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Abstract—This paper presents an algorithm that applies a guided
maximum entropy method to the network design problem. Network
design problem is a well known NP-hard problem which almost
always involves underdetermined systems, especially when routing
policy has to be determined. The maximum entropy method is a
relatively new technique for solving underdetermined systems. We
adjusted the network design problem, primarily the routing feasibility,
to the maximum entropy method requirements. Computationally
feasible algorithm is developed which includes additional constraints
that direct uniformity of the solution in the desirable direction.
Proposed algorithm computes a reasonable solution that is robust
with respect to often required dynamic changes of the cost function.
This modified method exploits the property of the MEM that it can
smoothly move from cases where constraints can be satisfied to cases
where constraints become desirable goals that are satisfied as much
as possible. A software system was developed which includes all the
mentioned features.

Keywords — Maximum entropy method, Network routing, Com-
puter network topology, Optimization, Modeling.

I. I NTRODUCTION

T HE network design problem (NDP) is a very interesting
NP-hard problem of great practical value and since it

is untractable, heuristics and suboptimal solutions have been
used for decades. It involves topology selection (subset of pos-
sible links), routing determination (paths for the offered traffic)
and possibly capacity assignment. The goal is to minimize
the cost, which can be a combination of the link costs and
delay penalties, under possible additional constraints. Network
design and analysis almost always involve underdetermined
systems, especially when routing policy has to be determined.
It is an open problem and since unique best solution can not
be found, every new approach is promising in the sense that
solution obtained can be better then previous ones, at least in
some cases.

The maximum entropy method (MEM) is a relatively new
technique for solving underdetermined systems which has
been successfully applied in many different area. It is most
frequently used in chemistry [1], but also in many other
very diverse areas: character recognition [2], data analysis [3],
image processing [4], [5], economy [6]. Theoretical develop-
ments also continue [7]. An analysis of both, network design
problem and maximum entropy method, was done before [8]
with the argument that maximum entropy method can be a
reasonable way to approach the network design problem.
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It is intuitively clear that an optimal network should not
have overloaded or underutilized links. The maximum entropy
constraint favors uniform distribution and gives a starting
topology and routing with smoothly distributed traffic that is
expected to be close to the optimal solution. We adjusted the
network design problem, primarily the routing feasibility, to
the maximum entropy method requirements. Computationally
feasible algorithm is developed which implements the standard
maximum entropy method, includes adjustments for problems
that do not involve probabilities initially, calculates a function
that substitutes large sparse matrix, includes heuristic that
speeds up calculations by avoiding to invert Jacobian matrix
at each iteration, determines variables that define constraints
for the routing feasibility, includes additional constraints that
direct uniformity of the solution in the desirable direction,
cancels opposing traffic and excludes underutilized links.
Mentioned additional constraints are ”soft”, which is a unique
feature of this algorithm, in the sense that they do not have
to be satisfied; the solution will be pulled in the direction of
satisfying them as much as possible. Some theoretical results
are also established that direct initial approximation. Proposed
algorithm computes a reasonable solution that is robust with
respect to often required dynamic changes of the cost function.
The maximum entropy solution can be a good starting point
for further optimization considering that the cost function
with delay penalties involves queuing theory that is usually
computationally expensive.

II. T HE MAXIMUM ENTROPY METHOD

The basic idea of the MEM is to get a unique solution
from the underdetermined system by introducing the additional
constraint that the entropy function should be maximized. The
other methods that were used for solving underdetermined
systems use the same technique: they introduce additional,
artificial constraints that make the number of constraints equal
to the number of unknowns. The difference is that the max-
imum entropy method introduces the most natural additional
constraint: one that does not introduce any new, arbitrary and
unwarranted information. It uses only the information that is
given and makes no assumptions about missing information.
Important property of the MEM is that it makes variables as
equal as possible.

