root-finding is 

that one (user) cannot easily understand that a zero of a 

nonlinear function is multiple or simple. In such cases 

although simple zero-finders have lower convergence order 

for multiple roots, the users again refer to them. For this 

reason, we have given the nonlinear function    with multiple 

roots. As can be seen also in this case, our proposed method 

has definite superiority.  

     We also provide the Total Number of Evaluations (TNE) 

for each method to obtain the root up to 15 decimal places in 

Table II. As we can see, the contributed method is robust and 

accurate in comparison with other efficient schemes. By 

comparisons with (6), we could claim that the method 

compete any optimal eighth-order scheme in [7] while its 

computational complexity is less and its convergence radius is 

bigger too.   

 

 
Table I. 

Comparison of different methods in terms of needed iterations to obtain the root 

Test Functions  Guess (1) (2) (4) (5) (6) (12) 

   -1.6 Div. Div. 3 Div. 3 3 

 -4 Div. Div. Div. Div. Div. 3 

 -3.8 Div. Div. Div. Div. Div. 3 

   1.4 Div. Div. 5 Div. 3 3 

 0.1 3 3 3 2 2 2 

 0.2 3 3 2 2 2 2 

   -0.1 Div. Div. Div. Div. 12 3 

 -0.2 Div. Div. Div. Div. 7 6 

 -0.42 Div. Div. Div. Div. 3 4 

   -0.5 Div. Div. 3 Div. 3 3 

 -1.9 5 4 3 3 3 3 

 -0.6 Div. Div. 3 3 3 3 

   1.5 48 49 31 33 30 14 

 0.7 52 52 33 35 32 14 

 1.0001 4 4 3 3 3 1 

   -0.5 9 4 3 Div. 3 3 

 3 4 4 3 3 3 3 

 2.2 3 3 2 2 2 2 

 

 

     In fact, there is no way to guarantee the convergence of the 

high-order methods without implementing so much 

complexity effort on the root solvers. In other hand, the 

closeness of the initial guess to the sought zero is of great 

importance in using such techniques.  

 

Remark 3. If the initial guesses be enough close (very close) 

to the sought zeros, then the optimal eighth-order methods will 

perform better than (12). 

 

     Although if one chooses a guess close to the root then the 

optimal eighth-order methods will be more accurate than (12), 

the question is: "is a completely close starting point to the 
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sought zero always at hand?" Definitely, it is of grave 

significance to have iterative methods of high order of 

convergence such as (12) that have bigger convergence radius 

in comparison to optimal three-step three-point methods.  

     Another point that should be mentioned on (12) is that it 

consists of two function and two first derivative evaluations 

per full cycle to reach the local order six. As a matter of fact, 
one of the open problems in root-finding topic is that if one 

considers an optimal fourth-order method without memory 

consuming one evaluation of the function and two evaluations 

of the first derivative in the first two steps of a three-step 

cycle, and then approximate the new-appeared first derivative 

of the function such that an optimal method without memory 

of order eight using two function and two first derivative 

evaluations be attained!  

     Although structures like (12) in which the new-appeared 

first derivative of the function in the third step is approximated 

by a combination of all known values are totally convenient, 

they are not optimal and it is still an open problem to make 

them optimal.  

     Tables I and II, based on 15 decimal places are satisfactory 
to reveal the importance of the distance between the starting 

points and the sought root. They also show the bigger 

convergence radius of (12). But we give the results of 

comparisons by taking into consideration the stopping 

criterion               , for such initial guesses.  

     The attained results are provided in Tables III and IV to 

also manifests that when the starting points are not so close to 

the sough zeros then the other high order optimal eighth-order 

techniques diverge or they mostly give less number of correct 

decimal places of the sough zero, while (12) mostly includes 

more even decimal places and has bigger convergence radius.  

     Numerical experiments have been performed in Tables III 

and IV with the minimum number of precision digits chosen 

as 100, being large enough to minimize round-off errors as 

well as to clearly observe the computed asymptotic error 

constants requiring small number divisions. Under the same 

order of convergence, one should note that the speed of local 

convergence of        is dependent on   , namely      and 

 .  

     In general, computational accuracy strongly depends on the 

structures of the iterative methods, the sought zeros and the 

test functions as well as good initial approximations. One 

should be aware that no iterative method always shows best 

accuracy for all the test functions.  

     However, a natural question of practical interest arises: 

does the construction of faster and faster multipoint methods 

always have a justification? Certainly not if initial 

approximations are not sufficiently close to the sought zeros. 

In those cases it is not possible, in practice, to attain the 

expected convergence speed (determined in a theoretical 

analysis).  