General MEM model calls for random variables and prob-
abilities, but for most problems more suitable is a system of
k equations withn variablesvi, k < n, and constraints:

x1,1v1 + x1,2v2 + ...+ x1,nvn = l1

x2,1v1 + x2,2v2 + ...+ x2,nvn = l2 (1)
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...

xk,1v1 + xk,2v2 + ...+ xk,nvn = lk

Variablesvi are converted to probabilities by normalization:
pi = vi/

∑n
j=1 vj and mi = li/

∑n
j=1 vj . The system

Equation (1) then becomes
n

∑

i=1

xr,ipi = mr , r = 1, 2, ..., k (2)

This is equivalent to the classical definition of the MEM
where it is assumed that for a discrete random variableX
the valuesx1, x2, ..., xn that it can take are known, but the
corresponding probabilitiesp1, p2, ..., pn are not known. The
expected values fork < n− 1 functions ofX (for example,
the firstk moments) are also known and represent constraints:

E[ fr(X)] = mr r = 1, 2, ..., k. (3)

Equation (2) (or (3)) gives (together with
∑

pi = 1) k +
1 < n constraints forn unknown variablesp1, p2, ..., pn.
This system is under-determined and has an infinite number
of solutions. The unique solution is looked for that respects
constraints and maximizes the entropy of the system:

H(p1, p2, ..., pn) = −K
n

∑

i=1

pi ln(pi)

The method of Lagrange multipliers is used. When La-
grange multipliersλ, µ1, µ2, ..., µk are introduced and partial
derivatives equated with zero we getn+ k + 1 equations for
n+k+1 unknown variablesp1, p2, ..., pn, µ1, µ2, ..., µk, λ.
The system now has a unique solution, but it is not linear and
some numerical method has to be used.

A. MEM Solution

The method of Lagrange multipliers is used. This will not
guarantee that probabilities are non-negative. The substitution
pi = e−qi is introduced, but this gives a stronger constraint
than the one required: all probabilities are now positive definite
(none of them can be zero). The problem now is to maximize

H(q1, q2, ..., qn) =

n
∑

i=1

qi e
−qi (4)

under the conditions
n

∑

i=1

e−qi = 1 (5)

n
∑

i=1

e−qifr(xi) = mr , r = 1, 2, ..., k (6)

Lagrange multipliersλ, µ1, µ2, ..., µk are introduced with
the function:

F (q1, q2, ..., qn) =

n
∑

i=1

qi e
−qi + λ

n
∑

i=1

e−qi (7)

+

k
∑

r=1

µr

n
∑

i=1

e−qi fr(xi)

All partial derivatives should be zero:

δF

δqi
= e−qi [1−qi−λ−

k
∑

r=1

µr fr(xi)] = 0 , i = 1, 2, ..., n

(8)
Sincee−qi is never zero

qi = 1− λ−

k
∑

r=1

µr fr(xi) , i = 1, 2, ..., n (9)

The problem is now solved: Equations (5), (6), and (9)
give n + k + 1 equations forn + k + 1 unknown variables
p1, p2, ..., pn, µ1, µ2, ..., µk, λ. The system should have
unique solution, but it is not linear and some numerical method
has to be used.

To make the calculations easier, the partition function is
introduced:

Z(µ1, µ2, ..., µk) =
n

∑

i=1

pi e
−λ =

n
∑

i=1

e−λ−qi

Z(µ1, µ2, ..., µk) =
1

e

n
∑

i=1

e
∑

k

r=1
µr fr(xi) (10)

It is easy to see that

λ = − lnZ(µ1, µ2, ..., µk) (11)

mr =
δ

δµr

lnZ(µ1, µ2, ..., µk) (12)

or

mr =
n

∑

i=1

[mr−fr(xi)]e

∑

k

j=1
µj fj(xi) = 0 , r = 1, 2, ..., k

(13)
Equation (13) representsk equations fork unknown vari-

ablesµ1, µ2, ..., µk. When it is solved, from Equation (11)
λ is calculated, and then from Equation (9)q1, q2, ..., qn
are determined , and finally, frompi = e−qi the probabilities
p1, p2, ..., pn are calculated.

Substitutiontj = eµj , j = 1, 2, ..., k can be introduced.
Then Equations (11) and (13) become:

λ = 1− ln[

n
∑

i=1

Πk
j=1t

fj(xi)
j ] (14)

n
∑

i=1

[mr − fr(xi)]Π
k
j=1t

fj(xi)
j = 0, r = 1, 2, ..., k (15)

There is an algorithm to solve this system. However, the
function that is to be minimized is not convex even in the
simplest case when there is only one constraint: expected
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value. Thestandard Newton-Rapson procedure will not work.
But the Jacobian matrix for this system is symmetric and
positive definite. This gives a scalar potential function which is
strictly convex and whose minimum is easy to find. The use of
the second order Taylor expansion is recommended. However,
after much experience with the algorithm, our impression is
that it is not even worth trying to find the exact value forα that
determines how far to go along a certain direction, let alone
inverting the Jacobian matrix every time. For our software
system we developed a heuristic that performs well.

B. Selection Principle

The previous model has constraintspi > 0, i = 1, 2, ..., n.
This may be too strong since the probabilities need only to be
nonnegative. To makepi ≥ 0, pi = q2i can be introduced
instead ofpi = e−qi , which was used before. In that case,
the problem becomes to maximize

H(q1, q2, ..., qn) = − 2

n
∑

i=1

q2i ln(qi) (16)

under the conditions
n

∑

i=1

q2i = 1 (17)

n
∑

i=1

q2i fr(xi) = mr, r = 1, 2, ..., k (18)

Lagrange multipliers are introduced:

F (q1, q2, ..., qn) = − 2
n

∑

i=1

q2i ln(qi) + λ
n

∑

i=1

q2i (19)

+

k
∑

r=1

µr

n
∑

i=1

q2i fr(xi)

Partial derivatives should be zero:

δF

δqi
= −2qi[2ln(qi)+1−λ−

k
∑

r=1

µrfr(xi)] = 0, i = 1, 2, ..., n

(20)
Now, the selection has to be made: anyqi can be zero.

qi = 0 or qi = e( −1+λ+
∑

k

r=1
µr fr(xi) )

0.5

, i = 1, 2, ..., n
(21)

When it is decided whichqi are to be zero, the remaining
equations will give as many equations as there are unknown
variables. The partition function is equal as in the previous
model, and the whole discussion repeats. The only difference
is that summations are not carried for alli = 1 to n, but only
for thosei for which qi 6= 0.

This new model is used only to show how the casepi=0
for some i can be included. In practice, we have to decide
which pi will be zero. We can do it in advance and consider
a model that has onlyn−m probabilities (ifm probabilities
are selected to be zero). If we select too many probabilities to
be zero, the system may become over-determined.

III. T HE NETWORK DESIGN PROBLEM

Computer networks consist of computers, called nodes, and
communication lines, called links, that interconnect them. The
network design problem is:

• For given locations of nodes, traffic matrix (offered traffic
for each pair of nodes) and cost matrix (cost to transfer
a message for each pair of nodes)

• With performance constraints: reliability, delay (time that
a message spend in the network), throughput

• Find values for variables: topology (which nodes will be
connected directly with a line and which will have to
communicate indirectly, using other nodes as intermediate
stations), line capacities (how much traffic will each link
be able to carry), flow assignment - routing (which paths
messages between any pair of nodes will follow)

• Minimize the cost (of building and maintaining the whole
network).

Other formulations of the problem are: minimize delay for
the given cost or maximize throughput for given cost and
delay. It has been shown that all these problems are similar
and that the same techniques can be applied. Different aspects
of the network design problem, particularly routing and link
capacity were investigated [9], [10], [11]. More recent results
are in [12] and [13] and the latest survey on topology [14].

This problem is intractable if full and exact solution is
required. Networks can have many hundreds of nodes (com-
puters). Fortunately, experience has shown that network design
can be done hierarchically (or bi-level [15]) and still be near
optimal. An example is a network for a country. First, we
can decide where to put trunks between major cities, then
connect small cities to nearest major cities, then make local
networks inside the cities. This approach allows us to work
with networks of at most 50 nodes at a time. This is a great
help, but the problem is still intractable.

The network design problem, that was for many decades
investigated with emphasis on wide area networks, is recently
revitalized with application to mobile ad hoc networks [16],
[17], [18]. The other refinements of the problem and areas of
current research are radio networks where the goal is changed
to covering maximum area [19] and quality of service over
heterogeneous networks [20].

IV. A DJUSTMENT OF THENETWORK DESIGN PROBLEM
FOR THEMEM

The network design problem has to be fitted to the model
described in the Section II. Let us consider an-node network
with given traffic matrixti,j , line capacity C and total traffic T.
It is possible to apply MEM if analysis is started with totally
interconnected network ofn nodes. Initial feasible routing is
then trivial. Some lines will be dropped later in the process of
improving utilization or reducing the cost.