     Practical experiments showed that multipoint methods can 

converge very slowly at the beginning of iterative process for 

not so close initial guesses. It is often reasonable to put an 

effort into a localization procedure, including the 

determination of a good initial approximation, instead of using 

a very fast algorithm with poor starting guesses. 

 

 
Table II. 

Comparison of TNE to obtain the roots for different methods 

Test Functions  Guess (1) (2) (4) (5) (6) (12) 

   -1.6 - - 12 - 12 12 

 -4 - - - - - 12 

 -3.8 - - - - -  

   1.4 - - 20 - 12 12 

 0.1 9 9 12 8 8 8 

 0.2 9 9 8 8 8 8 

   -0.1 - - - - 48 12 

 -0.2 - - - - 28 24 

 -0.42 - - - - 12 16 

   -0.5 - - 12 - 12 12 

 -1.9 15 12 12 12 12 12 

 -0.6 - - 12 12 12 12 

   1.5 144 147 124 132 120 56 

 0.7 156 156 132 140 128 56 

 1.0001 12 12 12 12 12 12 

   -0.5 27 12 12 - 12 12 

 3 12 12 12 12 12 12 

 2.2 9 9 8 8 8 8 
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IV. CONCLUSIONS 
 

     In order to solve nonlinear equations of one variable, we 

should refer to numerical methods due to failure of analytical 

procedures to find the solutions. There exists extensive 

literature which investigates the quadratic convergent behavior 

of Newton’s method. By considering the sufficiently smooth 

function   in an open domain  , we have proposed in this 

paper a novel sixth-order method for solving single-valued 

nonlinear equations in which there are two evaluations of the 

function and two evaluations of the first derivative per 

iteration. The usual expectation from a mathematical method 

of such type is to obtain the fast result by using minimum 

order derivatives, which is particularly beneficial for the cases 

where the higher derivatives are difficult to evaluate. Present 

work found these expectations by converting the given 

nonlinear problems to a well defined numerical iterative 

scheme through the use of Taylor’s expansion; thereby 

obtaining a well efficient, highly convergent method that not 

only works faster than conventional methods but also takes 

lesser iteration steps than those of recently proposed iterative 

methods. The analytical proof of the main contribution was 

given in Section II. Numerical results in Section III have 

revealed the efficacy of the method in contrast with the most 

efficient optimal three-step method of Neta and Petkovic (6) 

when the initial guesses are in the vicinity of the roots but not 

so close. And subsequently we could conclude that the method 

is more accurate than any optimal eighth-order method which 
is quoted in [7] for such initial guesses. The presented method 

has less computational burden and its convergence radius is 

bigger than the convergence radii of the well-known high-

order existing methods. Note that in general, in applying 

iterative zero-finding methods, special attention should be paid 

to find good starting points. Accordingly, the contribution in 

this article can be viewed as a novel and precise iterative 

method for solving nonlinear equations especially for real-

world applications when the method users have no starting 

point very close to the root and they need fast root solvers.  

 

 
Table III. 

Comparison of various methods to find the root with the same Total Number of Evaluation (TNE=12) 

Function  Guess (1) (2) (4) (5) (6) (12) 

     -3.6 0.2e-10 0.2e-14 Div. 0.3e-85 Div. 0.2e-60 

     1.4 Div. Div. 0.5e-3 Div. 0.7e-58 0.2e-77 

     -0.4 Div. Div. 6.5 Div. 0.1e-14 0.3e-8 

     -0.5 Div. Div. 0.9e-18 Div. 0.2e-28 0.1e-38 

     1.01 0.4e-9 0.4e-9 0.8e-10 0.1e-9 0.5e-10 0.3e-16 

     3 0.3e-76 0.1e-21 0.3e-37 0.1e-40 0.8e-90 0.2e-50 

 
Table IV. 

Comparison of various methods to find the root with the same Total Number of Evaluation (TNE=12) 

Function  Guess (1) (2) (4) (5) (6) (12) 

     -3.5 0.1e-26 0.5e-28 0.3e-37 0.1e-142 0.1e-61 0.2e-66 

     1.5 Div. Div. Div. Div. Div. 0.9e-51 

     -0.37 Div. Div. Div. Div. 0.2e-8 0.5e-4 

     -0.55 Div. Div. 0.4e-28 Div. 0.2e-48 0.6e-51 

     1.001 0.4e-12 0.4e-12 0.8e-13 0.1e-12 0.5e-13 0.2e-19 

     3.4 Div. Div. 0.1e-2 Div. Div. 0.6e-46 
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