To apply the maximum entropy method, it has to be decided
what will be the variables of the system. It may be desirable
to have as variables the traffic along different lines; that is
what should be made as equal as possible. However, these
variables are too coarse. From them the routing can not be

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 622



determined. Themore serious problem is that there are no
natural constraints on these variables. This forces us to select
as variables of the system something finer: the traffic of a
particular message type (message types are distinguished by
the source and destination for a message) on a particular line
[8].

The number of different message types isn(n − 1) (from
each node to every other node, except itself). The number of
different lines is alson(n − 1). There is a variable for each
pair (message-type, line) so the total number of variables is
n2(n − 1)2. Constraints that enforce feasible routing can be
determined as follows. For each node there is an equation
for each message type. The total number of equations is then
n2(n − 1), plus the equation that establishes that the sum of
all probabilities is equal to 1. In this case, the last condition
is equivalent to the requirement that the total network traffic
is equal to some given constant within a certain range. The
equations will express the following conditions: for each
transit node the flow-in is equal to the flow-out for each
message type separately. For the source nodes and the sink
nodes, equation is balanced by the required load for particular
message type.

The matrix for this system is large, but fortunately very
sparse. The total number of the elements in the system
isn4(n − 1)3 (the number of equations times the number
of variables). The density of the matrix is then calculated
as 2

n2(n−1) . The density approaches zero with the cube of
the number of nodes, which means that is inappropriate or
impossible to keep such a matrix in the memory. For example,
for n = 20 there are 144,000 variables with 7,600 equations
and density is only 0.003%. We implemented an algorithm for
calculating matrix values.

V. THE COST FUNCTION

Among all possible topologies and associated routings we
want to select one that is optimal in some sense, usually
the combination of network cost and delay. In determining
which line to keep and which to eliminate, an appropriate
cost function is needed [9]. There is no unique best cost
function because the network can be viewed from at least
two different points: network manager’s and user’s. From the
network manager’s point of view a line that is expensive to
install is expensive, but from the user’s point of view a line
that is introducing long delays is expensive. This two criteria
are always contradictory. The best solution is usually some
compromise between these two extreme positions. A line cost
can be defined as a weighted sum (or some other function) of
the installation cost and the total delay on that line. General
form of the cost function can beC = CI +KD. The network
cost is the sum of line costs. When the weight coefficientK
is set to zero, delays are ignored and when it is set to some
very large value only delays are considered. The second cost
component, total delay, is a dynamic component and it has to
be recalculated after each rerouting.

It is easy to see that two extremes do not give reasonable
results. If only delays are considered, the best network will
always be totally interconnected network. Removing any line

will increase delays. But some very expensive line may
carry very little traffic and the removal of such line would
significantly decrease line costs and only marginally increase
delays. Such solution would be overlooked if line costs are
not considered.

The other extreme is when only line costs are considered.
The best network in that case is the minimum spanning tree.
Interesting case is a network that forms a ring when costs are
considered. Each node has two neighbors to which it can be
connected by inexpensive lines. Connections to any other node
is considerably more expensive. The minimum spanning tree
for such a network is an open ring. That is the solution if
only line-costs are considered. It is easy to see that a closed
ring is much better solution. By adding that last line that will
close the ring, the cost will not increase dramatically, but the
average path length will be almost halved and delay will be
much smaller. If delay is included, even with a small weight
coefficient, in the cost function, the line that closes the ring
would not be dropped.

The cost function can dynamically change and that is the
reason that robust solution is needed. Evolutionary algorithms
[21] that may have very good properties can be to slow for
such dynamic adjustments.

VI. NDP ALGORITHM BASED ON MEM
An algorithm is presented here that uses guided MEM to

get a robust solution for the NDP. It first gives the maximum
entropy solution (routing) for the system described in Section
IV. It was mentioned that some numerical method is needed to
solve nonlinear system that defines MEM solution. There is an
algorithm to solve this system. However, the function that is
to be minimized is not convex even in the simplest case when
there is only one constraint: expected value. The standard
Newton-Rapson procedure will not work. But the Jacobian
matrix for this system is symmetric and positive definite.
This gives a scalar potential function which is strictly convex
and whose minimum is easy to find. The use of the second
order Taylor expansion is recommended. However, after much
experience with the algorithm, our impression is that it is not
even worth trying to find the exact value forα that determines
how far to go along a certain direction, let alone inverting
the Jacobian matrix every time. For our software system we
developed a heuristic that performs well.

The other problem that was mentioned is that matrix for the
system is very large, but fortunately very sparse. A function
is implemented that calculates the value of matrix element
without need to store that element.

After the initial solution is obtained some refinements are
done. It is never a good idea to have traffic of certain messages
from A to B and fromB to A, for any pair of nodesA and
B. The maximum entropy method avoids such situations but it
can not make any probability exactly zero. In the second pass
we eliminate one half of the variables. For each message type
and each pair of nodes we keep traffic only in one direction.
For the direction where it was near zero, we cancel it. After
that we have routing and can do something about topology
(we start with a totally interconnected network), for example
to exclude lines that carry little traffic.
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The algorithmis applied to a simple three node network as
an example. Tables I and II give results for total traffic 90,
full duplex andǫ = 0.0001. The column 3 is the initial MEM
solution when all lines are included, column 4 is refinement
when opposing traffic is canceled, column 5 excludes lines
where traffic is less than 4% and the last column excludes
lines where traffic is less than 9%.

TABLE I
TRAFFIC DISTRIBUTION, TOTAL LOAD 90

Line Offered All lin. 1-way Tr. 4% Tr. 9%
(1,2) 15.0 18.2 16.6 18.7 10.0
(1,3) 5.0 11.9 13.7 10.0 10.0
(2,1) 15.0 18.2 16.6 18.7 10.0
(2,3) 10.0 14.8 14.7 16.3 25.0
(3,1) 5.0 11.9 13.7 10.0 10.0
(3,2) 10.0 14.8 14.7 16.3 25.0

TABLE II
ROUTING, TOTAL LOAD 90

Mess. Line All l. 1-way Tr. 4% Tr. 9%
(1,2) (1,2) 23.5 16.6 18.7 10.0
(1,2) (1,3) 7.5 13.4 11.3 20.0
(1,2) (2,1) 0.2
(1,2) (2,3) 0.8
(1,2) (3,1) 0.8
(1,2) (3,2) 7.5 13.4 11.3 20.0
(1,3) (1,2) 4.3 6.3 10.0 10.0
(1,3) (1,3) 7.8 3.7
(1,3) (2,1) 1.4
(1,3) (2,3) 4.3 6.3 10.0 10.0
(1,3) (3,1) 0.8
(1,3) (3,2) 1.4
(2,3) (1,2) 1.0
(2,3) (1,3) 6.1 10.3 8.7
(2,3) (2,1) 6.1 10.3 8.7
(2,3) (2,3) 15.3 9.7 11.2 20.0
(2,3) (3,1) 1.0
(2,3) (3,2) 0.4

The total offered load is for this example is 60. The shortest
path isof length 1 and the longest path is of length 2. That
means that minimal total traffic is 60 and maximal total traffic
is 120 (without cycles). These two cases have unique solutions
(for total traffic 60 everything goes along the shortest path and
for total traffic 120 everything goes along the longest path) and
we do need the maximum entropy method for that. We would
not be able to get maximum entropy solutions for these cases
since many probabilities are zero and the maximum entropy
method can not force any probability to zero. But if we put
60.1 or 119.9 for the total traffic, we get very reasonable
results. Tables III i IV show how MEM successfully routes
traffic near extreme points along shortest (columns 3 and 4)
or longest (columns 5 and 6) path:

We said before that our goal is to make traffic along all lines
as equal as possible. We can keep the constraints and include
additional equations that will force the traffic on all lines to be
exactly equal. This is exactly what we wanted. The problem
is that there is a range for total traffic where this is possible.

TABLE III
TRAFFIC 60.1 I 119.9

Line Offered Min all min-1-w Max all max-1-w
(1,2) 15.0 15.0 15.0 15.2 15.0
(1,3) 5.0 5.0 5.0 24.8 25.0
(2,1) 15.0 15.0 15.0 15.2 15.0
(2,3) 10.0 10.0 10.0 20.0 19.9
(3,1) 5.0 5.0 5.0 24.8 25.0
(3,2) 10.0 10.0 10.0 20.0 19.9

TABLE IV
ROUTING FOR TRAFFIC60.1 I 119.9

Mess. Line min all min-1-w max all max-1-w
(1,2) (1,2) 30.0 30.0 0.4
(1,2) (1,3) 0.0 29.7 29.9
(1,2) (3,2) 0.0 29.7 29.9
(1,3) (1,2) 0.0 10.0 10.0
(1,3) (1,3) 10.0 10.0 0.1
(1,3) (2,3) 0.0 10.0 10.0
(2,3) (1,3) 0.0 19.9 20.1
(2,3) (2,1) 0.0 19.9 20.1
(2,3) (2,3) 20.0 20.0 0.2

It is obvious that the total traffic that is close to its extreme
values will not permit equal traffic on all lines (provided that
all loads are not equal). For the previous case the limit where
traffic on all lines can be made equal is when the total traffic
is 75. At that point some probabilities become zero, and if we
drop the total traffic below 75 we can not get equal traffic on
all lines any more.

The better approach is to drop the requirement (which can
not be satisfied any more) that traffic on all lines must be
equal and introduce new variables that will represent traffic
on different lines. They are connected to old variables and
will be included as additional constraints. Since traffic on each
line is a variable now, these variables will be made as equal as
possible by the MEM. The problem is that they are not the only
variables. Since we really want to make them equal, we can
give them larger weight coefficients. This works remarkably
well and a weight coefficient of 10 or 20 gives very nice
solutions.

VII. T HE GUIDED MEM

For many problems initial adjustment for the MEM appli-
cation requires that variables of the system be determined in
such a way that a feasible solution is obtained. This may not
be a desirable solution for the optimization, but constraints
have to be satisfied first.

It is possible to modify the MEM model and include a
mechanism to guide the process of optimization. Once the
necessary constrains are satisfied, artificial variables can be
introduced that will guide the optimization process in the
desirable direction.

MEM guidance will be demonstrated on an example, similar
to Brandeis Dice Problem.

A die, possibly irregular, is considered. The number of spots
that shows up when the die is tossed defines a random variable
with possible outcomes and corresponding probabilities:
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X = [1, 2, 3, 4, 5, 6]

P(6) = [p1, p2, p3, p4, p5, p6]

The constraint that the sum of the probabilities is 1 is always
present and in usual terminology not counted as an additional
constraint. Without any (additional) constraints the expected
valueE(X) is 3.5 and the solution for the probabilities is an
uniform distribution:pi = 0.167, i = 1, 2, ...6.

For a single constraint EX=4.4 there is one (additional)
constraint:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 = 4.4

and the MEM solution is:

P(6) = [0.063, 0.087, 0.121, 0.169, 0.234, 0.325]

As expected, the probabilities density is shifted towards
larger outcomes since expected value shifted in that direction.

If the elementary probabilities were not the goal of equaliza-
tion but some coarser variables, additional constraint can be in-
cluded. If, for example, the goal is to to makepx = p1+p2+p3
equal topy = p4 + p5 + p6, a system of two constraints can
be used:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 = 4.4

1p1 + 1p2 + 1p3 − 1p4 − 1p5 − 1p6 = 0

In this case it is possible to have a solution that will satisfy
both constraints:

P(6) = [0.004, 0.042, 0.454, 0.004, 0.042, 0.454] (22)

The problem with this approach is that it limited to cases
when the guidance goal (in this case the total equalization of
px and py) is possible. However, the main advantage of the
MEM method is its ability to push towards the guidance goal
even when exact goal satisfaction is not possible.

This can be illustrated on the previous example, but with
changed requirement thatE(X) = 4.6. It is easy to see that
the constraint

p1 + p2 + p3 = p4 + p5 + p6

can not be satisfied. The maximum value forE(X) is
reached when probabilities density is pushed toward higher
values:

P(6) = [0, 0, 0.5, 0, 0, 0.5]

The value forE(X) is in that case equal to 4.5. For any
higher value ofE(X) exact equalization (which is the second
constraint) is not possible.

To make the sumsp1+p2+p3 andp4+p5+p6 as equal as
possible, new variables are introduced:p6 = px = p1+p2+p3

andp7 = py = p4 + p5 + p6. Two new constraints that define
these new probabilities are added. The fact that new variables
are mentioned as constraints will make them participate in the
equalization process.

Care mast be taken about normalization. New probabilities
(p7 andp8) are not independent from the old ones and the sum
of all probabilities becomes 2. Considering that the sum of all
probabilities has to be 1 and that the sum of old probabilities
(only old probabilities participate in the first constraint) is only
0.5, the first constraint has to be redefined.

Three constraints now become:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 0p7 + 0p8 = 2.3

1p1 + 1p2 + 1p3 + 0p4 + 0p5 + 0p6 − 1p7 + 0p8 = 0

0p1 + 0p2 + 0p3 + 1p4 + 1p5 + 1p6 + 0p7 − 1p8 = 0

and the corresponding MEM solution is:

P(8) = [0.020, 0.039, 0.076, 0.055, 0.106, 0.205, 0.135, 0.365]

or, when onlyP(6) is denormalized:

P(6) = [0.040, 0.078, 0.152, 0.109, 0.211, 0.409]

This solution represents smooth extrapolation of the pre-
vious case. All constraints are satisfied. Expected value is
4.6. However,p7 and p8 are not equal since that was not
the requirement any more. These variables were mentioned in
the system of constraints so they participate in the process of
equalization, but only to some extent. In this case (after denor-
malization),p7 = 0.270 andp8 = 0.730. This is far from being
equal, the ratiop8/p7 is 2.7. We can make them closer to being
equal by forcing them to contribute more significantly in the
optimization process. This can be accomplished by redefining
them in such a way that the larger mass of the probability is
concentrated in them. If the constraintsp6 = p1+p2+p3 and
p7 = p4+p5+p6 are replaced withp6 = 9p1+9p2+9p3 and
p7 = 9p4+9p5+9p6 only the 10% of the probability mass will
remain in the old probabilities and 90% will be concentrated in
the new probabilities. This will make new probabilities more
significant in the equalization process, but the first constraint
has to be redefined to reflect the fact that old probabilities,
that define it, now contribute 10 times less. The new set of
constraint is:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 0p7 + 0p8 = 0.46

9p1 + 9p2 + 9p3 + 0p4 + 0p5 + 0p6 − 1p7 + 0p8 = 0

0p1 + 0p2 + 0p3 + 9p4 + 9p5 + 9p6 + 0p7 − 1p8 = 0

The corresponding MEM solution is:

P(8) = [0.001, 0.007, 0.031, 0.002, 0.010, 0.049, 0.348, 0.552]

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 5, 2011 625



or, when onlyP(6) is denormalized:

P(6) = [0.014, 0.066, 0.307, 0.022, 0.104, 0.487]

New probabilitiesp7 andp8 are now closer to being equal
since ratiop8/p7 is 1.6.

We can push this process further in that direction by making
old probabilities contain only 2% of the probability mass,
which is equivalent of making new probabiities 50 times more
important.

The new set of constraints is now:

1p1 + 2p2 + 3p3 + 4p4 + 5p5 + 6p6 + 0p7 + 0p8 = 0.092

49p1 + 49p2 + 49p3 + 0p4 + 0p5 + 0p6 − 1p7 + 0p8 = 0

0p1 + 0p2 + 0p3 + 49p4 + 49p5 + 49p6 + 0p7 − 1p8 = 0

The corresponding MEM solution is:

P(8) = [0.000, 0.000, 0.009, 0.000, 0.000, 0.010, 0.444, 0.536]

or, when onlyP(6) is denormalized:

P(6) = [0.001, 0.019, 0.434, 0.001, 0.023, 0.523]

New probabilitiesp7 and p8 are now even closer to being
equal since ratiop8/p7 improved to 1.2.

For significance of new probabilities equal to 100,
the corresponding probabilities areP(8) = [0.000000,
0.000038, 0.004603, 0.000000, 0.000044, 0.005314, 0.459509,
0.530491],P(6) = [0.0000, 0.0038, 0.4603, 0.0000, 0.0044,
0.5314] and ratiop8/p7 = 1.15.

The process that is described shows that it is possible
to adjust MEM for some constrained optimization problem
and then guide it in the desired direction, but there is no
universal way how to do it, each problem has to be investigated
separately.

VIII. N ETWORK EXAMPLE FOR GUIDED MEM
Tables V and VI represent the same example as before,

total traffic 90, but with constraints where traffic on all lines
is made equal, lines are introduced as variables, and lines are
introduced as variables with weight 4.

TABLE V
L INES AS VARIABLES, TOTAL TRAFFIC 90

Line Offered Old Eq. Var. Weight 4
(1,2) 15.0 16.6 15.0 16.1 15.6
(1,3) 5.0 13.7 15.0 14.0 14.4
(2,1) 15.0 16.6 15.0 16.1 15.6
(2,3) 10.0 14.7 15.0 14.9 15.0
(3,1) 5.0 13.7 15.0 14.0 14.4
(3,2) 10.0 14.7 15.0 14.9 15.0

The limit where we can force equal traffic on all lines is
whentotal traffic is 75 for this case. Then the traffic for some

TABLE VI
ROUTING, LINES AS VARIABLES, TOT 90

Mess. Line Old Eq. Var. Weight 4
(1,2) (1,2) 16.6 15.0 16.1 15.5
(1,2) (1,3) 13.4 15.0 13.9 14.5
(1,2) (3,2) 13.4 15.0 13.9 14.5
(1,3) (1,2) 6.3 5.0 6.0 5.6
(1,3) (1,3) 3.7 5.0 4.0 4.4
(1,3) (2,3) 6.3 5.0 6.0 5.6
(2,3) (1,3) 10.3 10.0 10.1 10.0
(2,3) (2,1) 10.3 10.0 10.1 10.0
(2,3) (2,3) 9.7 10.0 9.9 9.9

messages on some lines drops to zero. Tables VII and VIII
show what the second method can do in that case. The third
column gives old results, the column 4 results of modified
algorithm when there is a constraint that traffic on all lines
be equal, column 5 when lines are introduced as variables,
column 6 when these lines variables have weight 4, column
7 with weight 9 and the last column with weight 19. If the
total traffic drops below 75, the fourth column can not be
calculated any more, but the remaining columns continue to
smoothly abandon the uniform distribution.

TABLE VII
DIFFERENT WEIGHT COEFFICIENTS

Line Offer Old Eq. Wght4 Wght9 Wght19
(1,2) 15.0 16.0 12.5 13.9 13.1 12.7
(1,3) 5.0 9.1 12.5 11.0 11.7 12.3
(2,1) 15.0 16.0 12.5 13.9 13.1 12.7
(2,3) 10.0 12.4 12.5 12.7 12.6 12.5
(3,1) 5.0 9.1 12.5 11.0 11.7 12.3
(3,2) 10.0 12.4 12.5 12.7 12.6 12.5

TABLE VIII
ROUTING FOR DIFFERENT WEIGHT COEFFICIENTS

Mess. Line Old Eq. Wght4 Wght9 Wght19
(1,2) (1,2) 23.6 19.9 20.3 18.4 16.0
(1,2) (1,3) 6.5 10.0 9.2 10.4 11.8
(1,2) (3,2) 6.5 10.0 9.1 10.1 11.0
(1,3) (1,2) 3.4 0.1 2.2 2.1 3.0
(1,3) (1,3) 6.6 9.9 7.4 6.9 5.3
(1,3) (2,3) 3.4 0.1 2.2 2.2 3.3
(2,3) (1,3) 5.1 5.0 5.4 6.1 7.4
(2,3) (2,1) 5.1 5.0 5.3 5.7 6.3
(2,3) (2,3) 14.9 14.9 14.1 13.0 10.7

IX. CONCLUSION

The network design problem is suitable for the maximum
entropy method application since the routing problem is an
underdetermined one. Also, since it is intuitively clear that
an optimal network should not have overloaded or underuti-
lized links, the maximum entropy constraint gives a starting
topology and routing with smoothly distributed traffic that
is robust to changes in cost function. Such optimization is
useful in ad-hoc and wireless networks where cost function
and consequently, topology and routing have often to be
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quickly adjusted.An algorithm presented here has a number of
automatic features that, step by step improve solution, but also
a number of parameters that can be adjusted for specific cases
to help the optimization process. Further research can include
quantitative analysis of robustness of this MEM solution
considering different realistic cost functions.
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